wcy1122 commited on
Commit
26a63c0
·
1 Parent(s): 01bee5c

initial commi

Browse files
Files changed (49) hide show
  1. .gitattributes +3 -0
  2. LICENSE +201 -0
  3. README.md +1 -1
  4. app.py +228 -0
  5. dreamomni2/pipeline_dreamomni2.py +1148 -0
  6. example_input/edit_tests/1/ref_0.jpg +3 -0
  7. example_input/edit_tests/1/ref_1.jpg +3 -0
  8. example_input/edit_tests/1/res.jpg +3 -0
  9. example_input/edit_tests/2/ref_0.jpg +3 -0
  10. example_input/edit_tests/2/ref_1.jpg +3 -0
  11. example_input/edit_tests/2/res.jpg +3 -0
  12. example_input/edit_tests/3/ref_0.jpg +3 -0
  13. example_input/edit_tests/3/ref_1.jpg +3 -0
  14. example_input/edit_tests/3/res.jpg +3 -0
  15. example_input/edit_tests/4/ref_0.jpg +3 -0
  16. example_input/edit_tests/4/ref_1.jpg +3 -0
  17. example_input/edit_tests/4/res.jpg +3 -0
  18. example_input/edit_tests/5/ref_0.jpg +3 -0
  19. example_input/edit_tests/5/ref_1.jpg +3 -0
  20. example_input/edit_tests/5/res.jpg +3 -0
  21. example_input/edit_tests/6/ref_0.jpg +3 -0
  22. example_input/edit_tests/6/ref_1.jpg +3 -0
  23. example_input/edit_tests/6/res.jpg +3 -0
  24. example_input/edit_tests/7/ref_0.jpg +3 -0
  25. example_input/edit_tests/7/ref_1.jpg +3 -0
  26. example_input/edit_tests/7/res.jpg +3 -0
  27. example_input/edit_tests/8/ref_0.jpg +3 -0
  28. example_input/edit_tests/8/ref_1.jpg +3 -0
  29. example_input/edit_tests/8/res.jpg +3 -0
  30. example_input/edit_tests/edi_res.png +3 -0
  31. example_input/edit_tests/ref.jpg +3 -0
  32. example_input/edit_tests/src.jpg +3 -0
  33. example_input/gen_tests/gen_res.png +3 -0
  34. example_input/gen_tests/img1.jpg +3 -0
  35. example_input/gen_tests/img2.jpg +3 -0
  36. imgs/cover.png +3 -0
  37. imgs/gallery.png +3 -0
  38. inference_edit.py +180 -0
  39. inference_gen.py +192 -0
  40. my_datasets/.gitkeep +327 -0
  41. requirements.txt +16 -0
  42. utils/fsdp_utils.py +327 -0
  43. utils/infer_utils.py +163 -0
  44. utils/init_utils.py +48 -0
  45. utils/parser_config.py +314 -0
  46. utils/utils.py +166 -0
  47. utils/vprocess.py +568 -0
  48. web_edit.py +252 -0
  49. web_generate.py +251 -0
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.png filter=lfs diff=lfs merge=lfs -text
37
+ *.jpg filter=lfs diff=lfs merge=lfs -text
38
+ *.jpeg filter=lfs diff=lfs merge=lfs -text
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  title: DreamOmni2 Gen
3
- emoji: 🌖
4
  colorFrom: pink
5
  colorTo: purple
6
  sdk: gradio
 
1
  ---
2
  title: DreamOmni2 Gen
3
+ emoji: 🖼️
4
  colorFrom: pink
5
  colorTo: purple
6
  sdk: gradio
app.py ADDED
@@ -0,0 +1,228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ from PIL import Image
4
+ import spaces
5
+ import gradio as gr
6
+ import uuid
7
+ import argparse
8
+ from huggingface_hub import login, snapshot_download
9
+
10
+ import torch
11
+ from dreamomni2.pipeline_dreamomni2 import DreamOmni2Pipeline
12
+ from diffusers.utils import load_image
13
+ from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
14
+ from utils.vprocess import process_vision_info, resizeinput
15
+
16
+
17
+ def extract_gen_content(text):
18
+ text = text[6:-7]
19
+ return text
20
+
21
+ def _load_model_processor():
22
+
23
+ device = "cuda" if torch.cuda.is_available() else "cpu"
24
+ local_dir = snapshot_download(
25
+ repo_id="xiabs/DreamOmni2",
26
+ revision="main",
27
+ allow_patterns=["vlm-model/**", "gen_lora/**"],
28
+ )
29
+ vlm_dir = os.path.join(local_dir, 'vlm-model')
30
+ lora_dir = os.path.join(local_dir, 'gen_lora')
31
+
32
+ print(f"Loading models from vlm_path: {vlm_dir}, gen_lora_path: {lora_dir}")
33
+ pipe = DreamOmni2Pipeline.from_pretrained(
34
+ "black-forest-labs/FLUX.1-Kontext-dev",
35
+ torch_dtype=torch.bfloat16
36
+ ).to(device)
37
+ pipe.load_lora_weights(lora_dir, adapter_name="generation")
38
+ pipe.set_adapters(["generation"], adapter_weights=[1])
39
+
40
+ vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
41
+ vlm_dir,
42
+ torch_dtype="bfloat16"
43
+ ).to(device)
44
+ processor = AutoProcessor.from_pretrained(vlm_dir)
45
+ return vlm_model, processor, pipe
46
+
47
+
48
+ def _launch_demo(vlm_model, processor, pipe):
49
+
50
+ @spaces.GPU(duration=150)
51
+ def infer_vlm(input_img_path, input_instruction, prefix):
52
+ if not vlm_model or not processor:
53
+ raise gr.Error("VLM Model not loaded. Cannot process prompt.")
54
+ tp = []
55
+ for path in input_img_path:
56
+ tp.append({"type": "image", "image": path})
57
+ tp.append({"type": "text", "text": input_instruction + prefix})
58
+ messages = [{"role": "user", "content": tp}]
59
+
60
+ text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
61
+ image_inputs, video_inputs = process_vision_info(messages)
62
+ inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt")
63
+ inputs = inputs.to(device=vlm_model.device)
64
+
65
+ generated_ids = vlm_model.generate(**inputs, do_sample=False, max_new_tokens=4096)
66
+ generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
67
+ output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)
68
+ return output_text[0]
69
+
70
+ PREFERRED_KONTEXT_RESOLUTIONS = [
71
+ (672, 1568),
72
+ (688, 1504),
73
+ (720, 1456),
74
+ (752, 1392),
75
+ (800, 1328),
76
+ (832, 1248),
77
+ (880, 1184),
78
+ (944, 1104),
79
+ (1024, 1024),
80
+ (1104, 944),
81
+ (1184, 880),
82
+ (1248, 832),
83
+ (1328, 800),
84
+ (1392, 752),
85
+ (1456, 720),
86
+ (1504, 688),
87
+ (1568, 672),
88
+ ]
89
+ def find_closest_resolution(width, height, preferred_resolutions):
90
+ input_ratio = width / height
91
+ closest_resolution = min(
92
+ preferred_resolutions,
93
+ key=lambda res: abs((res[0] / res[1]) - input_ratio)
94
+ )
95
+ return closest_resolution
96
+
97
+ @spaces.GPU(duration=150)
98
+ def perform_generation(input_img_paths, input_instruction, output_path, height=1024, width=1024):
99
+ prefix = " It is generation task."
100
+ source_imgs = []
101
+ for path in input_img_paths:
102
+ img = load_image(path)
103
+ # source_imgs.append(img)
104
+ source_imgs.append(resizeinput(img))
105
+ prompt = infer_vlm(input_img_paths, input_instruction, prefix)
106
+ prompt = extract_gen_content(prompt)
107
+ print(f"Generated Prompt for VLM: {prompt}")
108
+
109
+ image = pipe(
110
+ images=source_imgs,
111
+ height=height,
112
+ width=width,
113
+ prompt=prompt,
114
+ num_inference_steps=30,
115
+ guidance_scale=3.5,
116
+ ).images[0]
117
+ image.save(output_path)
118
+ print(f"Generation result saved to {output_path}")
119
+
120
+ @spaces.GPU(duration=150)
121
+ def process_request(image_file_1, image_file_2, instruction):
122
+ # debugpy.listen(5678)
123
+ # print("Waiting for debugger attach...")
124
+ # debugpy.wait_for_client()
125
+ if not image_file_1 or not image_file_2:
126
+ raise gr.Error("Please upload both images.")
127
+ if not instruction:
128
+ raise gr.Error("Please provide an instruction.")
129
+ if not pipe or not vlm_model:
130
+ raise gr.Error("Models not loaded. Check the console for errors.")
131
+
132
+ output_path = f"/tmp/{uuid.uuid4()}.png"
133
+ input_img_paths = [image_file_1, image_file_2] # List of file paths from the two gr.File inputs
134
+
135
+ perform_generation(input_img_paths, instruction, output_path)
136
+ return output_path
137
+
138
+ css = """
139
+ .text-center { text-align: center; }
140
+ .result-img img {
141
+ max-height: 60vh !important;
142
+ min-height: 30vh !important;
143
+ width: auto !important;
144
+ object-fit: contain;
145
+ }
146
+ .input-img img {
147
+ max-height: 30vh !important;
148
+ width: auto !important;
149
+ object-fit: contain;
150
+ }
151
+ """
152
+
153
+
154
+ with gr.Blocks(theme=gr.themes.Soft(), title="DreamOmni2", css=css) as demo:
155
+ gr.HTML(
156
+ """
157
+ <h1 style="text-align:center; font-size:48px; font-weight:bold; margin-bottom:20px;">
158
+ DreamOmni2: Omni-purpose Image Generation and Editing
159
+ </h1>
160
+ """
161
+ )
162
+ gr.Markdown(
163
+ "Select a mode, upload two images, provide an instruction, and click 'Run'.",
164
+ elem_classes="text-center"
165
+ )
166
+ with gr.Row():
167
+ with gr.Column(scale=2):
168
+ gr.Markdown("⬆️ Upload images. Click or drag to upload.")
169
+
170
+ with gr.Row():
171
+ image_uploader_1 = gr.Image(
172
+ label="Img 1",
173
+ type="filepath",
174
+ interactive=True,
175
+ elem_classes="input-img",
176
+ )
177
+ image_uploader_2 = gr.Image(
178
+ label="Img 2",
179
+ type="filepath",
180
+ interactive=True,
181
+ elem_classes="input-img",
182
+ )
183
+
184
+ instruction_text = gr.Textbox(
185
+ label="Instruction",
186
+ lines=2,
187
+ placeholder="Input your instruction for generation or editing here...",
188
+ )
189
+ run_button = gr.Button("Run", variant="primary")
190
+
191
+ with gr.Column(scale=2):
192
+ gr.Markdown("🖼️ **Generation Mode**: Create new scenes from reference images."
193
+ "Tip: If the result is not what you expect, try clicking **Run** again. ")
194
+ output_image = gr.Image(
195
+ label="Result",
196
+ type="filepath",
197
+ elem_classes="result-img",
198
+ )
199
+
200
+ # --- Examples ---
201
+ gr.Markdown("## Examples")
202
+
203
+ gr.Examples(
204
+ label="Generation Examples",
205
+ examples=[
206
+ [
207
+ "example_input/gen_tests/img1.jpg",
208
+ "example_input/gen_tests/img2.jpg",
209
+ "In the scene, the character from the first image stands on the left, and the character from the second image stands on the right. They are shaking hands against the backdrop of a spaceship interior.",
210
+ "example_input/gen_tests/gen_res.png"
211
+ ]
212
+ ],
213
+ inputs=[image_uploader_1, image_uploader_2, instruction_text, output_image],
214
+ cache_examples=False,
215
+ )
216
+
217
+ run_button.click(
218
+ fn=process_request,
219
+ inputs=[image_uploader_1, image_uploader_2, instruction_text],
220
+ outputs=output_image
221
+ )
222
+
223
+ demo.launch()
224
+
225
+
226
+ if __name__ == "__main__":
227
+ vlm_model, processor, pipe = _load_model_processor()
228
+ _launch_demo(vlm_model, processor, pipe)
dreamomni2/pipeline_dreamomni2.py ADDED
@@ -0,0 +1,1148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 Black Forest Labs and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import (
21
+ CLIPImageProcessor,
22
+ CLIPTextModel,
23
+ CLIPTokenizer,
24
+ CLIPVisionModelWithProjection,
25
+ T5EncoderModel,
26
+ T5TokenizerFast,
27
+ )
28
+
29
+ from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
30
+ from diffusers.loaders import FluxIPAdapterMixin, FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
31
+ from diffusers.models import AutoencoderKL, FluxTransformer2DModel
32
+ from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
33
+ from diffusers.utils import (
34
+ USE_PEFT_BACKEND,
35
+ is_torch_xla_available,
36
+ logging,
37
+ replace_example_docstring,
38
+ scale_lora_layers,
39
+ unscale_lora_layers,
40
+ )
41
+ from diffusers.utils.torch_utils import randn_tensor
42
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
43
+ from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
44
+
45
+
46
+ if is_torch_xla_available():
47
+ import torch_xla.core.xla_model as xm
48
+
49
+ XLA_AVAILABLE = True
50
+ else:
51
+ XLA_AVAILABLE = False
52
+
53
+
54
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
55
+
56
+ EXAMPLE_DOC_STRING = """
57
+ Examples:
58
+ ```py
59
+ >>> import torch
60
+ >>> from diffusers import DreamOmni2Pipeline
61
+ >>> from diffusers.utils import load_image
62
+
63
+ >>> pipe = DreamOmni2Pipeline.from_pretrained(
64
+ ... "black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16
65
+ ... )
66
+ >>> pipe.to("cuda")
67
+
68
+ >>> image = load_image(
69
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/yarn-art-pikachu.png"
70
+ ... ).convert("RGB")
71
+ >>> prompt = "Make Pikachu hold a sign that says 'Black Forest Labs is awesome', yarn art style, detailed, vibrant colors"
72
+ >>> image = pipe(
73
+ ... image=image,
74
+ ... prompt=prompt,
75
+ ... guidance_scale=2.5,
76
+ ... generator=torch.Generator().manual_seed(42),
77
+ ... ).images[0]
78
+ >>> image.save("output.png")
79
+ ```
80
+ """
81
+
82
+ PREFERRED_KONTEXT_RESOLUTIONS = [
83
+ (672, 1568),
84
+ (688, 1504),
85
+ (720, 1456),
86
+ (752, 1392),
87
+ (800, 1328),
88
+ (832, 1248),
89
+ (880, 1184),
90
+ (944, 1104),
91
+ (1024, 1024),
92
+ (1104, 944),
93
+ (1184, 880),
94
+ (1248, 832),
95
+ (1328, 800),
96
+ (1392, 752),
97
+ (1456, 720),
98
+ (1504, 688),
99
+ (1568, 672),
100
+ ]
101
+
102
+
103
+ def calculate_shift(
104
+ image_seq_len,
105
+ base_seq_len: int = 256,
106
+ max_seq_len: int = 4096,
107
+ base_shift: float = 0.5,
108
+ max_shift: float = 1.15,
109
+ ):
110
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
111
+ b = base_shift - m * base_seq_len
112
+ mu = image_seq_len * m + b
113
+ return mu
114
+
115
+
116
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
117
+ def retrieve_timesteps(
118
+ scheduler,
119
+ num_inference_steps: Optional[int] = None,
120
+ device: Optional[Union[str, torch.device]] = None,
121
+ timesteps: Optional[List[int]] = None,
122
+ sigmas: Optional[List[float]] = None,
123
+ **kwargs,
124
+ ):
125
+ r"""
126
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
127
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
128
+
129
+ Args:
130
+ scheduler (`SchedulerMixin`):
131
+ The scheduler to get timesteps from.
132
+ num_inference_steps (`int`):
133
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
134
+ must be `None`.
135
+ device (`str` or `torch.device`, *optional*):
136
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
137
+ timesteps (`List[int]`, *optional*):
138
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
139
+ `num_inference_steps` and `sigmas` must be `None`.
140
+ sigmas (`List[float]`, *optional*):
141
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
142
+ `num_inference_steps` and `timesteps` must be `None`.
143
+
144
+ Returns:
145
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
146
+ second element is the number of inference steps.
147
+ """
148
+ if timesteps is not None and sigmas is not None:
149
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
150
+ if timesteps is not None:
151
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
152
+ if not accepts_timesteps:
153
+ raise ValueError(
154
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
155
+ f" timestep schedules. Please check whether you are using the correct scheduler."
156
+ )
157
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
158
+ timesteps = scheduler.timesteps
159
+ num_inference_steps = len(timesteps)
160
+ elif sigmas is not None:
161
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
162
+ if not accept_sigmas:
163
+ raise ValueError(
164
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
165
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
166
+ )
167
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
168
+ timesteps = scheduler.timesteps
169
+ num_inference_steps = len(timesteps)
170
+ else:
171
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
172
+ timesteps = scheduler.timesteps
173
+ return timesteps, num_inference_steps
174
+
175
+
176
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
177
+ def retrieve_latents(
178
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
179
+ ):
180
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
181
+ return encoder_output.latent_dist.sample(generator)
182
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
183
+ return encoder_output.latent_dist.mode()
184
+ elif hasattr(encoder_output, "latents"):
185
+ return encoder_output.latents
186
+ else:
187
+ raise AttributeError("Could not access latents of provided encoder_output")
188
+
189
+
190
+ class DreamOmni2Pipeline(
191
+ DiffusionPipeline,
192
+ FluxLoraLoaderMixin,
193
+ FromSingleFileMixin,
194
+ TextualInversionLoaderMixin,
195
+ FluxIPAdapterMixin,
196
+ ):
197
+ r"""
198
+ The Flux Kontext pipeline for image-to-image and text-to-image generation.
199
+
200
+ Reference: https://bfl.ai/announcements/flux-1-kontext-dev
201
+
202
+ Args:
203
+ transformer ([`FluxTransformer2DModel`]):
204
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
205
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
206
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
207
+ vae ([`AutoencoderKL`]):
208
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
209
+ text_encoder ([`CLIPTextModel`]):
210
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
211
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
212
+ text_encoder_2 ([`T5EncoderModel`]):
213
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
214
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
215
+ tokenizer (`CLIPTokenizer`):
216
+ Tokenizer of class
217
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
218
+ tokenizer_2 (`T5TokenizerFast`):
219
+ Second Tokenizer of class
220
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
221
+ """
222
+
223
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->transformer->vae"
224
+ _optional_components = ["image_encoder", "feature_extractor"]
225
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
226
+
227
+ def __init__(
228
+ self,
229
+ scheduler: FlowMatchEulerDiscreteScheduler,
230
+ vae: AutoencoderKL,
231
+ text_encoder: CLIPTextModel,
232
+ tokenizer: CLIPTokenizer,
233
+ text_encoder_2: T5EncoderModel,
234
+ tokenizer_2: T5TokenizerFast,
235
+ transformer: FluxTransformer2DModel,
236
+ image_encoder: CLIPVisionModelWithProjection = None,
237
+ feature_extractor: CLIPImageProcessor = None,
238
+ ):
239
+ super().__init__()
240
+
241
+ self.register_modules(
242
+ vae=vae,
243
+ text_encoder=text_encoder,
244
+ text_encoder_2=text_encoder_2,
245
+ tokenizer=tokenizer,
246
+ tokenizer_2=tokenizer_2,
247
+ transformer=transformer,
248
+ scheduler=scheduler,
249
+ image_encoder=image_encoder,
250
+ feature_extractor=feature_extractor,
251
+ )
252
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
253
+ # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
254
+ # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
255
+ self.latent_channels = self.vae.config.latent_channels if getattr(self, "vae", None) else 16
256
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
257
+ self.tokenizer_max_length = (
258
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
259
+ )
260
+ self.default_sample_size = 128
261
+
262
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds
263
+ def _get_t5_prompt_embeds(
264
+ self,
265
+ prompt: Union[str, List[str]] = None,
266
+ num_images_per_prompt: int = 1,
267
+ max_sequence_length: int = 512,
268
+ device: Optional[torch.device] = None,
269
+ dtype: Optional[torch.dtype] = None,
270
+ ):
271
+ device = device or self._execution_device
272
+ dtype = dtype or self.text_encoder.dtype
273
+
274
+ prompt = [prompt] if isinstance(prompt, str) else prompt
275
+ batch_size = len(prompt)
276
+
277
+ if isinstance(self, TextualInversionLoaderMixin):
278
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
279
+
280
+ text_inputs = self.tokenizer_2(
281
+ prompt,
282
+ padding="max_length",
283
+ max_length=max_sequence_length,
284
+ truncation=True,
285
+ return_length=False,
286
+ return_overflowing_tokens=False,
287
+ return_tensors="pt",
288
+ )
289
+ text_input_ids = text_inputs.input_ids
290
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
291
+
292
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
293
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
294
+ logger.warning(
295
+ "The following part of your input was truncated because `max_sequence_length` is set to "
296
+ f" {max_sequence_length} tokens: {removed_text}"
297
+ )
298
+
299
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
300
+
301
+ dtype = self.text_encoder_2.dtype
302
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
303
+
304
+ _, seq_len, _ = prompt_embeds.shape
305
+
306
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
307
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
308
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
309
+
310
+ return prompt_embeds
311
+
312
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds
313
+ def _get_clip_prompt_embeds(
314
+ self,
315
+ prompt: Union[str, List[str]],
316
+ num_images_per_prompt: int = 1,
317
+ device: Optional[torch.device] = None,
318
+ ):
319
+ device = device or self._execution_device
320
+
321
+ prompt = [prompt] if isinstance(prompt, str) else prompt
322
+ batch_size = len(prompt)
323
+
324
+ if isinstance(self, TextualInversionLoaderMixin):
325
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
326
+
327
+ text_inputs = self.tokenizer(
328
+ prompt,
329
+ padding="max_length",
330
+ max_length=self.tokenizer_max_length,
331
+ truncation=True,
332
+ return_overflowing_tokens=False,
333
+ return_length=False,
334
+ return_tensors="pt",
335
+ )
336
+
337
+ text_input_ids = text_inputs.input_ids
338
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
339
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
340
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
341
+ logger.warning(
342
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
343
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
344
+ )
345
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
346
+
347
+ # Use pooled output of CLIPTextModel
348
+ prompt_embeds = prompt_embeds.pooler_output
349
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
350
+
351
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
352
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
353
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
354
+
355
+ return prompt_embeds
356
+
357
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt
358
+ def encode_prompt(
359
+ self,
360
+ prompt: Union[str, List[str]],
361
+ prompt_2: Union[str, List[str]],
362
+ device: Optional[torch.device] = None,
363
+ num_images_per_prompt: int = 1,
364
+ prompt_embeds: Optional[torch.FloatTensor] = None,
365
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
366
+ max_sequence_length: int = 512,
367
+ lora_scale: Optional[float] = None,
368
+ ):
369
+ r"""
370
+
371
+ Args:
372
+ prompt (`str` or `List[str]`, *optional*):
373
+ prompt to be encoded
374
+ prompt_2 (`str` or `List[str]`, *optional*):
375
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
376
+ used in all text-encoders
377
+ device: (`torch.device`):
378
+ torch device
379
+ num_images_per_prompt (`int`):
380
+ number of images that should be generated per prompt
381
+ prompt_embeds (`torch.FloatTensor`, *optional*):
382
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
383
+ provided, text embeddings will be generated from `prompt` input argument.
384
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
385
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
386
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
387
+ lora_scale (`float`, *optional*):
388
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
389
+ """
390
+ device = device or self._execution_device
391
+
392
+ # set lora scale so that monkey patched LoRA
393
+ # function of text encoder can correctly access it
394
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
395
+ self._lora_scale = lora_scale
396
+
397
+ # dynamically adjust the LoRA scale
398
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
399
+ scale_lora_layers(self.text_encoder, lora_scale)
400
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
401
+ scale_lora_layers(self.text_encoder_2, lora_scale)
402
+
403
+ prompt = [prompt] if isinstance(prompt, str) else prompt
404
+
405
+ if prompt_embeds is None:
406
+ prompt_2 = prompt_2 or prompt
407
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
408
+
409
+ # We only use the pooled prompt output from the CLIPTextModel
410
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
411
+ prompt=prompt,
412
+ device=device,
413
+ num_images_per_prompt=num_images_per_prompt,
414
+ )
415
+ prompt_embeds = self._get_t5_prompt_embeds(
416
+ prompt=prompt_2,
417
+ num_images_per_prompt=num_images_per_prompt,
418
+ max_sequence_length=max_sequence_length,
419
+ device=device,
420
+ )
421
+
422
+ if self.text_encoder is not None:
423
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
424
+ # Retrieve the original scale by scaling back the LoRA layers
425
+ unscale_lora_layers(self.text_encoder, lora_scale)
426
+
427
+ if self.text_encoder_2 is not None:
428
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
429
+ # Retrieve the original scale by scaling back the LoRA layers
430
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
431
+
432
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
433
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
434
+
435
+ return prompt_embeds, pooled_prompt_embeds, text_ids
436
+
437
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_image
438
+ def encode_image(self, image, device, num_images_per_prompt):
439
+ dtype = next(self.image_encoder.parameters()).dtype
440
+
441
+ if not isinstance(image, torch.Tensor):
442
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
443
+
444
+ image = image.to(device=device, dtype=dtype)
445
+ image_embeds = self.image_encoder(image).image_embeds
446
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
447
+ return image_embeds
448
+
449
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_ip_adapter_image_embeds
450
+ def prepare_ip_adapter_image_embeds(
451
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt
452
+ ):
453
+ image_embeds = []
454
+ if ip_adapter_image_embeds is None:
455
+ if not isinstance(ip_adapter_image, list):
456
+ ip_adapter_image = [ip_adapter_image]
457
+
458
+ if len(ip_adapter_image) != self.transformer.encoder_hid_proj.num_ip_adapters:
459
+ raise ValueError(
460
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
461
+ )
462
+
463
+ for single_ip_adapter_image in ip_adapter_image:
464
+ single_image_embeds = self.encode_image(single_ip_adapter_image, device, 1)
465
+ image_embeds.append(single_image_embeds[None, :])
466
+ else:
467
+ if not isinstance(ip_adapter_image_embeds, list):
468
+ ip_adapter_image_embeds = [ip_adapter_image_embeds]
469
+
470
+ if len(ip_adapter_image_embeds) != self.transformer.encoder_hid_proj.num_ip_adapters:
471
+ raise ValueError(
472
+ f"`ip_adapter_image_embeds` must have same length as the number of IP Adapters. Got {len(ip_adapter_image_embeds)} image embeds and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
473
+ )
474
+
475
+ for single_image_embeds in ip_adapter_image_embeds:
476
+ image_embeds.append(single_image_embeds)
477
+
478
+ ip_adapter_image_embeds = []
479
+ for single_image_embeds in image_embeds:
480
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
481
+ single_image_embeds = single_image_embeds.to(device=device)
482
+ ip_adapter_image_embeds.append(single_image_embeds)
483
+
484
+ return ip_adapter_image_embeds
485
+
486
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.check_inputs
487
+ def check_inputs(
488
+ self,
489
+ prompt,
490
+ prompt_2,
491
+ height,
492
+ width,
493
+ negative_prompt=None,
494
+ negative_prompt_2=None,
495
+ prompt_embeds=None,
496
+ negative_prompt_embeds=None,
497
+ pooled_prompt_embeds=None,
498
+ negative_pooled_prompt_embeds=None,
499
+ callback_on_step_end_tensor_inputs=None,
500
+ max_sequence_length=None,
501
+ ):
502
+ if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
503
+ logger.warning(
504
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
505
+ )
506
+
507
+ if callback_on_step_end_tensor_inputs is not None and not all(
508
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
509
+ ):
510
+ raise ValueError(
511
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
512
+ )
513
+
514
+ if prompt is not None and prompt_embeds is not None:
515
+ raise ValueError(
516
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
517
+ " only forward one of the two."
518
+ )
519
+ elif prompt_2 is not None and prompt_embeds is not None:
520
+ raise ValueError(
521
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
522
+ " only forward one of the two."
523
+ )
524
+ elif prompt is None and prompt_embeds is None:
525
+ raise ValueError(
526
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
527
+ )
528
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
529
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
530
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
531
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
532
+
533
+ if negative_prompt is not None and negative_prompt_embeds is not None:
534
+ raise ValueError(
535
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
536
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
537
+ )
538
+ elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
539
+ raise ValueError(
540
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
541
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
542
+ )
543
+
544
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
545
+ raise ValueError(
546
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
547
+ )
548
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
549
+ raise ValueError(
550
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
551
+ )
552
+
553
+ if max_sequence_length is not None and max_sequence_length > 512:
554
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
555
+
556
+ @staticmethod
557
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
558
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
559
+ latent_image_ids = torch.zeros(height, width, 3)
560
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
561
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
562
+
563
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
564
+
565
+ latent_image_ids = latent_image_ids.reshape(
566
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
567
+ )
568
+
569
+ return latent_image_ids.to(device=device, dtype=dtype)
570
+
571
+ @staticmethod
572
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
573
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
574
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
575
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
576
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
577
+
578
+ return latents
579
+
580
+ @staticmethod
581
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
582
+ def _unpack_latents(latents, height, width, vae_scale_factor):
583
+ batch_size, num_patches, channels = latents.shape
584
+
585
+ # VAE applies 8x compression on images but we must also account for packing which requires
586
+ # latent height and width to be divisible by 2.
587
+ height = 2 * (int(height) // (vae_scale_factor * 2))
588
+ width = 2 * (int(width) // (vae_scale_factor * 2))
589
+
590
+ latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
591
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
592
+
593
+ latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
594
+
595
+ return latents
596
+
597
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
598
+ if isinstance(generator, list):
599
+ image_latents = [
600
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i], sample_mode="argmax")
601
+ for i in range(image.shape[0])
602
+ ]
603
+ image_latents = torch.cat(image_latents, dim=0)
604
+ else:
605
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator, sample_mode="argmax")
606
+
607
+ image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
608
+
609
+ return image_latents
610
+
611
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.enable_vae_slicing
612
+ def enable_vae_slicing(self):
613
+ r"""
614
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
615
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
616
+ """
617
+ self.vae.enable_slicing()
618
+
619
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.disable_vae_slicing
620
+ def disable_vae_slicing(self):
621
+ r"""
622
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
623
+ computing decoding in one step.
624
+ """
625
+ self.vae.disable_slicing()
626
+
627
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.enable_vae_tiling
628
+ def enable_vae_tiling(self):
629
+ r"""
630
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
631
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
632
+ processing larger images.
633
+ """
634
+ self.vae.enable_tiling()
635
+
636
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.disable_vae_tiling
637
+ def disable_vae_tiling(self):
638
+ r"""
639
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
640
+ computing decoding in one step.
641
+ """
642
+ self.vae.disable_tiling()
643
+
644
+ def prepare_latents(
645
+ self,
646
+ images: Optional[torch.Tensor],
647
+ batch_size: int,
648
+ num_channels_latents: int,
649
+ height: int,
650
+ width: int,
651
+ dtype: torch.dtype,
652
+ device: torch.device,
653
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
654
+ latents: Optional[torch.Tensor] = None,
655
+ ):
656
+ if isinstance(generator, list) and len(generator) != batch_size:
657
+ raise ValueError(
658
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
659
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
660
+ )
661
+
662
+ # VAE applies 8x compression on images but we must also account for packing which requires
663
+ # latent height and width to be divisible by 2.
664
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
665
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
666
+ shape = (batch_size, num_channels_latents, height, width)
667
+ h_offset = 0
668
+ w_offset = 0
669
+ image_latents = image_ids = None
670
+ if images is not None:
671
+ tp_image_latents = []
672
+ tp_image_ids = []
673
+ for i, image in enumerate(images):
674
+ image = image.to(device=device, dtype=dtype)
675
+ if image.shape[1] != self.latent_channels:
676
+ image_latents = self._encode_vae_image(image=image, generator=generator)
677
+ else:
678
+ image_latents = image
679
+ if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
680
+ # expand init_latents for batch_size
681
+ additional_image_per_prompt = batch_size // image_latents.shape[0]
682
+ image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
683
+ elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
684
+ raise ValueError(
685
+ f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
686
+ )
687
+ else:
688
+ image_latents = torch.cat([image_latents], dim=0)
689
+
690
+ image_latent_height, image_latent_width = image_latents.shape[2:]
691
+ image_latents = self._pack_latents(
692
+ image_latents, batch_size, num_channels_latents, image_latent_height, image_latent_width
693
+ )
694
+ image_ids = self._prepare_latent_image_ids(
695
+ batch_size, image_latent_height // 2, image_latent_width // 2, device, dtype
696
+ )
697
+ image_ids[..., 0] = i+1
698
+ image_ids[..., 2] += w_offset
699
+ tp_image_latents.append(image_latents)
700
+ tp_image_ids.append(image_ids)
701
+ h_offset += image_latent_height //2
702
+ w_offset += image_latent_width //2
703
+ image_latents = torch.cat(tp_image_latents, dim=1)
704
+ image_ids = torch.cat(tp_image_ids, dim=0)
705
+
706
+ latent_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
707
+
708
+ if latents is None:
709
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
710
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
711
+ else:
712
+ latents = latents.to(device=device, dtype=dtype)
713
+
714
+ return latents, image_latents, latent_ids, image_ids
715
+
716
+ @property
717
+ def guidance_scale(self):
718
+ return self._guidance_scale
719
+
720
+ @property
721
+ def joint_attention_kwargs(self):
722
+ return self._joint_attention_kwargs
723
+
724
+ @property
725
+ def num_timesteps(self):
726
+ return self._num_timesteps
727
+
728
+ @property
729
+ def current_timestep(self):
730
+ return self._current_timestep
731
+
732
+ @property
733
+ def interrupt(self):
734
+ return self._interrupt
735
+
736
+ @torch.no_grad()
737
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
738
+ def __call__(
739
+ self,
740
+ images: Optional[List[PipelineImageInput]] = None,
741
+ prompt: Union[str, List[str]] = None,
742
+ prompt_2: Optional[Union[str, List[str]]] = None,
743
+ negative_prompt: Union[str, List[str]] = None,
744
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
745
+ true_cfg_scale: float = 1.0,
746
+ height: Optional[int] = None,
747
+ width: Optional[int] = None,
748
+ num_inference_steps: int = 28,
749
+ sigmas: Optional[List[float]] = None,
750
+ guidance_scale: float = 3.5,
751
+ num_images_per_prompt: Optional[int] = 1,
752
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
753
+ latents: Optional[torch.FloatTensor] = None,
754
+ prompt_embeds: Optional[torch.FloatTensor] = None,
755
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
756
+ ip_adapter_image: Optional[PipelineImageInput] = None,
757
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
758
+ negative_ip_adapter_image: Optional[PipelineImageInput] = None,
759
+ negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
760
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
761
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
762
+ output_type: Optional[str] = "pil",
763
+ return_dict: bool = True,
764
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
765
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
766
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
767
+ max_sequence_length: int = 512,
768
+ max_area: int = 1024**2,
769
+ _auto_resize: bool = True,
770
+ ):
771
+ r"""
772
+ Function invoked when calling the pipeline for generation.
773
+
774
+ Args:
775
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
776
+ `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
777
+ numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
778
+ or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
779
+ list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
780
+ latents as `image`, but if passing latents directly it is not encoded again.
781
+ prompt (`str` or `List[str]`, *optional*):
782
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
783
+ instead.
784
+ prompt_2 (`str` or `List[str]`, *optional*):
785
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
786
+ will be used instead.
787
+ negative_prompt (`str` or `List[str]`, *optional*):
788
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
789
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
790
+ not greater than `1`).
791
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
792
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
793
+ `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
794
+ true_cfg_scale (`float`, *optional*, defaults to 1.0):
795
+ When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
796
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
797
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
798
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
799
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
800
+ num_inference_steps (`int`, *optional*, defaults to 50):
801
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
802
+ expense of slower inference.
803
+ sigmas (`List[float]`, *optional*):
804
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
805
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
806
+ will be used.
807
+ guidance_scale (`float`, *optional*, defaults to 3.5):
808
+ Guidance scale as defined in [Classifier-Free Diffusion
809
+ Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
810
+ of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
811
+ `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
812
+ the text `prompt`, usually at the expense of lower image quality.
813
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
814
+ The number of images to generate per prompt.
815
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
816
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
817
+ to make generation deterministic.
818
+ latents (`torch.FloatTensor`, *optional*):
819
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
820
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
821
+ tensor will ge generated by sampling using the supplied random `generator`.
822
+ prompt_embeds (`torch.FloatTensor`, *optional*):
823
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
824
+ provided, text embeddings will be generated from `prompt` input argument.
825
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
826
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
827
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
828
+ ip_adapter_image: (`PipelineImageInput`, *optional*):
829
+ Optional image input to work with IP Adapters.
830
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
831
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
832
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
833
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
834
+ negative_ip_adapter_image:
835
+ (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
836
+ negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
837
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
838
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
839
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
840
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
841
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
842
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
843
+ argument.
844
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
845
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
846
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
847
+ input argument.
848
+ output_type (`str`, *optional*, defaults to `"pil"`):
849
+ The output format of the generate image. Choose between
850
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
851
+ return_dict (`bool`, *optional*, defaults to `True`):
852
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
853
+ joint_attention_kwargs (`dict`, *optional*):
854
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
855
+ `self.processor` in
856
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
857
+ callback_on_step_end (`Callable`, *optional*):
858
+ A function that calls at the end of each denoising steps during the inference. The function is called
859
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
860
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
861
+ `callback_on_step_end_tensor_inputs`.
862
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
863
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
864
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
865
+ `._callback_tensor_inputs` attribute of your pipeline class.
866
+ max_sequence_length (`int` defaults to 512):
867
+ Maximum sequence length to use with the `prompt`.
868
+ max_area (`int`, defaults to `1024 ** 2`):
869
+ The maximum area of the generated image in pixels. The height and width will be adjusted to fit this
870
+ area while maintaining the aspect ratio.
871
+
872
+ Examples:
873
+
874
+ Returns:
875
+ [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
876
+ is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
877
+ images.
878
+ """
879
+
880
+ height = height or self.default_sample_size * self.vae_scale_factor
881
+ width = width or self.default_sample_size * self.vae_scale_factor
882
+
883
+ original_height, original_width = height, width
884
+ aspect_ratio = width / height
885
+ width = round((max_area * aspect_ratio) ** 0.5)
886
+ height = round((max_area / aspect_ratio) ** 0.5)
887
+
888
+ multiple_of = self.vae_scale_factor * 2
889
+ width = width // multiple_of * multiple_of
890
+ height = height // multiple_of * multiple_of
891
+
892
+ if height != original_height or width != original_width:
893
+ logger.warning(
894
+ f"Generation `height` and `width` have been adjusted to {height} and {width} to fit the model requirements."
895
+ )
896
+
897
+ # 1. Check inputs. Raise error if not correct
898
+ self.check_inputs(
899
+ prompt,
900
+ prompt_2,
901
+ height,
902
+ width,
903
+ negative_prompt=negative_prompt,
904
+ negative_prompt_2=negative_prompt_2,
905
+ prompt_embeds=prompt_embeds,
906
+ negative_prompt_embeds=negative_prompt_embeds,
907
+ pooled_prompt_embeds=pooled_prompt_embeds,
908
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
909
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
910
+ max_sequence_length=max_sequence_length,
911
+ )
912
+
913
+ self._guidance_scale = guidance_scale
914
+ self._joint_attention_kwargs = joint_attention_kwargs
915
+ self._current_timestep = None
916
+ self._interrupt = False
917
+
918
+ # 2. Define call parameters
919
+ if prompt is not None and isinstance(prompt, str):
920
+ batch_size = 1
921
+ elif prompt is not None and isinstance(prompt, list):
922
+ batch_size = len(prompt)
923
+ else:
924
+ batch_size = prompt_embeds.shape[0]
925
+
926
+ device = self._execution_device
927
+
928
+ lora_scale = (
929
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
930
+ )
931
+ has_neg_prompt = negative_prompt is not None or (
932
+ negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None
933
+ )
934
+ do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
935
+ (
936
+ prompt_embeds,
937
+ pooled_prompt_embeds,
938
+ text_ids,
939
+ ) = self.encode_prompt(
940
+ prompt=prompt,
941
+ prompt_2=prompt_2,
942
+ prompt_embeds=prompt_embeds,
943
+ pooled_prompt_embeds=pooled_prompt_embeds,
944
+ device=device,
945
+ num_images_per_prompt=num_images_per_prompt,
946
+ max_sequence_length=max_sequence_length,
947
+ lora_scale=lora_scale,
948
+ )
949
+ if do_true_cfg:
950
+ (
951
+ negative_prompt_embeds,
952
+ negative_pooled_prompt_embeds,
953
+ negative_text_ids,
954
+ ) = self.encode_prompt(
955
+ prompt=negative_prompt,
956
+ prompt_2=negative_prompt_2,
957
+ prompt_embeds=negative_prompt_embeds,
958
+ pooled_prompt_embeds=negative_pooled_prompt_embeds,
959
+ device=device,
960
+ num_images_per_prompt=num_images_per_prompt,
961
+ max_sequence_length=max_sequence_length,
962
+ lora_scale=lora_scale,
963
+ )
964
+
965
+ # 3. Preprocess image
966
+ if images is not None and not (isinstance(images[0], torch.Tensor) and images[0].size(1) == self.latent_channels):
967
+ tp_images=[]
968
+ for img in images:
969
+ image = img
970
+ image_height, image_width = self.image_processor.get_default_height_width(img)
971
+ aspect_ratio = image_width / image_height
972
+ if _auto_resize:
973
+ # Kontext is trained on specific resolutions, using one of them is recommended
974
+ _, image_width, image_height = min(
975
+ (abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS
976
+ )
977
+ image_width = image_width // multiple_of * multiple_of
978
+ image_height = image_height // multiple_of * multiple_of
979
+ image = self.image_processor.resize(image, image_height, image_width)
980
+ image = self.image_processor.preprocess(image, image_height, image_width)
981
+ tp_images.append(image)
982
+ images = tp_images
983
+
984
+ # 4. Prepare latent variables
985
+ num_channels_latents = self.transformer.config.in_channels // 4
986
+ latents, image_latents, latent_ids, image_ids = self.prepare_latents(
987
+ images,
988
+ batch_size * num_images_per_prompt,
989
+ num_channels_latents,
990
+ height,
991
+ width,
992
+ prompt_embeds.dtype,
993
+ device,
994
+ generator,
995
+ latents,
996
+ )
997
+ if image_ids is not None:
998
+ latent_ids = torch.cat([latent_ids, image_ids], dim=0) # dim 0 is sequence dimension
999
+
1000
+ # 5. Prepare timesteps
1001
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
1002
+ image_seq_len = latents.shape[1]
1003
+ mu = calculate_shift(
1004
+ image_seq_len,
1005
+ self.scheduler.config.get("base_image_seq_len", 256),
1006
+ self.scheduler.config.get("max_image_seq_len", 4096),
1007
+ self.scheduler.config.get("base_shift", 0.5),
1008
+ self.scheduler.config.get("max_shift", 1.15),
1009
+ )
1010
+ timesteps, num_inference_steps = retrieve_timesteps(
1011
+ self.scheduler,
1012
+ num_inference_steps,
1013
+ device,
1014
+ sigmas=sigmas,
1015
+ mu=mu,
1016
+ )
1017
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
1018
+ self._num_timesteps = len(timesteps)
1019
+
1020
+ # handle guidance
1021
+ if self.transformer.config.guidance_embeds:
1022
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
1023
+ guidance = guidance.expand(latents.shape[0])
1024
+ else:
1025
+ guidance = None
1026
+
1027
+ if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and (
1028
+ negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None
1029
+ ):
1030
+ negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
1031
+ negative_ip_adapter_image = [negative_ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
1032
+
1033
+ elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and (
1034
+ negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None
1035
+ ):
1036
+ ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
1037
+ ip_adapter_image = [ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
1038
+
1039
+ if self.joint_attention_kwargs is None:
1040
+ self._joint_attention_kwargs = {}
1041
+
1042
+ image_embeds = None
1043
+ negative_image_embeds = None
1044
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1045
+ image_embeds = self.prepare_ip_adapter_image_embeds(
1046
+ ip_adapter_image,
1047
+ ip_adapter_image_embeds,
1048
+ device,
1049
+ batch_size * num_images_per_prompt,
1050
+ )
1051
+ if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None:
1052
+ negative_image_embeds = self.prepare_ip_adapter_image_embeds(
1053
+ negative_ip_adapter_image,
1054
+ negative_ip_adapter_image_embeds,
1055
+ device,
1056
+ batch_size * num_images_per_prompt,
1057
+ )
1058
+
1059
+ # 6. Denoising loop
1060
+ # We set the index here to remove DtoH sync, helpful especially during compilation.
1061
+ # Check out more details here: https://github.com/huggingface/diffusers/pull/11696
1062
+ self.scheduler.set_begin_index(0)
1063
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1064
+ for i, t in enumerate(timesteps):
1065
+ if self.interrupt:
1066
+ continue
1067
+
1068
+ self._current_timestep = t
1069
+ if image_embeds is not None:
1070
+ self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds
1071
+
1072
+ latent_model_input = latents
1073
+ if image_latents is not None:
1074
+ latent_model_input = torch.cat([latents, image_latents], dim=1)
1075
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
1076
+
1077
+ noise_pred = self.transformer(
1078
+ hidden_states=latent_model_input,
1079
+ timestep=timestep / 1000,
1080
+ guidance=guidance,
1081
+ pooled_projections=pooled_prompt_embeds,
1082
+ encoder_hidden_states=prompt_embeds,
1083
+ txt_ids=text_ids,
1084
+ img_ids=latent_ids,
1085
+ joint_attention_kwargs=self.joint_attention_kwargs,
1086
+ return_dict=False,
1087
+ )[0]
1088
+ noise_pred = noise_pred[:, : latents.size(1)]
1089
+
1090
+ if do_true_cfg:
1091
+ if negative_image_embeds is not None:
1092
+ self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds
1093
+ neg_noise_pred = self.transformer(
1094
+ hidden_states=latent_model_input,
1095
+ timestep=timestep / 1000,
1096
+ guidance=guidance,
1097
+ pooled_projections=negative_pooled_prompt_embeds,
1098
+ encoder_hidden_states=negative_prompt_embeds,
1099
+ txt_ids=negative_text_ids,
1100
+ img_ids=latent_ids,
1101
+ joint_attention_kwargs=self.joint_attention_kwargs,
1102
+ return_dict=False,
1103
+ )[0]
1104
+ neg_noise_pred = neg_noise_pred[:, : latents.size(1)]
1105
+ noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
1106
+
1107
+ # compute the previous noisy sample x_t -> x_t-1
1108
+ latents_dtype = latents.dtype
1109
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
1110
+
1111
+ if latents.dtype != latents_dtype:
1112
+ if torch.backends.mps.is_available():
1113
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1114
+ latents = latents.to(latents_dtype)
1115
+
1116
+ if callback_on_step_end is not None:
1117
+ callback_kwargs = {}
1118
+ for k in callback_on_step_end_tensor_inputs:
1119
+ callback_kwargs[k] = locals()[k]
1120
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1121
+
1122
+ latents = callback_outputs.pop("latents", latents)
1123
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1124
+
1125
+ # call the callback, if provided
1126
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1127
+ progress_bar.update()
1128
+
1129
+ if XLA_AVAILABLE:
1130
+ xm.mark_step()
1131
+
1132
+ self._current_timestep = None
1133
+
1134
+ if output_type == "latent":
1135
+ image = latents
1136
+ else:
1137
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
1138
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
1139
+ image = self.vae.decode(latents, return_dict=False)[0]
1140
+ image = self.image_processor.postprocess(image, output_type=output_type)
1141
+
1142
+ # Offload all models
1143
+ self.maybe_free_model_hooks()
1144
+
1145
+ if not return_dict:
1146
+ return (image,)
1147
+
1148
+ return FluxPipelineOutput(images=image)
example_input/edit_tests/1/ref_0.jpg ADDED

Git LFS Details

  • SHA256: 22698b9eee36955254029d0d84a8c3c3e13f8cb12d19cd361087a294f34fc18e
  • Pointer size: 130 Bytes
  • Size of remote file: 99.9 kB
example_input/edit_tests/1/ref_1.jpg ADDED

Git LFS Details

  • SHA256: fde235d7896c5175d335831b3c4124161b8d909ebbe1bf708922005db04c345a
  • Pointer size: 130 Bytes
  • Size of remote file: 27 kB
example_input/edit_tests/1/res.jpg ADDED

Git LFS Details

  • SHA256: 8bf7f1fb69bd052478d63643b0a71cc38ca0fe032508568c20dfcc0beca20a39
  • Pointer size: 131 Bytes
  • Size of remote file: 239 kB
example_input/edit_tests/2/ref_0.jpg ADDED

Git LFS Details

  • SHA256: d18bd9e3d7a15d9ed65660b491a6960ce1794fbcd20ebb9ec1c8a2277820f8f9
  • Pointer size: 130 Bytes
  • Size of remote file: 54.1 kB
example_input/edit_tests/2/ref_1.jpg ADDED

Git LFS Details

  • SHA256: 1c60313358e445081aab723047ca9e36f7e60c1a7e40e58db9ae6c3b46b87120
  • Pointer size: 130 Bytes
  • Size of remote file: 28.3 kB
example_input/edit_tests/2/res.jpg ADDED

Git LFS Details

  • SHA256: 0d40aceef14fca011243e808305f2c23693a6250cca1d6d9060d26b83cce2f2a
  • Pointer size: 130 Bytes
  • Size of remote file: 61.9 kB
example_input/edit_tests/3/ref_0.jpg ADDED

Git LFS Details

  • SHA256: 77d1b1d0f8d9177bcc44151384b41ee6fb3e4a6408049181d56bf261fa5892e9
  • Pointer size: 131 Bytes
  • Size of remote file: 102 kB
example_input/edit_tests/3/ref_1.jpg ADDED

Git LFS Details

  • SHA256: 3de52fbd95ff89eb97781eb88f85a897a39d516d41218bb8fc2a86cf2f005e1b
  • Pointer size: 130 Bytes
  • Size of remote file: 60.3 kB
example_input/edit_tests/3/res.jpg ADDED

Git LFS Details

  • SHA256: 61c6cad1b69a0d7665390bfe4b48dc6639d214bf49084e4f2df6795f8f091f35
  • Pointer size: 130 Bytes
  • Size of remote file: 47.8 kB
example_input/edit_tests/4/ref_0.jpg ADDED

Git LFS Details

  • SHA256: 17df467e2a56748929f7bf5cdbd3b3f41c3fe3e504e07eef183ac3c7af8f64d7
  • Pointer size: 130 Bytes
  • Size of remote file: 87.6 kB
example_input/edit_tests/4/ref_1.jpg ADDED

Git LFS Details

  • SHA256: 210c93974b8a9216320abe8ff34c03c74004cb8fafc8c691bb80291660559215
  • Pointer size: 131 Bytes
  • Size of remote file: 174 kB
example_input/edit_tests/4/res.jpg ADDED

Git LFS Details

  • SHA256: f0db24e49a7bb341eec00388110a4af08aefbb5ab560dfbcbd30e08c210bfd55
  • Pointer size: 130 Bytes
  • Size of remote file: 64.8 kB
example_input/edit_tests/5/ref_0.jpg ADDED

Git LFS Details

  • SHA256: 3421c8b427b5a8376bf16672ebcfe64f942a5a91fe6f5e579eb8e61bcfa10367
  • Pointer size: 131 Bytes
  • Size of remote file: 147 kB
example_input/edit_tests/5/ref_1.jpg ADDED

Git LFS Details

  • SHA256: 5bb7ab3bcdc17452fef64c311e0b4a56dcfe89ff37a7d64cfc63e766ce6baaf5
  • Pointer size: 130 Bytes
  • Size of remote file: 84 kB
example_input/edit_tests/5/res.jpg ADDED

Git LFS Details

  • SHA256: 2fcd5e9bda10daab54e6802774b810ba1956c8f0dc8dd4f0ee3b4d42c228005e
  • Pointer size: 130 Bytes
  • Size of remote file: 56.7 kB
example_input/edit_tests/6/ref_0.jpg ADDED

Git LFS Details

  • SHA256: b7dd6574ec93c156a31b152f557921002a0d4a33add61f905cb86d03f06b7f5e
  • Pointer size: 130 Bytes
  • Size of remote file: 57.1 kB
example_input/edit_tests/6/ref_1.jpg ADDED

Git LFS Details

  • SHA256: fd1d25c842ea30975b197e864338862efb6b81439da6929995fb2142f6adc49c
  • Pointer size: 130 Bytes
  • Size of remote file: 68.5 kB
example_input/edit_tests/6/res.jpg ADDED

Git LFS Details

  • SHA256: 04b49a1f3eab77008c4f31064599a8b96e8bcd9b8acd2e4687058e09a0962413
  • Pointer size: 131 Bytes
  • Size of remote file: 102 kB
example_input/edit_tests/7/ref_0.jpg ADDED

Git LFS Details

  • SHA256: 937bab58713aa2610839b6fe57c1b642aad23938dd769362739c6178a734bc5e
  • Pointer size: 131 Bytes
  • Size of remote file: 198 kB
example_input/edit_tests/7/ref_1.jpg ADDED

Git LFS Details

  • SHA256: 9a74d1289a992867620747bcb48c59c6c598100b319d8fe910a03519f3e7e370
  • Pointer size: 130 Bytes
  • Size of remote file: 86.6 kB
example_input/edit_tests/7/res.jpg ADDED

Git LFS Details

  • SHA256: 2ae24e25ef7606da785e2158abbbddae9d8077a1cbecf6c9dbf787675235ef7a
  • Pointer size: 131 Bytes
  • Size of remote file: 196 kB
example_input/edit_tests/8/ref_0.jpg ADDED

Git LFS Details

  • SHA256: 5d6d515d3eb11732c4de3d7989b6315a93b2f754be937b9b7631e2c22043bf61
  • Pointer size: 130 Bytes
  • Size of remote file: 78.3 kB
example_input/edit_tests/8/ref_1.jpg ADDED

Git LFS Details

  • SHA256: 810b2e27db7c7965d90bd76d83fc6f088862f9034fdb407972bd49c577845b57
  • Pointer size: 131 Bytes
  • Size of remote file: 144 kB
example_input/edit_tests/8/res.jpg ADDED

Git LFS Details

  • SHA256: 5adc6f7c8f1c5061909d367f5248be99117ae0f81164516c927a4f2a843ee691
  • Pointer size: 130 Bytes
  • Size of remote file: 47.1 kB
example_input/edit_tests/edi_res.png ADDED

Git LFS Details

  • SHA256: 888e9099e23c28907fd5944a99a1e88f8fdb6289de9c6fef94574eece0138ca2
  • Pointer size: 132 Bytes
  • Size of remote file: 1.78 MB
example_input/edit_tests/ref.jpg ADDED

Git LFS Details

  • SHA256: 7e12827dd85e3b2bf39d11ad27121a09655deb60a500de469569335a3a60566b
  • Pointer size: 130 Bytes
  • Size of remote file: 70.2 kB
example_input/edit_tests/src.jpg ADDED

Git LFS Details

  • SHA256: 8b7231bdbf219b6313e95effbce355d11e2789c3a9fd9251d8723cd9a9900624
  • Pointer size: 131 Bytes
  • Size of remote file: 252 kB
example_input/gen_tests/gen_res.png ADDED

Git LFS Details

  • SHA256: 8439b4ffcf1ff8107db545897f2d7980ca1a1e01db242c16723ae1d5113be9bc
  • Pointer size: 132 Bytes
  • Size of remote file: 1.2 MB
example_input/gen_tests/img1.jpg ADDED

Git LFS Details

  • SHA256: 2bfd72e3aa607a5cf05e3b52c30743921ff8862cb7dda26d14cef8c8180b4242
  • Pointer size: 131 Bytes
  • Size of remote file: 114 kB
example_input/gen_tests/img2.jpg ADDED

Git LFS Details

  • SHA256: 82b414fafd19c3ec7763281e359c8863b72e5bf36561920c94a516539a013a14
  • Pointer size: 130 Bytes
  • Size of remote file: 92.3 kB
imgs/cover.png ADDED

Git LFS Details

  • SHA256: edc748a633261eba1e30b91ead0ae6f58cf93462d86632bb76800cda26b60e75
  • Pointer size: 132 Bytes
  • Size of remote file: 3 MB
imgs/gallery.png ADDED

Git LFS Details

  • SHA256: b3a6af8acb72fab49e3eb9e5d66d129706335e91216fb6365fb15d1c285efef8
  • Pointer size: 132 Bytes
  • Size of remote file: 2.61 MB
inference_edit.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ try:
3
+ import torch_npu
4
+ from torch_npu.contrib import transfer_to_npu
5
+ import importlib
6
+ import transformers.utils
7
+ import transformers.models
8
+ origin_utils = transformers.utils
9
+ origin_models = transformers.models
10
+ import flash_attn
11
+ flash_attn.hack_transformers_flash_attn_2_available_check()
12
+ importlib.reload(transformers.utils)
13
+ importlib.reload(transformers.models)
14
+ origin_func = torch.nn.functional.interpolate
15
+ def new_func(input, size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None, antialias=False):
16
+ if mode == "bilinear":
17
+ dtype = input.dtype
18
+ res = origin_func(input.to(torch.bfloat16), size, scale_factor, mode, align_corners, recompute_scale_factor, antialias)
19
+ return res.to(dtype)
20
+ else:
21
+ return origin_func(input, size, scale_factor, mode, align_corners, recompute_scale_factor, antialias)
22
+ torch.nn.functional.interpolate = new_func
23
+ from utils import patch_npu_record_stream
24
+ from utils import patch_npu_diffusers_get_1d_rotary_pos_embed
25
+ patch_npu_record_stream()
26
+ patch_npu_diffusers_get_1d_rotary_pos_embed()
27
+ USE_NPU = True
28
+ except:
29
+ USE_NPU = False
30
+ from dreamomni2.pipeline_dreamomni2 import DreamOmni2Pipeline
31
+ from diffusers.utils import load_image
32
+ from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
33
+ # from qwen_vl_utils import process_vision_info
34
+ from utils.vprocess import process_vision_info, resizeinput
35
+ import os
36
+ import argparse
37
+ from tqdm import tqdm
38
+ import json
39
+ from PIL import Image
40
+ import re
41
+ import argparse
42
+
43
+ if USE_NPU:
44
+ device = "npu"
45
+ else:
46
+ device = "cuda"
47
+
48
+ def extract_gen_content(text):
49
+ text = text[6:-7]
50
+
51
+ return text
52
+
53
+ def parse_args():
54
+ """Parses command-line arguments for model paths and server configuration."""
55
+ parser = argparse.ArgumentParser()
56
+ parser.add_argument(
57
+ "--vlm_path",
58
+ type=str,
59
+ default="./models/vlm-model",
60
+ help="Path to the VLM model directory."
61
+ )
62
+ parser.add_argument(
63
+ "--edit_lora_path",
64
+ type=str,
65
+ default="./models/edit_lora",
66
+ help="Path to the FLUX.1-Kontext editing LoRA weights directory."
67
+ )
68
+ parser.add_argument(
69
+ "--base_model_path",
70
+ type=str,
71
+ default="black-forest-labs/FLUX.1-Kontext-dev",
72
+ help="Path to the FLUX.1-Kontext editing."
73
+ )
74
+ parser.add_argument(
75
+ "--input_img_path",
76
+ type=str,
77
+ nargs='+', # Accept one or more input paths
78
+ default=["example_input/edit_tests/src.jpg", "example_input/edit_tests/ref.jpg"],
79
+ help="List of input image paths (e.g., src and ref images)."
80
+ )
81
+ # Argument for the input instruction
82
+ parser.add_argument(
83
+ "--input_instruction",
84
+ type=str,
85
+ default="Make the woman from the second image stand on the road in the first image.",
86
+ help="Instruction for image editing."
87
+ )
88
+ # Argument for the output image path
89
+ parser.add_argument(
90
+ "--output_path",
91
+ type=str,
92
+ default="example_input/edit_tests/edi_res.png",
93
+ help="Path to save the output image."
94
+ )
95
+
96
+ args = parser.parse_args()
97
+ return args
98
+
99
+ ARGS = parse_args()
100
+ vlm_path = ARGS.vlm_path
101
+ edit_lora_path = ARGS.edit_lora_path
102
+ base_model = ARGS.base_model_path
103
+ pipe = DreamOmni2Pipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
104
+ pipe.to(device)
105
+
106
+ pipe.load_lora_weights(
107
+ edit_lora_path,
108
+ adapter_name="edit"
109
+ )
110
+ pipe.set_adapters(["edit"], adapter_weights=[1])
111
+
112
+
113
+ vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
114
+ vlm_path, torch_dtype="bfloat16", device_map="cuda"
115
+ )
116
+ processor = AutoProcessor.from_pretrained(vlm_path)
117
+
118
+ def infer_vlm(input_img_path,input_instruction,prefix):
119
+ tp=[]
120
+ for path in input_img_path:
121
+ tp.append({"type": "image", "image": path})
122
+ tp.append({"type": "text", "text": input_instruction+prefix})
123
+ messages = [
124
+ {
125
+ "role": "user",
126
+ "content": tp,
127
+ }
128
+ ]
129
+
130
+ # Preparation for inference
131
+ text = processor.apply_chat_template(
132
+ messages, tokenize=False, add_generation_prompt=True
133
+ )
134
+ image_inputs, video_inputs = process_vision_info(messages)
135
+ inputs = processor(
136
+ text=[text],
137
+ images=image_inputs,
138
+ videos=video_inputs,
139
+ padding=True,
140
+ return_tensors="pt",
141
+ )
142
+ inputs = inputs.to("cuda")
143
+
144
+ # Inference
145
+ generated_ids = vlm_model.generate(**inputs, do_sample=False, max_new_tokens=4096)
146
+ generated_ids_trimmed = [
147
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
148
+ ]
149
+ output_text = processor.batch_decode(
150
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
151
+ )
152
+ return output_text[0]
153
+
154
+ def infer(source_imgs,prompt):
155
+ image = pipe(
156
+ images=source_imgs,
157
+ height=source_imgs[0].height,
158
+ width=source_imgs[0].width,
159
+ prompt=prompt,
160
+ num_inference_steps=30,
161
+ guidance_scale=3.5,
162
+ ).images[0]
163
+ return image
164
+
165
+
166
+ input_img_path=ARGS.input_img_path
167
+ input_instruction=ARGS.input_instruction
168
+
169
+ prefix=" It is editing task."
170
+ source_imgs = []
171
+ for path in input_img_path:
172
+ img = load_image(path)
173
+ # source_imgs.append(img)
174
+ source_imgs.append(resizeinput(img))
175
+
176
+ prompt=infer_vlm(input_img_path,input_instruction,prefix)
177
+ prompt = extract_gen_content(prompt)
178
+ image=infer(source_imgs,prompt)
179
+ output_path = ARGS.output_path
180
+ image.save(output_path)
inference_gen.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ try:
3
+ import torch_npu
4
+ from torch_npu.contrib import transfer_to_npu
5
+ import importlib
6
+ import transformers.utils
7
+ import transformers.models
8
+ origin_utils = transformers.utils
9
+ origin_models = transformers.models
10
+ import flash_attn
11
+ flash_attn.hack_transformers_flash_attn_2_available_check()
12
+ importlib.reload(transformers.utils)
13
+ importlib.reload(transformers.models)
14
+ origin_func = torch.nn.functional.interpolate
15
+ def new_func(input, size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None, antialias=False):
16
+ if mode == "bilinear":
17
+ dtype = input.dtype
18
+ res = origin_func(input.to(torch.bfloat16), size, scale_factor, mode, align_corners, recompute_scale_factor, antialias)
19
+ return res.to(dtype)
20
+ else:
21
+ return origin_func(input, size, scale_factor, mode, align_corners, recompute_scale_factor, antialias)
22
+ torch.nn.functional.interpolate = new_func
23
+ from utils import patch_npu_record_stream
24
+ from utils import patch_npu_diffusers_get_1d_rotary_pos_embed
25
+ patch_npu_record_stream()
26
+ patch_npu_diffusers_get_1d_rotary_pos_embed()
27
+ USE_NPU = True
28
+ except:
29
+ USE_NPU = False
30
+ from dreamomni2.pipeline_dreamomni2 import DreamOmni2Pipeline
31
+ from diffusers.utils import load_image
32
+ from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
33
+ # from qwen_vl_utils import process_vision_info
34
+ from utils.vprocess import process_vision_info, resizeinput
35
+ import os
36
+ import argparse
37
+ from tqdm import tqdm
38
+ import json
39
+ from PIL import Image
40
+ import re
41
+ import argparse
42
+
43
+ if USE_NPU:
44
+ device = "npu"
45
+ else:
46
+ device = "cuda"
47
+
48
+ def extract_gen_content(text):
49
+ text = text[6:-7]
50
+
51
+ return text
52
+
53
+ def parse_args():
54
+ """Parses command-line arguments for model paths and server configuration."""
55
+ parser = argparse.ArgumentParser()
56
+ parser.add_argument(
57
+ "--vlm_path",
58
+ type=str,
59
+ default="./models/vlm-model",
60
+ help="Path to the VLM model directory."
61
+ )
62
+ parser.add_argument(
63
+ "--gen_lora_path",
64
+ type=str,
65
+ default="./models/gen_lora",
66
+ help="Path to the FLUX.1-Kontext generation LoRA weights directory."
67
+ )
68
+ parser.add_argument(
69
+ "--base_model_path",
70
+ type=str,
71
+ default="black-forest-labs/FLUX.1-Kontext-dev",
72
+ help="Path to the FLUX.1-Kontext editing."
73
+ )
74
+ parser.add_argument(
75
+ "--input_img_path",
76
+ type=str,
77
+ nargs='+', # Accept one or more input paths
78
+ default=["example_input/gen_tests/img1.jpg","example_input/gen_tests/img2.jpg"],
79
+ help="List of input image paths (e.g., src and ref images)."
80
+ )
81
+ # Argument for the input instruction
82
+ parser.add_argument(
83
+ "--input_instruction",
84
+ type=str,
85
+ default="In the scene, the character from the first image stands on the left, and the character from the second image stands on the right. They are shaking hands against the backdrop of a spaceship interior.",
86
+ help="Instruction for image generation."
87
+ )
88
+ parser.add_argument(
89
+ "--height",
90
+ type=int,
91
+ default=1024,
92
+ help="The height of output image."
93
+ )
94
+ parser.add_argument(
95
+ "--width",
96
+ type=int,
97
+ default=1024,
98
+ help="The width of output image."
99
+ )
100
+ # Argument for the output image path
101
+ parser.add_argument(
102
+ "--output_path",
103
+ type=str,
104
+ default="example_input/gen_tests/gen_res.png",
105
+ help="Path to save the output image."
106
+ )
107
+
108
+ args = parser.parse_args()
109
+ return args
110
+
111
+ ARGS = parse_args()
112
+ vlm_path = ARGS.vlm_path
113
+ gen_lora_path = ARGS.gen_lora_path
114
+ base_model = ARGS.base_model_path
115
+ pipe = DreamOmni2Pipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
116
+ pipe.to(device)
117
+
118
+ pipe.load_lora_weights(
119
+ gen_lora_path,
120
+ adapter_name="generation"
121
+ )
122
+ pipe.set_adapters(["generation"], adapter_weights=[1])
123
+
124
+
125
+ vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
126
+ vlm_path, torch_dtype="bfloat16", device_map="cuda"
127
+ )
128
+ processor = AutoProcessor.from_pretrained(vlm_path)
129
+
130
+ def infer_vlm(input_img_path,input_instruction,prefix):
131
+ tp=[]
132
+ for path in input_img_path:
133
+ tp.append({"type": "image", "image": path})
134
+ tp.append({"type": "text", "text": input_instruction+prefix})
135
+ messages = [
136
+ {
137
+ "role": "user",
138
+ "content": tp,
139
+ }
140
+ ]
141
+
142
+ # Preparation for inference
143
+ text = processor.apply_chat_template(
144
+ messages, tokenize=False, add_generation_prompt=True
145
+ )
146
+ image_inputs, video_inputs = process_vision_info(messages)
147
+ inputs = processor(
148
+ text=[text],
149
+ images=image_inputs,
150
+ videos=video_inputs,
151
+ padding=True,
152
+ return_tensors="pt",
153
+ )
154
+ inputs = inputs.to("cuda")
155
+
156
+ # Inference
157
+ generated_ids = vlm_model.generate(**inputs, do_sample=False, max_new_tokens=4096)
158
+ generated_ids_trimmed = [
159
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
160
+ ]
161
+ output_text = processor.batch_decode(
162
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
163
+ )
164
+ return output_text[0]
165
+
166
+ def infer(source_imgs,prompt,height=1024,width=1024):
167
+ image = pipe(
168
+ images=source_imgs,
169
+ height=height,
170
+ width=width,
171
+ prompt=prompt,
172
+ num_inference_steps=30,
173
+ guidance_scale=3.5,
174
+ ).images[0]
175
+ return image
176
+
177
+
178
+ input_img_path=ARGS.input_img_path
179
+ input_instruction=ARGS.input_instruction
180
+
181
+ prefix=" It is generation task."
182
+ source_imgs = []
183
+ for path in input_img_path:
184
+ img = load_image(path)
185
+ # source_imgs.append(img)
186
+ source_imgs.append(resizeinput(img))
187
+
188
+ prompt=infer_vlm(input_img_path,input_instruction,prefix)
189
+ prompt = extract_gen_content(prompt)
190
+ image=infer(source_imgs,prompt,height=ARGS.height,width=ARGS.width)
191
+ output_path = ARGS.output_path
192
+ image.save(output_path)
my_datasets/.gitkeep ADDED
@@ -0,0 +1,327 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import json
4
+ import gc
5
+ import functools
6
+ import contextlib
7
+ from typing import Dict, Union, Optional, Type, Set
8
+
9
+ import torch
10
+ from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
11
+ from torch.distributed.fsdp import (
12
+ StateDictType,
13
+ FullOptimStateDictConfig,
14
+ FullStateDictConfig,
15
+ )
16
+ import torch.distributed.checkpoint as torch_dcp
17
+ import torch.distributed.checkpoint.state_dict
18
+ from torch.distributed.fsdp.api import (
19
+ ShardingStrategy,
20
+ BackwardPrefetch,
21
+ MixedPrecision,
22
+ )
23
+ import accelerate
24
+ import safetensors
25
+ import diffusers
26
+ import transformers
27
+ from huggingface_hub.serialization import split_torch_state_dict_into_shards
28
+ import os, re, json
29
+ from typing import Union
30
+ import torch
31
+ import safetensors.torch
32
+ import accelerate
33
+ # from .ema_utils import EMAModel
34
+
35
+
36
+ def upcast_trainable_param_to_fp32_(fsdp_model):
37
+ for m in FSDP.fsdp_modules(fsdp_model):
38
+ if m._has_params:
39
+ param = m._flat_param
40
+ if (
41
+ param.dtype != torch.float32
42
+ and param.device != torch.device("meta")
43
+ and param.requires_grad
44
+ ):
45
+ param.data = param.data.to(torch.float32)
46
+ m._handle._orig_param_dtype = torch.float32
47
+
48
+
49
+ def get_module_to_ignore_mixed_precision():
50
+ try:
51
+ from apex.normalization import FusedLayerNorm
52
+
53
+ return [
54
+ torch.nn.GroupNorm,
55
+ torch.nn.modules.batchnorm._BatchNorm,
56
+ torch.nn.LayerNorm,
57
+ FusedLayerNorm,
58
+ ]
59
+ except:
60
+ return [
61
+ torch.nn.GroupNorm,
62
+ torch.nn.modules.batchnorm._BatchNorm,
63
+ torch.nn.LayerNorm,
64
+ ]
65
+
66
+
67
+ def is_fsdp_model(model):
68
+ return len(FSDP.fsdp_modules(model)) > 0
69
+
70
+
71
+ def size_based_auto_wrap_policy(
72
+ module: torch.nn.Module,
73
+ recurse: bool,
74
+ nonwrapped_numel: int,
75
+ # Additional custom arguments
76
+ min_num_params: int = int(1e8),
77
+ force_leaf_modules: Optional[Set[Type[torch.nn.Module]]] = None,
78
+ exclude_wrap_modules: Optional[Set[Type[torch.nn.Module]]] = None,
79
+ ) -> bool:
80
+ """
81
+ A size-based auto wrap policy.
82
+
83
+ Args:
84
+ module (nn.Module): Current module being considered.
85
+ recurse (bool): If ``False``, then this function must decide whether
86
+ ``module`` should be wrapped as an FSDP instance or not. If
87
+ ``True``, then the function is still recursing down the module
88
+ tree as a part of the DFS.
89
+ nonwrapped_numel (int): Parameter numel not yet wrapped.
90
+
91
+ min_num_params (int): Customizable policy input that controls the size
92
+ threshold over which a module is ready to be wrapped. This is in
93
+ units of numel.
94
+ force_leaf_modules (Set[Type[nn.Module]]): Set of module types to keep
95
+ as leaves, i.e. their children will never be wrapped.
96
+ exclude_wrap_modules (Set[Type[nn.Module]]): Set of module types to be
97
+ excluded in wrapping.
98
+
99
+ Returns:
100
+ Whether ``module`` should be wrapped.
101
+ """
102
+ force_leaf_modules = (
103
+ size_based_auto_wrap_policy.FORCE_LEAF_MODULES # type: ignore[attr-defined]
104
+ if force_leaf_modules is None
105
+ else force_leaf_modules
106
+ )
107
+ exclude_wrap_modules = (
108
+ size_based_auto_wrap_policy.EXCLUDE_WRAP_MODULES # type: ignore[attr-defined]
109
+ if exclude_wrap_modules is None
110
+ else exclude_wrap_modules
111
+ )
112
+
113
+ # Keep the argument `min_num_params` for BC for now, but it represents the
114
+ # minimum non-wrapped *numel* before triggering a wrapping
115
+ min_nonwrapped_numel = min_num_params
116
+ is_large = nonwrapped_numel >= min_nonwrapped_numel
117
+ STOP_FLAG_NAME = "__FSDP_STOP_WARP_FLAG_CUSTOM_POLICY_size_based_auto_wrap_policy"
118
+ if recurse:
119
+ # use MixedPrecision cause ALWAYS recurse
120
+ if isinstance(module, tuple(force_leaf_modules)):
121
+ for m in module.children():
122
+ m.apply(lambda m: setattr(m, STOP_FLAG_NAME, True))
123
+ return True
124
+ else:
125
+ if getattr(module, size_based_auto_wrap_policy.LEAF_ROOT_FLAG_NAME, False):
126
+ return True
127
+ elif getattr(module, STOP_FLAG_NAME, False):
128
+ return False
129
+ else:
130
+ # If we are not recursing, determine if we should wrap.
131
+ return is_large and not isinstance(module, tuple(exclude_wrap_modules))
132
+
133
+
134
+ # Set those defaults to the size_based_auto_wrap_policy function. Make them easy to be imported.
135
+ size_based_auto_wrap_policy.EXCLUDE_WRAP_MODULES = {torch.nn.ModuleList, torch.nn.ModuleDict} # type: ignore[attr-defined]
136
+ size_based_auto_wrap_policy.FORCE_LEAF_MODULES = {torch.nn.MultiheadAttention} # type: ignore[attr-defined]
137
+ size_based_auto_wrap_policy.LEAF_ROOT_FLAG_NAME = (
138
+ "__FSDP_LEAF_ROOT_FLAG_CUSTOM_POLICY_size_based_auto_wrap_policy"
139
+ )
140
+
141
+
142
+ def mark_leaf_root_(module):
143
+ setattr(
144
+ module,
145
+ size_based_auto_wrap_policy.LEAF_ROOT_FLAG_NAME,
146
+ True,
147
+ )
148
+
149
+
150
+ def make_model_fsdp(
151
+ model,
152
+ param_dtype,
153
+ device,
154
+ reduce_dtype=None,
155
+ buffer_dtype=None,
156
+ sync_module_states=True,
157
+ process_group=None,
158
+ sharding_strategy=ShardingStrategy.HYBRID_SHARD,
159
+ module_classes_to_ignore_mixed_precision=None,
160
+ ignored_states=None,
161
+ ignored_modules=None,
162
+ auto_wrap_policy=None,
163
+ part_size=1e6,
164
+ force_leaf_modules=None,
165
+ exclude_wrap_modules=None,
166
+ use_orig_params=False
167
+ ):
168
+ if module_classes_to_ignore_mixed_precision is None:
169
+ module_classes_to_ignore_mixed_precision = (
170
+ get_module_to_ignore_mixed_precision()
171
+ )
172
+ if auto_wrap_policy is not None:
173
+ auto_wrap_policy = auto_wrap_policy
174
+ elif sharding_strategy == ShardingStrategy.NO_SHARD:
175
+ auto_wrap_policy = None
176
+ else:
177
+ auto_wrap_policy = functools.partial(
178
+ size_based_auto_wrap_policy,
179
+ min_num_params=part_size,
180
+ force_leaf_modules=force_leaf_modules,
181
+ exclude_wrap_modules=exclude_wrap_modules,
182
+ )
183
+
184
+ model = FSDP(
185
+ model,
186
+ sharding_strategy=sharding_strategy,
187
+ process_group=process_group,
188
+ forward_prefetch=True,
189
+ backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
190
+ limit_all_gathers=True,
191
+ use_orig_params=use_orig_params,
192
+ sync_module_states=sync_module_states,
193
+ mixed_precision=MixedPrecision(
194
+ param_dtype=param_dtype,
195
+ reduce_dtype=reduce_dtype or torch.float32,
196
+ buffer_dtype=buffer_dtype or torch.float32,
197
+ keep_low_precision_grads=False,
198
+ cast_forward_inputs=False,
199
+ cast_root_forward_inputs=True,
200
+ _module_classes_to_ignore=module_classes_to_ignore_mixed_precision,
201
+ ),
202
+ auto_wrap_policy=auto_wrap_policy,
203
+ ignored_states=ignored_states,
204
+ ignored_modules=ignored_modules,
205
+ device_id=device,
206
+ )
207
+ torch.cuda.empty_cache()
208
+ gc.collect()
209
+ return model
210
+
211
+
212
+ def save_fsdp_lora(
213
+ model_to_save, # FSDP 包裹的模型
214
+ save_directory: Union[str, os.PathLike],
215
+ is_main_process: bool = True,
216
+ lora_regex: str = r"(?:lora)", # 根据自己命名习惯调
217
+ ):
218
+ """
219
+ 仅保存 LoRA 层的权重。适用于 FSDP 并与 safetensors 兼容。
220
+ """
221
+ # 1. 解包 FSDP,拿到裸模型
222
+ unwrapped_model = accelerate.utils.extract_model_from_parallel(model_to_save)
223
+
224
+ # 2. 创建保存目录
225
+ if is_main_process:
226
+ os.makedirs(save_directory, exist_ok=True)
227
+
228
+ # 3. 收集完整 state_dict(CPU 上)
229
+ state_dict = torch_dcp.state_dict.get_model_state_dict(
230
+ model_to_save,
231
+ options=torch_dcp.state_dict.StateDictOptions(
232
+ full_state_dict=True,
233
+ cpu_offload=True,
234
+ ignore_frozen_params=False,
235
+ ),
236
+ )
237
+
238
+ # 4. 过滤出 LoRA 参数
239
+ lora_pattern = re.compile(lora_regex)
240
+ lora_state_dict = {
241
+ k: v for k, v in state_dict.items() if lora_pattern.search(k) is not None
242
+ }
243
+
244
+ if not lora_state_dict:
245
+ raise ValueError(
246
+ "未找到匹配 LoRA 的参数。请检查 lora_regex 是否符合命名规则。"
247
+ )
248
+
249
+ # 5. 保存为单文件 *.safetensors
250
+ if is_main_process:
251
+ weight_file = os.path.join(save_directory, "adapter_model.safetensors")
252
+ safetensors.torch.save_file(
253
+ lora_state_dict, weight_file, metadata={"format": "pt", "type": "lora"}
254
+ )
255
+
256
+
257
+ def load_fsdp_model_(model_to_load: FSDP, save_directory: Union[str, os.PathLike]):
258
+ with FSDP.state_dict_type(
259
+ model_to_load,
260
+ state_dict_type=StateDictType.FULL_STATE_DICT,
261
+ state_dict_config=FullStateDictConfig(
262
+ rank0_only=False,
263
+ ),
264
+ ):
265
+ _model = model_to_load.from_pretrained(save_directory)
266
+ model_to_load.load_state_dict(_model.state_dict())
267
+
268
+
269
+ def save_fsdp_optimizer(
270
+ models: Dict,
271
+ optimizer_to_save: torch.optim.Optimizer,
272
+ save_directory: Union[str, os.PathLike],
273
+ is_main_process: bool = True,
274
+ ):
275
+ _fsdp_state_dict_config = dict(
276
+ state_dict_type=StateDictType.FULL_STATE_DICT,
277
+ optim_state_dict_config=FullOptimStateDictConfig(
278
+ offload_to_cpu=True,
279
+ rank0_only=True,
280
+ ),
281
+ )
282
+ mgrs = list()
283
+ for m in models.values():
284
+ if len(FSDP.fsdp_modules(m)) > 0:
285
+ mgrs.append(FSDP.state_dict_type(m, **_fsdp_state_dict_config))
286
+
287
+ with contextlib.ExitStack() as stack:
288
+ for mgr in mgrs:
289
+ stack.enter_context(mgr)
290
+ optim_state_dict = FSDP.optim_state_dict(
291
+ torch.nn.ModuleDict(models),
292
+ optimizer_to_save,
293
+ )
294
+ if is_main_process:
295
+ torch.save(
296
+ optim_state_dict, os.path.join(save_directory, "optim_states.pth")
297
+ )
298
+
299
+
300
+ def load_fsdp_optimizer_(
301
+ models: Dict,
302
+ optimizer_to_load: torch.optim.Optimizer,
303
+ save_directory: Union[str, os.PathLike],
304
+ ):
305
+ _fsdp_state_dict_config = dict(
306
+ state_dict_type=StateDictType.FULL_STATE_DICT,
307
+ optim_state_dict_config=FullOptimStateDictConfig(
308
+ rank0_only=False,
309
+ ),
310
+ )
311
+ mgrs = list()
312
+ for m in models.values():
313
+ if len(FSDP.fsdp_modules(m)) > 0:
314
+ mgrs.append(FSDP.state_dict_type(m, **_fsdp_state_dict_config))
315
+
316
+ with contextlib.ExitStack() as stack:
317
+ for mgr in mgrs:
318
+ stack.enter_context(mgr)
319
+ optimizer_path = os.path.join(save_directory, "optim_states.pth")
320
+ assert os.path.isfile(optimizer_path)
321
+ optim_state_dict = torch.load(optimizer_path)
322
+ optim_state_dict = FSDP.optim_state_dict_to_load(
323
+ torch.nn.ModuleDict(models),
324
+ optimizer_to_load,
325
+ optim_state_dict,
326
+ )
327
+ optimizer_to_load.load_state_dict(optim_state_dict)
requirements.txt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ timm==1.0.20
2
+ ujson
3
+ peft==0.17.1
4
+ datasets==4.1.1
5
+ transformers==4.56.2
6
+ opencv-python
7
+ qwen-vl-utils==0.0.14
8
+ lmdb==1.7.3
9
+ diffusers==0.35.1
10
+ numpy==1.26.4
11
+ torch==2.8.0
12
+ torchaudio==2.8.0
13
+ torchvision==0.23.0
14
+ gradio==5.47.2
15
+ sentencepiece
16
+ safetensors
utils/fsdp_utils.py ADDED
@@ -0,0 +1,327 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import json
4
+ import gc
5
+ import functools
6
+ import contextlib
7
+ from typing import Dict, Union, Optional, Type, Set
8
+
9
+ import torch
10
+ from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
11
+ from torch.distributed.fsdp import (
12
+ StateDictType,
13
+ FullOptimStateDictConfig,
14
+ FullStateDictConfig,
15
+ )
16
+ import torch.distributed.checkpoint as torch_dcp
17
+ import torch.distributed.checkpoint.state_dict
18
+ from torch.distributed.fsdp.api import (
19
+ ShardingStrategy,
20
+ BackwardPrefetch,
21
+ MixedPrecision,
22
+ )
23
+ import accelerate
24
+ import safetensors
25
+ import diffusers
26
+ import transformers
27
+ from huggingface_hub.serialization import split_torch_state_dict_into_shards
28
+ import os, re, json
29
+ from typing import Union
30
+ import torch
31
+ import safetensors.torch
32
+ import accelerate
33
+ # from .ema_utils import EMAModel
34
+
35
+
36
+ def upcast_trainable_param_to_fp32_(fsdp_model):
37
+ for m in FSDP.fsdp_modules(fsdp_model):
38
+ if m._has_params:
39
+ param = m._flat_param
40
+ if (
41
+ param.dtype != torch.float32
42
+ and param.device != torch.device("meta")
43
+ and param.requires_grad
44
+ ):
45
+ param.data = param.data.to(torch.float32)
46
+ m._handle._orig_param_dtype = torch.float32
47
+
48
+
49
+ def get_module_to_ignore_mixed_precision():
50
+ try:
51
+ from apex.normalization import FusedLayerNorm
52
+
53
+ return [
54
+ torch.nn.GroupNorm,
55
+ torch.nn.modules.batchnorm._BatchNorm,
56
+ torch.nn.LayerNorm,
57
+ FusedLayerNorm,
58
+ ]
59
+ except:
60
+ return [
61
+ torch.nn.GroupNorm,
62
+ torch.nn.modules.batchnorm._BatchNorm,
63
+ torch.nn.LayerNorm,
64
+ ]
65
+
66
+
67
+ def is_fsdp_model(model):
68
+ return len(FSDP.fsdp_modules(model)) > 0
69
+
70
+
71
+ def size_based_auto_wrap_policy(
72
+ module: torch.nn.Module,
73
+ recurse: bool,
74
+ nonwrapped_numel: int,
75
+ # Additional custom arguments
76
+ min_num_params: int = int(1e8),
77
+ force_leaf_modules: Optional[Set[Type[torch.nn.Module]]] = None,
78
+ exclude_wrap_modules: Optional[Set[Type[torch.nn.Module]]] = None,
79
+ ) -> bool:
80
+ """
81
+ A size-based auto wrap policy.
82
+
83
+ Args:
84
+ module (nn.Module): Current module being considered.
85
+ recurse (bool): If ``False``, then this function must decide whether
86
+ ``module`` should be wrapped as an FSDP instance or not. If
87
+ ``True``, then the function is still recursing down the module
88
+ tree as a part of the DFS.
89
+ nonwrapped_numel (int): Parameter numel not yet wrapped.
90
+
91
+ min_num_params (int): Customizable policy input that controls the size
92
+ threshold over which a module is ready to be wrapped. This is in
93
+ units of numel.
94
+ force_leaf_modules (Set[Type[nn.Module]]): Set of module types to keep
95
+ as leaves, i.e. their children will never be wrapped.
96
+ exclude_wrap_modules (Set[Type[nn.Module]]): Set of module types to be
97
+ excluded in wrapping.
98
+
99
+ Returns:
100
+ Whether ``module`` should be wrapped.
101
+ """
102
+ force_leaf_modules = (
103
+ size_based_auto_wrap_policy.FORCE_LEAF_MODULES # type: ignore[attr-defined]
104
+ if force_leaf_modules is None
105
+ else force_leaf_modules
106
+ )
107
+ exclude_wrap_modules = (
108
+ size_based_auto_wrap_policy.EXCLUDE_WRAP_MODULES # type: ignore[attr-defined]
109
+ if exclude_wrap_modules is None
110
+ else exclude_wrap_modules
111
+ )
112
+
113
+ # Keep the argument `min_num_params` for BC for now, but it represents the
114
+ # minimum non-wrapped *numel* before triggering a wrapping
115
+ min_nonwrapped_numel = min_num_params
116
+ is_large = nonwrapped_numel >= min_nonwrapped_numel
117
+ STOP_FLAG_NAME = "__FSDP_STOP_WARP_FLAG_CUSTOM_POLICY_size_based_auto_wrap_policy"
118
+ if recurse:
119
+ # use MixedPrecision cause ALWAYS recurse
120
+ if isinstance(module, tuple(force_leaf_modules)):
121
+ for m in module.children():
122
+ m.apply(lambda m: setattr(m, STOP_FLAG_NAME, True))
123
+ return True
124
+ else:
125
+ if getattr(module, size_based_auto_wrap_policy.LEAF_ROOT_FLAG_NAME, False):
126
+ return True
127
+ elif getattr(module, STOP_FLAG_NAME, False):
128
+ return False
129
+ else:
130
+ # If we are not recursing, determine if we should wrap.
131
+ return is_large and not isinstance(module, tuple(exclude_wrap_modules))
132
+
133
+
134
+ # Set those defaults to the size_based_auto_wrap_policy function. Make them easy to be imported.
135
+ size_based_auto_wrap_policy.EXCLUDE_WRAP_MODULES = {torch.nn.ModuleList, torch.nn.ModuleDict} # type: ignore[attr-defined]
136
+ size_based_auto_wrap_policy.FORCE_LEAF_MODULES = {torch.nn.MultiheadAttention} # type: ignore[attr-defined]
137
+ size_based_auto_wrap_policy.LEAF_ROOT_FLAG_NAME = (
138
+ "__FSDP_LEAF_ROOT_FLAG_CUSTOM_POLICY_size_based_auto_wrap_policy"
139
+ )
140
+
141
+
142
+ def mark_leaf_root_(module):
143
+ setattr(
144
+ module,
145
+ size_based_auto_wrap_policy.LEAF_ROOT_FLAG_NAME,
146
+ True,
147
+ )
148
+
149
+
150
+ def make_model_fsdp(
151
+ model,
152
+ param_dtype,
153
+ device,
154
+ reduce_dtype=None,
155
+ buffer_dtype=None,
156
+ sync_module_states=True,
157
+ process_group=None,
158
+ sharding_strategy=ShardingStrategy.HYBRID_SHARD,
159
+ module_classes_to_ignore_mixed_precision=None,
160
+ ignored_states=None,
161
+ ignored_modules=None,
162
+ auto_wrap_policy=None,
163
+ part_size=1e6,
164
+ force_leaf_modules=None,
165
+ exclude_wrap_modules=None,
166
+ use_orig_params=False
167
+ ):
168
+ if module_classes_to_ignore_mixed_precision is None:
169
+ module_classes_to_ignore_mixed_precision = (
170
+ get_module_to_ignore_mixed_precision()
171
+ )
172
+ if auto_wrap_policy is not None:
173
+ auto_wrap_policy = auto_wrap_policy
174
+ elif sharding_strategy == ShardingStrategy.NO_SHARD:
175
+ auto_wrap_policy = None
176
+ else:
177
+ auto_wrap_policy = functools.partial(
178
+ size_based_auto_wrap_policy,
179
+ min_num_params=part_size,
180
+ force_leaf_modules=force_leaf_modules,
181
+ exclude_wrap_modules=exclude_wrap_modules,
182
+ )
183
+
184
+ model = FSDP(
185
+ model,
186
+ sharding_strategy=sharding_strategy,
187
+ process_group=process_group,
188
+ forward_prefetch=True,
189
+ backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
190
+ limit_all_gathers=True,
191
+ use_orig_params=use_orig_params,
192
+ sync_module_states=sync_module_states,
193
+ mixed_precision=MixedPrecision(
194
+ param_dtype=param_dtype,
195
+ reduce_dtype=reduce_dtype or torch.float32,
196
+ buffer_dtype=buffer_dtype or torch.float32,
197
+ keep_low_precision_grads=False,
198
+ cast_forward_inputs=False,
199
+ cast_root_forward_inputs=True,
200
+ _module_classes_to_ignore=module_classes_to_ignore_mixed_precision,
201
+ ),
202
+ auto_wrap_policy=auto_wrap_policy,
203
+ ignored_states=ignored_states,
204
+ ignored_modules=ignored_modules,
205
+ device_id=device,
206
+ )
207
+ torch.cuda.empty_cache()
208
+ gc.collect()
209
+ return model
210
+
211
+
212
+ def save_fsdp_lora(
213
+ model_to_save, # FSDP 包裹的模型
214
+ save_directory: Union[str, os.PathLike],
215
+ is_main_process: bool = True,
216
+ lora_regex: str = r"(?:lora)", # 根据自己命名习惯调
217
+ ):
218
+ """
219
+ 仅保存 LoRA 层的权重。适用于 FSDP 并与 safetensors 兼容。
220
+ """
221
+ # 1. 解包 FSDP,拿到裸模型
222
+ unwrapped_model = accelerate.utils.extract_model_from_parallel(model_to_save)
223
+
224
+ # 2. 创建保存目录
225
+ if is_main_process:
226
+ os.makedirs(save_directory, exist_ok=True)
227
+
228
+ # 3. 收集完整 state_dict(CPU 上)
229
+ state_dict = torch_dcp.state_dict.get_model_state_dict(
230
+ model_to_save,
231
+ options=torch_dcp.state_dict.StateDictOptions(
232
+ full_state_dict=True,
233
+ cpu_offload=True,
234
+ ignore_frozen_params=False,
235
+ ),
236
+ )
237
+
238
+ # 4. 过滤出 LoRA 参数
239
+ lora_pattern = re.compile(lora_regex)
240
+ lora_state_dict = {
241
+ k: v for k, v in state_dict.items() if lora_pattern.search(k) is not None
242
+ }
243
+
244
+ if not lora_state_dict:
245
+ raise ValueError(
246
+ "未找到匹配 LoRA 的参数。请检查 lora_regex 是否符合命名规则。"
247
+ )
248
+
249
+ # 5. 保存为单文件 *.safetensors
250
+ if is_main_process:
251
+ weight_file = os.path.join(save_directory, "adapter_model.safetensors")
252
+ safetensors.torch.save_file(
253
+ lora_state_dict, weight_file, metadata={"format": "pt", "type": "lora"}
254
+ )
255
+
256
+
257
+ def load_fsdp_model_(model_to_load: FSDP, save_directory: Union[str, os.PathLike]):
258
+ with FSDP.state_dict_type(
259
+ model_to_load,
260
+ state_dict_type=StateDictType.FULL_STATE_DICT,
261
+ state_dict_config=FullStateDictConfig(
262
+ rank0_only=False,
263
+ ),
264
+ ):
265
+ _model = model_to_load.from_pretrained(save_directory)
266
+ model_to_load.load_state_dict(_model.state_dict())
267
+
268
+
269
+ def save_fsdp_optimizer(
270
+ models: Dict,
271
+ optimizer_to_save: torch.optim.Optimizer,
272
+ save_directory: Union[str, os.PathLike],
273
+ is_main_process: bool = True,
274
+ ):
275
+ _fsdp_state_dict_config = dict(
276
+ state_dict_type=StateDictType.FULL_STATE_DICT,
277
+ optim_state_dict_config=FullOptimStateDictConfig(
278
+ offload_to_cpu=True,
279
+ rank0_only=True,
280
+ ),
281
+ )
282
+ mgrs = list()
283
+ for m in models.values():
284
+ if len(FSDP.fsdp_modules(m)) > 0:
285
+ mgrs.append(FSDP.state_dict_type(m, **_fsdp_state_dict_config))
286
+
287
+ with contextlib.ExitStack() as stack:
288
+ for mgr in mgrs:
289
+ stack.enter_context(mgr)
290
+ optim_state_dict = FSDP.optim_state_dict(
291
+ torch.nn.ModuleDict(models),
292
+ optimizer_to_save,
293
+ )
294
+ if is_main_process:
295
+ torch.save(
296
+ optim_state_dict, os.path.join(save_directory, "optim_states.pth")
297
+ )
298
+
299
+
300
+ def load_fsdp_optimizer_(
301
+ models: Dict,
302
+ optimizer_to_load: torch.optim.Optimizer,
303
+ save_directory: Union[str, os.PathLike],
304
+ ):
305
+ _fsdp_state_dict_config = dict(
306
+ state_dict_type=StateDictType.FULL_STATE_DICT,
307
+ optim_state_dict_config=FullOptimStateDictConfig(
308
+ rank0_only=False,
309
+ ),
310
+ )
311
+ mgrs = list()
312
+ for m in models.values():
313
+ if len(FSDP.fsdp_modules(m)) > 0:
314
+ mgrs.append(FSDP.state_dict_type(m, **_fsdp_state_dict_config))
315
+
316
+ with contextlib.ExitStack() as stack:
317
+ for mgr in mgrs:
318
+ stack.enter_context(mgr)
319
+ optimizer_path = os.path.join(save_directory, "optim_states.pth")
320
+ assert os.path.isfile(optimizer_path)
321
+ optim_state_dict = torch.load(optimizer_path)
322
+ optim_state_dict = FSDP.optim_state_dict_to_load(
323
+ torch.nn.ModuleDict(models),
324
+ optimizer_to_load,
325
+ optim_state_dict,
326
+ )
327
+ optimizer_to_load.load_state_dict(optim_state_dict)
utils/infer_utils.py ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ def tokenize_prompt(tokenizer, prompt, max_sequence_length):
4
+ text_inputs = tokenizer(
5
+ prompt,
6
+ padding="max_length",
7
+ max_length=max_sequence_length,
8
+ truncation=True,
9
+ return_length=False,
10
+ return_overflowing_tokens=False,
11
+ return_tensors="pt",
12
+ )
13
+ text_input_ids = text_inputs.input_ids
14
+ return text_input_ids
15
+
16
+ def _encode_prompt_with_t5(
17
+ text_encoder,
18
+ tokenizer,
19
+ max_sequence_length=512,
20
+ prompt=None,
21
+ num_images_per_prompt=1,
22
+ device=None,
23
+ text_input_ids=None,
24
+ ):
25
+ prompt = [prompt] if isinstance(prompt, str) else prompt
26
+ batch_size = len(prompt)
27
+
28
+ if tokenizer is not None:
29
+ text_inputs = tokenizer(
30
+ prompt,
31
+ padding="max_length",
32
+ max_length=max_sequence_length,
33
+ truncation=True,
34
+ return_length=False,
35
+ return_overflowing_tokens=False,
36
+ return_tensors="pt",
37
+ )
38
+ text_input_ids = text_inputs.input_ids
39
+ else:
40
+ if text_input_ids is None:
41
+ raise ValueError("text_input_ids must be provided when the tokenizer is not specified")
42
+
43
+ prompt_embeds = text_encoder(text_input_ids.to(device))[0]
44
+
45
+ if hasattr(text_encoder, "module"):
46
+ dtype = text_encoder.module.dtype
47
+ else:
48
+ dtype = text_encoder.dtype
49
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
50
+
51
+ _, seq_len, _ = prompt_embeds.shape
52
+
53
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
54
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
55
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
56
+
57
+ return prompt_embeds
58
+
59
+
60
+ def _encode_prompt_with_clip(
61
+ text_encoder,
62
+ tokenizer,
63
+ prompt: str,
64
+ device=None,
65
+ text_input_ids=None,
66
+ num_images_per_prompt: int = 1,
67
+ ):
68
+ prompt = [prompt] if isinstance(prompt, str) else prompt
69
+ batch_size = len(prompt)
70
+
71
+ if tokenizer is not None:
72
+ text_inputs = tokenizer(
73
+ prompt,
74
+ padding="max_length",
75
+ max_length=77,
76
+ truncation=True,
77
+ return_overflowing_tokens=False,
78
+ return_length=False,
79
+ return_tensors="pt",
80
+ )
81
+
82
+ text_input_ids = text_inputs.input_ids
83
+ else:
84
+ if text_input_ids is None:
85
+ raise ValueError("text_input_ids must be provided when the tokenizer is not specified")
86
+
87
+ prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=False)
88
+
89
+ if hasattr(text_encoder, "module"):
90
+ dtype = text_encoder.module.dtype
91
+ else:
92
+ dtype = text_encoder.dtype
93
+ # Use pooled output of CLIPTextModel
94
+ prompt_embeds = prompt_embeds.pooler_output
95
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
96
+
97
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
98
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
99
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
100
+
101
+ return prompt_embeds
102
+
103
+
104
+ def encode_prompt(
105
+ text_encoders,
106
+ tokenizers,
107
+ prompt: str,
108
+ max_sequence_length,
109
+ device=None,
110
+ num_images_per_prompt: int = 1,
111
+ text_input_ids_list=None,
112
+ ):
113
+ prompt = [prompt] if isinstance(prompt, str) else prompt
114
+
115
+ if hasattr(text_encoders[0], "module"):
116
+ dtype = text_encoders[0].module.dtype
117
+ else:
118
+ dtype = text_encoders[0].dtype
119
+
120
+ pooled_prompt_embeds = _encode_prompt_with_clip(
121
+ text_encoder=text_encoders[0],
122
+ tokenizer=tokenizers[0],
123
+ prompt=prompt,
124
+ device=device if device is not None else text_encoders[0].device,
125
+ num_images_per_prompt=num_images_per_prompt,
126
+ text_input_ids=text_input_ids_list[0] if text_input_ids_list else None,
127
+ )
128
+
129
+ prompt_embeds = _encode_prompt_with_t5(
130
+ text_encoder=text_encoders[1],
131
+ tokenizer=tokenizers[1],
132
+ max_sequence_length=max_sequence_length,
133
+ prompt=prompt,
134
+ num_images_per_prompt=num_images_per_prompt,
135
+ device=device if device is not None else text_encoders[1].device,
136
+ text_input_ids=text_input_ids_list[1] if text_input_ids_list else None,
137
+ )
138
+
139
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
140
+
141
+ return prompt_embeds, pooled_prompt_embeds, text_ids
142
+
143
+
144
+ def compute_text_embeddings( args, accelerator, prompt, text_encoders, tokenizers):
145
+ with torch.no_grad():
146
+ prompt_embeds, pooled_prompt_embeds, text_ids = encode_prompt(
147
+ text_encoders, tokenizers, prompt, args.max_sequence_length
148
+ )
149
+ prompt_embeds = prompt_embeds.to(accelerator.device)
150
+ pooled_prompt_embeds = pooled_prompt_embeds.to(accelerator.device)
151
+ text_ids = text_ids.to(accelerator.device)
152
+ return prompt_embeds, pooled_prompt_embeds, text_ids
153
+
154
+ def get_sigmas(noise_scheduler_copy,accelerator, timesteps, n_dim=4, dtype=torch.float32):
155
+ sigmas = noise_scheduler_copy.sigmas.to(device=accelerator.device, dtype=dtype)
156
+ schedule_timesteps = noise_scheduler_copy.timesteps.to(accelerator.device)
157
+ timesteps = timesteps.to(accelerator.device)
158
+ step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
159
+
160
+ sigma = sigmas[step_indices].flatten()
161
+ while len(sigma.shape) < n_dim:
162
+ sigma = sigma.unsqueeze(-1)
163
+ return sigma
utils/init_utils.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import CLIPTokenizer, PretrainedConfig, T5TokenizerFast
2
+ import logging
3
+ def load_text_encoders(args, class_one, class_two):
4
+ text_encoder_one = class_one.from_pretrained(
5
+ args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
6
+ )
7
+ text_encoder_two = class_two.from_pretrained(
8
+ args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant
9
+ )
10
+ return text_encoder_one, text_encoder_two
11
+
12
+ def import_model_class_from_model_name_or_path(
13
+ pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
14
+ ):
15
+ text_encoder_config = PretrainedConfig.from_pretrained(
16
+ pretrained_model_name_or_path, subfolder=subfolder, revision=revision
17
+ )
18
+ model_class = text_encoder_config.architectures[0]
19
+ if model_class == "CLIPTextModel":
20
+ from transformers import CLIPTextModel
21
+
22
+ return CLIPTextModel
23
+ elif model_class == "T5EncoderModel":
24
+ from transformers import T5EncoderModel
25
+
26
+ return T5EncoderModel
27
+ else:
28
+ raise ValueError(f"{model_class} is not supported.")
29
+
30
+ def create_logger(logging_dir,accelerator):
31
+ """
32
+ Create a logger that writes to a log file and stdout.
33
+ """
34
+ if accelerator.is_main_process: # real logger
35
+ logging.basicConfig(
36
+ level=logging.INFO,
37
+ format="[\033[34m%(asctime)s\033[0m] %(message)s",
38
+ datefmt="%Y-%m-%d %H:%M:%S",
39
+ handlers=[
40
+ logging.StreamHandler(),
41
+ logging.FileHandler(f"{logging_dir}/log.txt"),
42
+ ],
43
+ )
44
+ logger = logging.getLogger(__name__)
45
+ else: # dummy logger (does nothing)
46
+ logger = logging.getLogger(__name__)
47
+ logger.addHandler(logging.NullHandler())
48
+ return logger
utils/parser_config.py ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+
4
+ def parse_args(input_args=None):
5
+ parser = argparse.ArgumentParser(description="Simple example of a training script.")
6
+ parser.add_argument(
7
+ "--pretrained_model_name_or_path",
8
+ type=str,
9
+ default=None,
10
+ required=True,
11
+ help="Path to pretrained model or model identifier from huggingface.co/models.",
12
+ )
13
+ parser.add_argument(
14
+ "--revision",
15
+ type=str,
16
+ default=None,
17
+ required=False,
18
+ help="Revision of pretrained model identifier from huggingface.co/models.",
19
+ )
20
+ parser.add_argument(
21
+ "--vae_encode_mode",
22
+ type=str,
23
+ default="mode",
24
+ choices=["sample", "mode"],
25
+ help="VAE encoding mode.",
26
+ )
27
+ parser.add_argument(
28
+ "--variant",
29
+ type=str,
30
+ default=None,
31
+ help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
32
+ )
33
+ parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.")
34
+ parser.add_argument(
35
+ "--max_sequence_length",
36
+ type=int,
37
+ default=512,
38
+ help="Maximum sequence length to use with with the T5 text encoder",
39
+ )
40
+ parser.add_argument(
41
+ "--rank",
42
+ type=int,
43
+ default=4,
44
+ help=("The dimension of the LoRA update matrices."),
45
+ )
46
+ parser.add_argument(
47
+ "--lora_alpha",
48
+ type=int,
49
+ default=4,
50
+ help="LoRA alpha to be used for additional scaling.",
51
+ )
52
+ parser.add_argument("--lora_dropout", type=float, default=0.0, help="Dropout probability for LoRA layers")
53
+ parser.add_argument(
54
+ "--output_dir",
55
+ type=str,
56
+ default="flux-dreambooth-lora",
57
+ help="The output directory where the model predictions and checkpoints will be written.",
58
+ )
59
+ parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
60
+ parser.add_argument(
61
+ "--resolution",
62
+ type=int,
63
+ default=512,
64
+ help=(
65
+ "The resolution for input images, all the images in the train/validation dataset will be resized to this"
66
+ " resolution"
67
+ ),
68
+ )
69
+ parser.add_argument(
70
+ "--aspect_ratio_buckets",
71
+ type=str,
72
+ default=None,
73
+ help=(
74
+ "Aspect ratio buckets to use for training. Define as a string of 'h1,w1;h2,w2;...'. "
75
+ "e.g. '1024,1024;768,1360;1360,768;880,1168;1168,880;1248,832;832,1248'"
76
+ "Images will be resized and cropped to fit the nearest bucket. If provided, --resolution is ignored."
77
+ ),
78
+ )
79
+ parser.add_argument(
80
+ "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
81
+ )
82
+ parser.add_argument(
83
+ "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
84
+ )
85
+ parser.add_argument("--num_train_epochs", type=int, default=1)
86
+ parser.add_argument(
87
+ "--max_train_steps",
88
+ type=int,
89
+ default=None,
90
+ help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
91
+ )
92
+ parser.add_argument(
93
+ "--checkpointing_steps",
94
+ type=int,
95
+ default=500,
96
+ help=(
97
+ "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
98
+ " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
99
+ " training using `--resume_from_checkpoint`."
100
+ ),
101
+ )
102
+ parser.add_argument(
103
+ "--checkpoints_total_limit",
104
+ type=int,
105
+ default=None,
106
+ help=("Max number of checkpoints to store."),
107
+ )
108
+ parser.add_argument(
109
+ "--resume_from_checkpoint",
110
+ type=str,
111
+ default=None,
112
+ help=(
113
+ "Whether training should be resumed from a previous checkpoint. Use a path saved by"
114
+ ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
115
+ ),
116
+ )
117
+ parser.add_argument(
118
+ "--gradient_accumulation_steps",
119
+ type=int,
120
+ default=1,
121
+ help="Number of updates steps to accumulate before performing a backward/update pass.",
122
+ )
123
+ parser.add_argument(
124
+ "--gradient_checkpointing",
125
+ action="store_true",
126
+ help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
127
+ )
128
+ parser.add_argument(
129
+ "--learning_rate",
130
+ type=float,
131
+ default=1e-4,
132
+ help="Initial learning rate (after the potential warmup period) to use.",
133
+ )
134
+
135
+ parser.add_argument(
136
+ "--guidance_scale",
137
+ type=float,
138
+ default=3.5,
139
+ help="the FLUX.1 dev variant is a guidance distilled model",
140
+ )
141
+ parser.add_argument(
142
+ "--lr_scheduler",
143
+ type=str,
144
+ default="constant",
145
+ help=(
146
+ 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
147
+ ' "constant", "constant_with_warmup"]'
148
+ ),
149
+ )
150
+ parser.add_argument(
151
+ "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
152
+ )
153
+ parser.add_argument(
154
+ "--lr_num_cycles",
155
+ type=int,
156
+ default=1,
157
+ help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
158
+ )
159
+ parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
160
+ parser.add_argument(
161
+ "--dataloader_num_workers",
162
+ type=int,
163
+ default=0,
164
+ help=(
165
+ "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
166
+ ),
167
+ )
168
+ parser.add_argument(
169
+ "--weighting_scheme",
170
+ type=str,
171
+ default="none",
172
+ choices=["sigma_sqrt", "logit_normal", "mode", "cosmap", "none"],
173
+ help=('We default to the "none" weighting scheme for uniform sampling and uniform loss'),
174
+ )
175
+ parser.add_argument(
176
+ "--logit_mean", type=float, default=0.0, help="mean to use when using the `'logit_normal'` weighting scheme."
177
+ )
178
+ parser.add_argument(
179
+ "--logit_std", type=float, default=1.0, help="std to use when using the `'logit_normal'` weighting scheme."
180
+ )
181
+ parser.add_argument(
182
+ "--mode_scale",
183
+ type=float,
184
+ default=1.29,
185
+ help="Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme`.",
186
+ )
187
+ parser.add_argument(
188
+ "--optimizer",
189
+ type=str,
190
+ default="AdamW",
191
+ help=('The optimizer type to use. Choose between ["AdamW", "prodigy"]'),
192
+ )
193
+
194
+ parser.add_argument(
195
+ "--use_8bit_adam",
196
+ action="store_true",
197
+ help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW",
198
+ )
199
+
200
+ parser.add_argument(
201
+ "--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam and Prodigy optimizers."
202
+ )
203
+ parser.add_argument(
204
+ "--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam and Prodigy optimizers."
205
+ )
206
+ parser.add_argument(
207
+ "--prodigy_beta3",
208
+ type=float,
209
+ default=None,
210
+ help="coefficients for computing the Prodigy stepsize using running averages. If set to None, "
211
+ "uses the value of square root of beta2. Ignored if optimizer is adamW",
212
+ )
213
+ parser.add_argument("--prodigy_decouple", type=bool, default=True, help="Use AdamW style decoupled weight decay")
214
+ parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params")
215
+ parser.add_argument(
216
+ "--adam_weight_decay_text_encoder", type=float, default=1e-03, help="Weight decay to use for text_encoder"
217
+ )
218
+
219
+ parser.add_argument(
220
+ "--lora_layers",
221
+ type=str,
222
+ default=None,
223
+ help=(
224
+ 'The transformer modules to apply LoRA training on. Please specify the layers in a comma separated. E.g. - "to_k,to_q,to_v,to_out.0" will result in lora training of attention layers only'
225
+ ),
226
+ )
227
+
228
+ parser.add_argument(
229
+ "--adam_epsilon",
230
+ type=float,
231
+ default=1e-08,
232
+ help="Epsilon value for the Adam optimizer and Prodigy optimizers.",
233
+ )
234
+
235
+ parser.add_argument(
236
+ "--prodigy_use_bias_correction",
237
+ type=bool,
238
+ default=True,
239
+ help="Turn on Adam's bias correction. True by default. Ignored if optimizer is adamW",
240
+ )
241
+ parser.add_argument(
242
+ "--prodigy_safeguard_warmup",
243
+ type=bool,
244
+ default=True,
245
+ help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage. True by default. "
246
+ "Ignored if optimizer is adamW",
247
+ )
248
+ parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
249
+ parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
250
+ parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
251
+ parser.add_argument(
252
+ "--hub_model_id",
253
+ type=str,
254
+ default=None,
255
+ help="The name of the repository to keep in sync with the local `output_dir`.",
256
+ )
257
+ parser.add_argument(
258
+ "--logging_dir",
259
+ type=str,
260
+ default="logs",
261
+ help=(
262
+ "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
263
+ " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
264
+ ),
265
+ )
266
+ parser.add_argument(
267
+ "--allow_tf32",
268
+ action="store_true",
269
+ help=(
270
+ "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
271
+ " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
272
+ ),
273
+ )
274
+ parser.add_argument(
275
+ "--report_to",
276
+ type=str,
277
+ default="tensorboard",
278
+ help=(
279
+ 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
280
+ ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
281
+ ),
282
+ )
283
+ parser.add_argument(
284
+ "--mixed_precision",
285
+ type=str,
286
+ default=None,
287
+ choices=["no", "fp16", "bf16"],
288
+ help=(
289
+ "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
290
+ " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
291
+ " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
292
+ ),
293
+ )
294
+ parser.add_argument(
295
+ "--upcast_before_saving",
296
+ action="store_true",
297
+ default=False,
298
+ help=(
299
+ "Whether to upcast the trained transformer layers to float32 before saving (at the end of training). "
300
+ "Defaults to precision dtype used for training to save memory"
301
+ ),
302
+ )
303
+ parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
304
+
305
+ if input_args is not None:
306
+ args = parser.parse_args(input_args)
307
+ else:
308
+ args = parser.parse_args()
309
+
310
+ env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
311
+ if env_local_rank != -1 and env_local_rank != args.local_rank:
312
+ args.local_rank = env_local_rank
313
+
314
+ return args
utils/utils.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+ import threading
4
+ from pathlib import Path
5
+
6
+ import torch
7
+
8
+
9
+ def import_from_transformers_modules(
10
+ pretrained_model_name_or_path, file_name, class_name
11
+ ):
12
+ import transformers
13
+
14
+ module_path = transformers.dynamic_module_utils.get_cached_module_file(
15
+ pretrained_model_name_or_path, file_name
16
+ )
17
+ return transformers.dynamic_module_utils.get_class_in_module(
18
+ class_name, module_path
19
+ )
20
+
21
+
22
+ def deepspeed_zero_init_disabled_context_manager():
23
+ """
24
+ returns either a context list that includes one that will disable zero.Init or an empty context list
25
+ """
26
+ import accelerate
27
+
28
+ deepspeed_plugin = (
29
+ accelerate.state.AcceleratorState().deepspeed_plugin
30
+ if accelerate.state.is_initialized()
31
+ else None
32
+ )
33
+ if deepspeed_plugin is None:
34
+ return []
35
+
36
+ return [deepspeed_plugin.zero3_init_context_manager(enable=False)]
37
+
38
+
39
+ def remove_excess_checkpoints(
40
+ save_directory,
41
+ checkpoints_total_limit: int = None,
42
+ checkpoint_prefix="checkpoint",
43
+ is_main_process: bool = True,
44
+ ):
45
+ # _after_ saving state, check if this save would set us over the `checkpoints_total_limit`
46
+ if is_main_process and checkpoints_total_limit is not None:
47
+ checkpoints = os.listdir(save_directory)
48
+ checkpoints = [d for d in checkpoints if d.startswith(checkpoint_prefix)]
49
+ checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[2]))
50
+
51
+ # _after_ we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit` checkpoints
52
+ if len(checkpoints) > checkpoints_total_limit:
53
+ num_to_remove = len(checkpoints) - checkpoints_total_limit
54
+ removing_checkpoints = checkpoints[0:num_to_remove]
55
+
56
+ print(
57
+ f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
58
+ )
59
+ print(f"removing checkpoints: {', '.join(removing_checkpoints)}")
60
+
61
+ for removing_checkpoint in removing_checkpoints:
62
+ removing_checkpoint = os.path.join(save_directory, removing_checkpoint)
63
+ shutil.rmtree(removing_checkpoint)
64
+
65
+
66
+ def is_distributed_training():
67
+ if torch.distributed.is_available() and torch.distributed.is_initialized():
68
+ return True
69
+ world_size = int(os.environ.get("WORLD_SIZE", 1))
70
+ return world_size > 1
71
+
72
+
73
+ def contain_invalid_grad(optimizer):
74
+ invalid_grad = False
75
+ for param_group in optimizer.param_groups:
76
+ for param in param_group["params"]:
77
+ if param.grad is not None:
78
+ invalid_grad = invalid_grad or (
79
+ torch.isnan(param.grad).any()
80
+ or torch.isinf(param.grad).any()
81
+ or torch.isneginf(param.grad).any()
82
+ )
83
+ if is_distributed_training():
84
+ invalid_grad_flag = torch.tensor(
85
+ [1.0 if invalid_grad else 0.0],
86
+ dtype=torch.float32,
87
+ requires_grad=False,
88
+ ).cuda()
89
+ torch.distributed.all_reduce(
90
+ invalid_grad_flag, op=torch.distributed.ReduceOp.MAX
91
+ )
92
+ invalid_grad = invalid_grad_flag.item() > 0
93
+ return invalid_grad
94
+
95
+
96
+ def patch_npu_record_stream():
97
+ torch.utils.rename_privateuse1_backend("npu")
98
+ record_stream = torch.Tensor.record_stream
99
+
100
+ def _func(*args, **kwargs):
101
+ ret = record_stream(*args, **kwargs)
102
+ torch.cuda.synchronize()
103
+ return ret
104
+
105
+ torch.Tensor.record_stream = _func
106
+
107
+
108
+ def patch_npu_diffusers_get_1d_rotary_pos_embed():
109
+ from typing import Union
110
+ import numpy as np
111
+ import diffusers
112
+
113
+ def __get_1d_rotary_pos_embed(
114
+ dim: int,
115
+ pos: Union[np.ndarray, int],
116
+ theta: float = 10000.0,
117
+ use_real=False,
118
+ linear_factor=1.0,
119
+ ntk_factor=1.0,
120
+ repeat_interleave_real=True,
121
+ freqs_dtype=torch.float32, # torch.float32, torch.float64 (flux)
122
+ ):
123
+ assert dim % 2 == 0
124
+
125
+ if isinstance(pos, int):
126
+ pos = torch.arange(pos)
127
+ if isinstance(pos, np.ndarray):
128
+ pos = torch.from_numpy(pos) # type: ignore # [S]
129
+
130
+ theta = theta * ntk_factor
131
+ freqs = (
132
+ 1.0
133
+ / (
134
+ theta
135
+ ** (
136
+ torch.arange(0, dim, 2, dtype=freqs_dtype, device=pos.device)[
137
+ : (dim // 2)
138
+ ]
139
+ / dim
140
+ )
141
+ )
142
+ / linear_factor
143
+ ) # [D/2]
144
+ freqs = torch.outer(pos, freqs) # type: ignore # [S, D/2]
145
+ if use_real and repeat_interleave_real:
146
+ # flux, hunyuan-dit, cogvideox
147
+ freqs_cos = (
148
+ freqs.cos().float().repeat_interleave(2, dim=1).float()
149
+ ) # [S, D]
150
+ freqs_sin = (
151
+ freqs.sin().float().repeat_interleave(2, dim=1).float()
152
+ ) # [S, D]
153
+ return freqs_cos, freqs_sin
154
+ elif use_real:
155
+ # stable audio
156
+ freqs_cos = torch.cat([freqs.cos(), freqs.cos()], dim=-1).float() # [S, D]
157
+ freqs_sin = torch.cat([freqs.sin(), freqs.sin()], dim=-1).float() # [S, D]
158
+ return freqs_cos, freqs_sin
159
+ else:
160
+ # lumina
161
+ freqs_cis = torch.polar(
162
+ torch.ones_like(freqs), freqs
163
+ ) # complex64 # [S, D/2]
164
+ return freqs_cis
165
+
166
+ diffusers.models.embeddings.get_1d_rotary_pos_embed = __get_1d_rotary_pos_embed
utils/vprocess.py ADDED
@@ -0,0 +1,568 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import base64
2
+ import copy
3
+ import logging
4
+ import math
5
+ import os
6
+ import sys
7
+ import time
8
+ import warnings
9
+ from functools import lru_cache
10
+ from io import BytesIO
11
+ from typing import Optional, Union, Tuple, List, Any, Dict
12
+ from concurrent.futures import ThreadPoolExecutor
13
+
14
+ import requests
15
+ import torch
16
+ import torchvision
17
+ from packaging import version
18
+ from PIL import Image
19
+ import numpy as np
20
+ from torchvision import io, transforms
21
+ from torchvision.transforms import InterpolationMode
22
+
23
+ PREFERRED_KONTEXT_RESOLUTIONS = [
24
+ (672, 1568),
25
+ (688, 1504),
26
+ (720, 1456),
27
+ (752, 1392),
28
+ (800, 1328),
29
+ (832, 1248),
30
+ (880, 1184),
31
+ (944, 1104),
32
+ (1024, 1024),
33
+ (1104, 944),
34
+ (1184, 880),
35
+ (1248, 832),
36
+ (1328, 800),
37
+ (1392, 752),
38
+ (1456, 720),
39
+ (1504, 688),
40
+ (1568, 672),
41
+ ]
42
+
43
+ def resizeinput(img):
44
+ multiple_of = 16
45
+ image_height, image_width = img.height, img.width
46
+ aspect_ratio = image_width / image_height
47
+ _, image_width, image_height = min(
48
+ (abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS
49
+ )
50
+ image_width = image_width // multiple_of * multiple_of
51
+ image_height = image_height // multiple_of * multiple_of
52
+ img = img.resize((image_width, image_height), Image.LANCZOS)
53
+ return img
54
+
55
+
56
+ MAX_RATIO = 200
57
+ SPATIAL_MERGE_SIZE = 2
58
+ IMAGE_MIN_TOKEN_NUM = 4
59
+ IMAGE_MAX_TOKEN_NUM = 16384
60
+ VIDEO_MIN_TOKEN_NUM = 128
61
+ VIDEO_MAX_TOKEN_NUM = 768
62
+
63
+ FPS = 2.0
64
+ FRAME_FACTOR = 2
65
+ FPS_MIN_FRAMES = 4
66
+ FPS_MAX_FRAMES = 768
67
+ MAX_NUM_WORKERS_FETCH_VIDEO = 8
68
+
69
+ MODEL_SEQ_LEN = int(float(os.environ.get('MODEL_SEQ_LEN', 128000)))
70
+ logger = logging.getLogger(__name__)
71
+
72
+
73
+ def round_by_factor(number: int, factor: int) -> int:
74
+ """Returns the closest integer to 'number' that is divisible by 'factor'."""
75
+ return round(number / factor) * factor
76
+
77
+
78
+ def ceil_by_factor(number: int, factor: int) -> int:
79
+ """Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
80
+ return math.ceil(number / factor) * factor
81
+
82
+
83
+ def floor_by_factor(number: int, factor: int) -> int:
84
+ """Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
85
+ return math.floor(number / factor) * factor
86
+
87
+
88
+ def smart_resize(height: int, width: int, factor: int, min_pixels: Optional[int] = None, max_pixels: Optional[int] = None) -> Tuple[int, int]:
89
+ """
90
+ Rescales the image so that the following conditions are met:
91
+
92
+ 1. Both dimensions (height and width) are divisible by 'factor'.
93
+ 2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
94
+ 3. The aspect ratio of the image is maintained as closely as possible.
95
+ """
96
+ max_pixels = max_pixels if max_pixels is not None else (IMAGE_MAX_TOKEN_NUM * factor ** 2)
97
+ min_pixels = min_pixels if min_pixels is not None else (IMAGE_MIN_TOKEN_NUM * factor ** 2)
98
+ assert max_pixels >= min_pixels, "The max_pixels of image must be greater than or equal to min_pixels."
99
+ if max(height, width) / min(height, width) > MAX_RATIO:
100
+ raise ValueError(
101
+ f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)}"
102
+ )
103
+ h_bar = max(factor, round_by_factor(height, factor))
104
+ w_bar = max(factor, round_by_factor(width, factor))
105
+ if h_bar * w_bar > max_pixels:
106
+ beta = math.sqrt((height * width) / max_pixels)
107
+ h_bar = floor_by_factor(height / beta, factor)
108
+ w_bar = floor_by_factor(width / beta, factor)
109
+ elif h_bar * w_bar < min_pixels:
110
+ beta = math.sqrt(min_pixels / (height * width))
111
+ h_bar = ceil_by_factor(height * beta, factor)
112
+ w_bar = ceil_by_factor(width * beta, factor)
113
+ return h_bar, w_bar
114
+
115
+
116
+ def to_rgb(pil_image: Image.Image) -> Image.Image:
117
+ if pil_image.mode == 'RGBA':
118
+ white_background = Image.new("RGB", pil_image.size, (255, 255, 255))
119
+ white_background.paste(pil_image, mask=pil_image.split()[3]) # Use alpha channel as mask
120
+ return white_background
121
+ else:
122
+ return pil_image.convert("RGB")
123
+
124
+
125
+ def fetch_image(ele: Dict[str, Union[str, Image.Image]], image_patch_size: int = 14) -> Image.Image:
126
+ if "image" in ele:
127
+ image = ele["image"]
128
+ else:
129
+ image = ele["image_url"]
130
+
131
+ image_obj = None
132
+ patch_factor = int(image_patch_size * SPATIAL_MERGE_SIZE)
133
+ if isinstance(image, Image.Image):
134
+ image_obj = image
135
+ elif image.startswith("http://") or image.startswith("https://"):
136
+ with requests.get(image, stream=True) as response:
137
+ response.raise_for_status()
138
+ with BytesIO(response.content) as bio:
139
+ image_obj = copy.deepcopy(Image.open(bio))
140
+ elif image.startswith("file://"):
141
+ image_obj = Image.open(image[7:])
142
+ elif image.startswith("data:image"):
143
+ if "base64," in image:
144
+ _, base64_data = image.split("base64,", 1)
145
+ data = base64.b64decode(base64_data)
146
+ with BytesIO(data) as bio:
147
+ image_obj = copy.deepcopy(Image.open(bio))
148
+ else:
149
+ image_obj = Image.open(image)
150
+ if image_obj is None:
151
+ raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}")
152
+ image = to_rgb(image_obj)
153
+
154
+ ## resize
155
+ image = resizeinput(image)
156
+ # if "resized_height" in ele and "resized_width" in ele:
157
+ # resized_height, resized_width = smart_resize(
158
+ # ele["resized_height"],
159
+ # ele["resized_width"],
160
+ # factor=patch_factor,
161
+ # )
162
+ # else:
163
+ # width, height = image.size
164
+ # min_pixels = ele.get("min_pixels", IMAGE_MIN_TOKEN_NUM * patch_factor ** 2)
165
+ # max_pixels = ele.get("max_pixels", IMAGE_MAX_TOKEN_NUM * patch_factor ** 2)
166
+ # resized_height, resized_width = smart_resize(
167
+ # height,
168
+ # width,
169
+ # factor=patch_factor,
170
+ # min_pixels=min_pixels,
171
+ # max_pixels=max_pixels,
172
+ # )
173
+ # print(f"resized_height: {resized_height}, resized_width: {resized_width}")
174
+ # image = image.resize((resized_width, resized_height))
175
+ return image
176
+
177
+
178
+ def smart_nframes(
179
+ ele: Dict[str, Any],
180
+ total_frames: int,
181
+ video_fps: Union[int, float],
182
+ ) -> int:
183
+ """calculate the number of frames for video used for model inputs.
184
+
185
+ Args:
186
+ ele (dict): a dict contains the configuration of video.
187
+ support either `fps` or `nframes`:
188
+ - nframes: the number of frames to extract for model inputs.
189
+ - fps: the fps to extract frames for model inputs.
190
+ - min_frames: the minimum number of frames of the video, only used when fps is provided.
191
+ - max_frames: the maximum number of frames of the video, only used when fps is provided.
192
+ total_frames (int): the original total number of frames of the video.
193
+ video_fps (int | float): the original fps of the video.
194
+
195
+ Raises:
196
+ ValueError: nframes should in interval [FRAME_FACTOR, total_frames].
197
+
198
+ Returns:
199
+ int: the number of frames for video used for model inputs.
200
+ """
201
+ assert not ("fps" in ele and "nframes" in ele), "Only accept either `fps` or `nframes`"
202
+ if "nframes" in ele:
203
+ nframes = round_by_factor(ele["nframes"], FRAME_FACTOR)
204
+ else:
205
+ fps = ele.get("fps", FPS)
206
+ min_frames = ceil_by_factor(ele.get("min_frames", FPS_MIN_FRAMES), FRAME_FACTOR)
207
+ max_frames = floor_by_factor(ele.get("max_frames", min(FPS_MAX_FRAMES, total_frames)), FRAME_FACTOR)
208
+ nframes = total_frames / video_fps * fps
209
+ if nframes > total_frames:
210
+ logger.warning(f"smart_nframes: nframes[{nframes}] > total_frames[{total_frames}]")
211
+ nframes = min(min(max(nframes, min_frames), max_frames), total_frames)
212
+ nframes = floor_by_factor(nframes, FRAME_FACTOR)
213
+ if not (FRAME_FACTOR <= nframes and nframes <= total_frames):
214
+ raise ValueError(f"nframes should in interval [{FRAME_FACTOR}, {total_frames}], but got {nframes}.")
215
+ return nframes
216
+
217
+
218
+ def _read_video_torchvision(
219
+ ele: Dict[str, Any],
220
+ ) -> Tuple[torch.Tensor, float]:
221
+ """read video using torchvision.io.read_video
222
+
223
+ Args:
224
+ ele (dict): a dict contains the configuration of video.
225
+ support keys:
226
+ - video: the path of video. support "file://", "http://", "https://" and local path.
227
+ - video_start: the start time of video.
228
+ - video_end: the end time of video.
229
+ Returns:
230
+ torch.Tensor: the video tensor with shape (T, C, H, W).
231
+ """
232
+ video_path = ele["video"]
233
+ if version.parse(torchvision.__version__) < version.parse("0.19.0"):
234
+ if "http://" in video_path or "https://" in video_path:
235
+ warnings.warn("torchvision < 0.19.0 does not support http/https video path, please upgrade to 0.19.0.")
236
+ if "file://" in video_path:
237
+ video_path = video_path[7:]
238
+ st = time.time()
239
+ video, audio, info = io.read_video(
240
+ video_path,
241
+ start_pts=ele.get("video_start", 0.0),
242
+ end_pts=ele.get("video_end", None),
243
+ pts_unit="sec",
244
+ output_format="TCHW",
245
+ )
246
+ total_frames, video_fps = video.size(0), info["video_fps"]
247
+ logger.info(f"torchvision: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s")
248
+ nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps)
249
+ idx = torch.linspace(0, total_frames - 1, nframes).round().long()
250
+ sample_fps = nframes / max(total_frames, 1e-6) * video_fps
251
+ video = video[idx]
252
+
253
+ video_metadata = dict(
254
+ fps=video_fps,
255
+ frames_indices=idx,
256
+ total_num_frames=total_frames,
257
+ video_backend="torchvision",
258
+ )
259
+ return video, video_metadata, sample_fps
260
+
261
+
262
+ def is_decord_available() -> bool:
263
+ import importlib.util
264
+
265
+ return importlib.util.find_spec("decord") is not None
266
+
267
+
268
+ def calculate_video_frame_range(
269
+ ele: Dict[str, Any],
270
+ total_frames: int,
271
+ video_fps: float,
272
+ ) -> Tuple[int, int, int]:
273
+ """
274
+ Calculate the start and end frame indices based on the given time range.
275
+
276
+ Args:
277
+ ele (dict): A dictionary containing optional 'video_start' and 'video_end' keys (in seconds).
278
+ total_frames (int): Total number of frames in the video.
279
+ video_fps (float): Frames per second of the video.
280
+
281
+ Returns:
282
+ tuple: A tuple containing (start_frame, end_frame, frame_count).
283
+
284
+ Raises:
285
+ ValueError: If input parameters are invalid or the time range is inconsistent.
286
+ """
287
+ # Validate essential parameters
288
+ if video_fps <= 0:
289
+ raise ValueError("video_fps must be a positive number")
290
+ if total_frames <= 0:
291
+ raise ValueError("total_frames must be a positive integer")
292
+
293
+ # Get start and end time in seconds
294
+ video_start = ele.get("video_start", None)
295
+ video_end = ele.get("video_end", None)
296
+ if video_start is None and video_end is None:
297
+ return 0, total_frames - 1, total_frames
298
+
299
+ max_duration = total_frames / video_fps
300
+ # Process start frame
301
+ if video_start is not None:
302
+ video_start_clamped = max(0.0, min(video_start, max_duration))
303
+ start_frame = math.ceil(video_start_clamped * video_fps)
304
+ else:
305
+ start_frame = 0
306
+ # Process end frame
307
+ if video_end is not None:
308
+ video_end_clamped = max(0.0, min(video_end, max_duration))
309
+ end_frame = math.floor(video_end_clamped * video_fps)
310
+ end_frame = min(end_frame, total_frames - 1)
311
+ else:
312
+ end_frame = total_frames - 1
313
+
314
+ # Validate frame order
315
+ if start_frame >= end_frame:
316
+ raise ValueError(
317
+ f"Invalid time range: Start frame {start_frame} (at {video_start_clamped if video_start is not None else 0}s) "
318
+ f"exceeds end frame {end_frame} (at {video_end_clamped if video_end is not None else max_duration}s). "
319
+ f"Video duration: {max_duration:.2f}s ({total_frames} frames @ {video_fps}fps)"
320
+ )
321
+
322
+ logger.info(f"calculate video frame range: {start_frame=}, {end_frame=}, {total_frames=} from {video_start=}, {video_end=}, {video_fps=:.3f}")
323
+ return start_frame, end_frame, end_frame - start_frame + 1
324
+
325
+
326
+ def _read_video_decord(
327
+ ele: Dict[str, Any],
328
+ ) -> Tuple[torch.Tensor, float]:
329
+ """read video using decord.VideoReader
330
+
331
+ Args:
332
+ ele (dict): a dict contains the configuration of video.
333
+ support keys:
334
+ - video: the path of video. support "file://", "http://", "https://" and local path.
335
+ - video_start: the start time of video.
336
+ - video_end: the end time of video.
337
+ Returns:
338
+ torch.Tensor: the video tensor with shape (T, C, H, W).
339
+ """
340
+ import decord
341
+ video_path = ele["video"]
342
+ st = time.time()
343
+ vr = decord.VideoReader(video_path)
344
+ total_frames, video_fps = len(vr), vr.get_avg_fps()
345
+ start_frame, end_frame, total_frames = calculate_video_frame_range(
346
+ ele,
347
+ total_frames,
348
+ video_fps,
349
+ )
350
+ nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps)
351
+ idx = torch.linspace(start_frame, end_frame, nframes).round().long().tolist()
352
+ video = vr.get_batch(idx).asnumpy()
353
+ video = torch.tensor(video).permute(0, 3, 1, 2) # Convert to TCHW format
354
+ logger.info(f"decord: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s")
355
+ sample_fps = nframes / max(total_frames, 1e-6) * video_fps
356
+
357
+ video_metadata = dict(
358
+ fps=video_fps,
359
+ frames_indices=idx,
360
+ total_num_frames=total_frames,
361
+ video_backend="decord",
362
+ )
363
+ return video, video_metadata, sample_fps
364
+
365
+
366
+ def is_torchcodec_available() -> bool:
367
+ import importlib.util
368
+
369
+ return importlib.util.find_spec("torchcodec") is not None
370
+
371
+
372
+ def _read_video_torchcodec(
373
+ ele: Dict[str, Any],
374
+ ) -> Tuple[torch.Tensor, float]:
375
+ """read video using torchcodec.decoders.VideoDecoder
376
+
377
+ Args:
378
+ ele (dict): a dict contains the configuration of video.
379
+ support keys:
380
+ - video: the path of video. support "file://", "http://", "https://" and local path.
381
+ - video_start: the start time of video.
382
+ - video_end: the end time of video.
383
+ Returns:
384
+ torch.Tensor: the video tensor with shape (T, C, H, W).
385
+ """
386
+ from torchcodec.decoders import VideoDecoder
387
+ TORCHCODEC_NUM_THREADS = int(os.environ.get('TORCHCODEC_NUM_THREADS', 8))
388
+ logger.info(f"set TORCHCODEC_NUM_THREADS: {TORCHCODEC_NUM_THREADS}")
389
+ video_path = ele["video"]
390
+ st = time.time()
391
+ decoder = VideoDecoder(video_path, num_ffmpeg_threads=TORCHCODEC_NUM_THREADS)
392
+ video_fps = decoder.metadata.average_fps
393
+ total_frames = decoder.metadata.num_frames
394
+ start_frame, end_frame, total_frames = calculate_video_frame_range(
395
+ ele,
396
+ total_frames,
397
+ video_fps,
398
+ )
399
+ nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps)
400
+ idx = torch.linspace(start_frame, end_frame, nframes).round().long().tolist()
401
+ sample_fps = nframes / max(total_frames, 1e-6) * video_fps
402
+ video = decoder.get_frames_at(indices=idx).data
403
+ logger.info(f"torchcodec: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s")
404
+
405
+ video_metadata = dict(
406
+ fps=video_fps,
407
+ frames_indices=idx,
408
+ total_num_frames=total_frames,
409
+ video_backend="torchcodec",
410
+ )
411
+ return video, video_metadata, sample_fps
412
+
413
+
414
+ VIDEO_READER_BACKENDS = {
415
+ "decord": _read_video_decord,
416
+ "torchvision": _read_video_torchvision,
417
+ "torchcodec": _read_video_torchcodec,
418
+ }
419
+
420
+ FORCE_QWENVL_VIDEO_READER = os.getenv("FORCE_QWENVL_VIDEO_READER", None)
421
+
422
+
423
+ @lru_cache(maxsize=1)
424
+ def get_video_reader_backend() -> str:
425
+ if FORCE_QWENVL_VIDEO_READER is not None:
426
+ video_reader_backend = FORCE_QWENVL_VIDEO_READER
427
+ elif is_torchcodec_available():
428
+ video_reader_backend = "torchcodec"
429
+ elif is_decord_available():
430
+ video_reader_backend = "decord"
431
+ else:
432
+ video_reader_backend = "torchvision"
433
+ print(f"qwen-vl-utils using {video_reader_backend} to read video.", file=sys.stderr)
434
+ return video_reader_backend
435
+
436
+
437
+ def fetch_video(ele: Dict[str, Any], image_patch_size: int = 14, return_video_sample_fps: bool = False,
438
+ return_video_metadata: bool = False) -> Union[torch.Tensor, List[Image.Image]]:
439
+ image_factor = image_patch_size * SPATIAL_MERGE_SIZE
440
+ VIDEO_FRAME_MIN_PIXELS = VIDEO_MIN_TOKEN_NUM * image_factor * image_factor
441
+ VIDEO_FRAME_MAX_PIXELS = VIDEO_MAX_TOKEN_NUM * image_factor * image_factor
442
+ if isinstance(ele["video"], str):
443
+ video_reader_backend = get_video_reader_backend()
444
+ try:
445
+ video, video_metadata, sample_fps = VIDEO_READER_BACKENDS[video_reader_backend](ele)
446
+ except Exception as e:
447
+ logger.warning(f"video_reader_backend {video_reader_backend} error, use torchvision as default, msg: {e}")
448
+ video, video_metadata, sample_fps = VIDEO_READER_BACKENDS["torchvision"](ele)
449
+ else:
450
+ # The input is a list of frames
451
+ assert isinstance(ele["video"], (list, tuple))
452
+ process_info = ele.copy()
453
+ process_info.pop("type", None)
454
+ process_info.pop("video", None)
455
+ # use ThreadPoolExecutor to parallel process frames
456
+ max_workers = min(MAX_NUM_WORKERS_FETCH_VIDEO, len(ele["video"]))
457
+ with ThreadPoolExecutor(max_workers=max_workers) as executor:
458
+ futures = [
459
+ executor.submit(fetch_image, {"image": video_element, **process_info}, image_factor)
460
+ for video_element in ele["video"]
461
+ ]
462
+ image_list = [future.result() for future in futures]
463
+
464
+ nframes = ceil_by_factor(len(image_list), FRAME_FACTOR)
465
+ if len(image_list) < nframes:
466
+ image_list.extend([image_list[-1]] * (nframes - len(image_list)))
467
+
468
+ sample_fps = ele.get("sample_fps", 2.0)
469
+ video = torch.stack([
470
+ torch.from_numpy(np.array(image).transpose(2, 0, 1))
471
+ for image in image_list
472
+ ])
473
+
474
+ # fake video metadata
475
+ raw_fps = process_info.pop("raw_fps", sample_fps)
476
+ video_metadata = dict(
477
+ fps=raw_fps,
478
+ frames_indices=[i for i in range(len(video))],
479
+ total_num_frames=(nframes / sample_fps) * raw_fps,
480
+ )
481
+
482
+ nframes, _, height, width = video.shape
483
+ min_pixels = ele.get("min_pixels", VIDEO_FRAME_MIN_PIXELS)
484
+ total_pixels = ele.get("total_pixels", MODEL_SEQ_LEN * image_factor * image_factor * 0.9)
485
+ max_pixels = max(min(VIDEO_FRAME_MAX_PIXELS, total_pixels / nframes * FRAME_FACTOR), int(min_pixels * 1.05))
486
+ max_pixels_supposed = ele.get("max_pixels", max_pixels)
487
+ if max_pixels_supposed > max_pixels:
488
+ logger.warning(f"The given max_pixels[{max_pixels_supposed}] exceeds limit[{max_pixels}].")
489
+ max_pixels = min(max_pixels_supposed, max_pixels)
490
+ if "resized_height" in ele and "resized_width" in ele:
491
+ resized_height, resized_width = smart_resize(
492
+ ele["resized_height"],
493
+ ele["resized_width"],
494
+ factor=image_factor,
495
+ )
496
+ else:
497
+ resized_height, resized_width = smart_resize(
498
+ height,
499
+ width,
500
+ factor=image_factor,
501
+ min_pixels=min_pixels,
502
+ max_pixels=max_pixels,
503
+ )
504
+ video = transforms.functional.resize(
505
+ video,
506
+ [resized_height, resized_width],
507
+ interpolation=InterpolationMode.BICUBIC,
508
+ antialias=True,
509
+ ).float()
510
+
511
+ final_video = (video, video_metadata) if return_video_metadata else video
512
+ if return_video_sample_fps:
513
+ return final_video, sample_fps
514
+ return final_video
515
+
516
+
517
+ def extract_vision_info(conversations: Union[List[Dict[str, Any]], List[List[Dict[str, Any]]]]) -> List[Dict[str, Any]]:
518
+ vision_infos = []
519
+ if isinstance(conversations[0], dict):
520
+ conversations = [conversations]
521
+ for conversation in conversations:
522
+ for message in conversation:
523
+ if isinstance(message["content"], list):
524
+ for ele in message["content"]:
525
+ if (
526
+ "image" in ele
527
+ or "image_url" in ele
528
+ or "video" in ele
529
+ or ele.get("type", "text") in ("image", "image_url", "video")
530
+ ):
531
+ vision_infos.append(ele)
532
+ return vision_infos
533
+
534
+
535
+ def process_vision_info(
536
+ conversations: Union[List[Dict[str, Any]], List[List[Dict[str, Any]]]],
537
+ return_video_kwargs: bool = False,
538
+ return_video_metadata: bool = False,
539
+ image_patch_size: int = 14,
540
+ ) -> Tuple[Optional[List[Image.Image]], Optional[List[Union[torch.Tensor, List[Image.Image]]]], Optional[Dict[str, Any]]]:
541
+
542
+ vision_infos = extract_vision_info(conversations)
543
+ ## Read images or videos
544
+ image_inputs = []
545
+ video_inputs = []
546
+ video_sample_fps_list = []
547
+ for vision_info in vision_infos:
548
+ if "image" in vision_info or "image_url" in vision_info:
549
+ image_inputs.append(fetch_image(vision_info, image_patch_size=image_patch_size))
550
+ elif "video" in vision_info:
551
+ video_input, video_sample_fps = fetch_video(vision_info, return_video_sample_fps=True,
552
+ image_patch_size=image_patch_size, return_video_metadata=return_video_metadata)
553
+ video_sample_fps_list.append(video_sample_fps)
554
+ video_inputs.append(video_input)
555
+ else:
556
+ raise ValueError("image, image_url or video should in content.")
557
+ if len(image_inputs) == 0:
558
+ image_inputs = None
559
+ if len(video_inputs) == 0:
560
+ video_inputs = None
561
+
562
+ video_kwargs = {'do_sample_frames': False}
563
+ if not return_video_metadata: # BC for qwen2.5vl
564
+ video_kwargs.update({'fps': video_sample_fps_list})
565
+
566
+ if return_video_kwargs:
567
+ return image_inputs, video_inputs, video_kwargs
568
+ return image_inputs, video_inputs
web_edit.py ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from dreamomni2.pipeline_dreamomni2 import DreamOmni2Pipeline
3
+ from diffusers.utils import load_image
4
+ from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
5
+ # from qwen_vl_utils import process_vision_info
6
+ from utils.vprocess import process_vision_info, resizeinput
7
+ import os
8
+ import re
9
+ from PIL import Image
10
+ import gradio as gr
11
+ import uuid
12
+ import argparse
13
+
14
+ def parse_args():
15
+ """Parses command-line arguments for model paths and server configuration."""
16
+ parser = argparse.ArgumentParser(description="Launch DreamOmni2 Editing Gradio Demo.")
17
+ parser.add_argument(
18
+ "--vlm_path",
19
+ type=str,
20
+ default="vlm-model",
21
+ help="Path to the Qwen2_5_VL VLM model directory."
22
+ )
23
+ parser.add_argument(
24
+ "--edit_lora_path",
25
+ type=str,
26
+ default="edit_lora",
27
+ help="Path to the FLUX.1-Kontext editing LoRA weights directory."
28
+ )
29
+ parser.add_argument(
30
+ "--server_name",
31
+ type=str,
32
+ default="0.0.0.0",
33
+ help="The server name (IP address) to host the Gradio demo."
34
+ )
35
+ parser.add_argument(
36
+ "--server_port",
37
+ type=int,
38
+ default=7860,
39
+ help="The port number to host the Gradio demo."
40
+ )
41
+ args = parser.parse_args()
42
+ return args
43
+
44
+ ARGS = parse_args()
45
+ vlm_path = ARGS.vlm_path
46
+ edit_lora_path = ARGS.edit_lora_path
47
+ server_name = ARGS.server_name
48
+ server_port = ARGS.server_port
49
+ device = "cuda"
50
+
51
+ def extract_gen_content(text):
52
+ text = text[6:-7]
53
+ return text
54
+
55
+ print(f"Loading models from vlm_path: {vlm_path}, edit_lora_path: {edit_lora_path}")
56
+
57
+ pipe = DreamOmni2Pipeline.from_pretrained(
58
+ "black-forest-labs/FLUX.1-Kontext-dev",
59
+ torch_dtype=torch.bfloat16
60
+ )
61
+ pipe.to(device)
62
+ pipe.load_lora_weights(edit_lora_path, adapter_name="edit")
63
+ pipe.set_adapters(["edit"], adapter_weights=[1])
64
+
65
+ vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
66
+ vlm_path,
67
+ torch_dtype="bfloat16",
68
+ device_map="cuda"
69
+ )
70
+ processor = AutoProcessor.from_pretrained(vlm_path)
71
+
72
+
73
+ def infer_vlm(input_img_path, input_instruction, prefix):
74
+ if not vlm_model or not processor:
75
+ raise gr.Error("VLM Model not loaded. Cannot process prompt.")
76
+ tp = []
77
+ for path in input_img_path:
78
+ tp.append({"type": "image", "image": path})
79
+ tp.append({"type": "text", "text": input_instruction + prefix})
80
+ messages = [{"role": "user", "content": tp}]
81
+
82
+ text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
83
+ image_inputs, video_inputs = process_vision_info(messages)
84
+ inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt")
85
+ inputs = inputs.to("cuda")
86
+
87
+ generated_ids = vlm_model.generate(**inputs, do_sample=False, max_new_tokens=4096)
88
+ generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
89
+ output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)
90
+ return output_text[0]
91
+
92
+ PREFERRED_KONTEXT_RESOLUTIONS = [
93
+ (672, 1568),
94
+ (688, 1504),
95
+ (720, 1456),
96
+ (752, 1392),
97
+ (800, 1328),
98
+ (832, 1248),
99
+ (880, 1184),
100
+ (944, 1104),
101
+ (1024, 1024),
102
+ (1104, 944),
103
+ (1184, 880),
104
+ (1248, 832),
105
+ (1328, 800),
106
+ (1392, 752),
107
+ (1456, 720),
108
+ (1504, 688),
109
+ (1568, 672),
110
+ ]
111
+ def find_closest_resolution(width, height, preferred_resolutions):
112
+ input_ratio = width / height
113
+ closest_resolution = min(
114
+ preferred_resolutions,
115
+ key=lambda res: abs((res[0] / res[1]) - input_ratio)
116
+ )
117
+ return closest_resolution
118
+
119
+ def perform_edit(input_img_paths, input_instruction, output_path):
120
+ prefix = " It is editing task."
121
+ source_imgs = []
122
+ for path in input_img_paths:
123
+ img = load_image(path)
124
+ # source_imgs.append(img)
125
+ source_imgs.append(resizeinput(img))
126
+ prompt = infer_vlm(input_img_paths, input_instruction, prefix)
127
+ prompt = extract_gen_content(prompt)
128
+ print(f"Generated Prompt for VLM: {prompt}")
129
+
130
+ image = pipe(
131
+ images=source_imgs,
132
+ height=source_imgs[0].height,
133
+ width=source_imgs[0].width,
134
+ prompt=prompt,
135
+ num_inference_steps=30,
136
+ guidance_scale=3.5,
137
+ ).images[0]
138
+ image.save(output_path)
139
+ print(f"Edit result saved to {output_path}")
140
+
141
+
142
+ def process_request(image_file_1, image_file_2, instruction):
143
+ # debugpy.listen(5678)
144
+ # print("Waiting for debugger attach...")
145
+ # debugpy.wait_for_client()
146
+ if not image_file_1 or not image_file_2:
147
+ raise gr.Error("Please upload both images.")
148
+ if not instruction:
149
+ raise gr.Error("Please provide an instruction.")
150
+ if not pipe or not vlm_model:
151
+ raise gr.Error("Models not loaded. Check the console for errors.")
152
+
153
+ output_path = f"/tmp/{uuid.uuid4()}.png"
154
+ input_img_paths = [image_file_1, image_file_2] # List of file paths from the two gr.File inputs
155
+
156
+ perform_edit(input_img_paths, instruction, output_path)
157
+ return output_path
158
+
159
+
160
+ css = """
161
+ .text-center { text-align: center; }
162
+ .result-img img {
163
+ max-height: 60vh !important;
164
+ min-height: 30vh !important;
165
+ width: auto !important;
166
+ object-fit: contain;
167
+ }
168
+ .input-img img {
169
+ max-height: 30vh !important;
170
+ width: auto !important;
171
+ object-fit: contain;
172
+ }
173
+ """
174
+
175
+
176
+ with gr.Blocks(theme=gr.themes.Soft(), title="DreamOmni2", css=css) as demo:
177
+ gr.HTML(
178
+ """
179
+ <h1 style="text-align:center; font-size:48px; font-weight:bold; margin-bottom:20px;">
180
+ DreamOmni2: Omni-purpose Image Generation and Editing
181
+ </h1>
182
+ """
183
+ )
184
+ gr.Markdown(
185
+ "Select a mode, upload two images, provide an instruction, and click 'Run'.",
186
+ elem_classes="text-center"
187
+ )
188
+ with gr.Row():
189
+ with gr.Column(scale=2):
190
+ gr.Markdown("⬆️ Upload images. Click or drag to upload.")
191
+
192
+ with gr.Row():
193
+ image_uploader_1 = gr.Image(
194
+ label="Img 1",
195
+ type="filepath",
196
+ interactive=True,
197
+ elem_classes="input-img",
198
+ )
199
+ image_uploader_2 = gr.Image(
200
+ label="Img 2",
201
+ type="filepath",
202
+ interactive=True,
203
+ elem_classes="input-img",
204
+ )
205
+
206
+ instruction_text = gr.Textbox(
207
+ label="Instruction",
208
+ lines=2,
209
+ placeholder="Input your instruction for generation or editing here...",
210
+ )
211
+ run_button = gr.Button("Run", variant="primary")
212
+
213
+ with gr.Column(scale=2):
214
+ gr.Markdown(
215
+ "✏️ **Editing Mode**: Modify an existing image using instructions and references.\n\n"
216
+ "Tip: If the result is not what you expect, try clicking **Run** again. "
217
+ )
218
+ output_image = gr.Image(
219
+ label="Result",
220
+ type="filepath",
221
+ elem_classes="result-img",
222
+ )
223
+
224
+ # --- Examples (不变) ---
225
+ gr.Markdown("## Examples")
226
+
227
+ gr.Examples(
228
+ label="Editing Examples",
229
+ examples=[
230
+ ["example_input/edit_tests/4/ref_0.jpg", "example_input/edit_tests/4/ref_1.jpg", "Replace the first image have the same image style as the second image.","example_input/edit_tests/4/res.jpg"],
231
+ ["example_input/edit_tests/5/ref_0.jpg", "example_input/edit_tests/5/ref_1.jpg", "Make the person in the first image have the same hairstyle as the person in the second image.","example_input/edit_tests/5/res.jpg"],
232
+ ["example_input/edit_tests/src.jpg", "example_input/edit_tests/ref.jpg", "Make the woman from the second image stand on the road in the first image.","example_input/edit_tests/edi_res.png"],
233
+ ["example_input/edit_tests/1/ref_0.jpg", "example_input/edit_tests/1/ref_1.jpg", "Replace the lantern in the first image with the dog in the second image.","example_input/edit_tests/1/res.jpg"],
234
+ ["example_input/edit_tests/2/ref_0.jpg", "example_input/edit_tests/2/ref_1.jpg", "Replace the suit in the first image with the clothes in the second image.","example_input/edit_tests/2/res.jpg"],
235
+ ["example_input/edit_tests/3/ref_0.jpg", "example_input/edit_tests/3/ref_1.jpg", "Make the first image has the same light condition as the second image.","example_input/edit_tests/3/res.jpg"],
236
+ ["example_input/edit_tests/6/ref_0.jpg", "example_input/edit_tests/6/ref_1.jpg", "Make the words in the first image have the same font as the words in the second image.","example_input/edit_tests/6/res.jpg"],
237
+ ["example_input/edit_tests/7/ref_0.jpg", "example_input/edit_tests/7/ref_1.jpg", "Make the car in the first image have the same pattern as the mouse in the second image.","example_input/edit_tests/7/res.jpg"],
238
+ ["example_input/edit_tests/8/ref_0.jpg", "example_input/edit_tests/8/ref_1.jpg", "Make the dress in the first image have the same pattern in the second image.","example_input/edit_tests/8/res.jpg"],
239
+ ],
240
+ inputs=[image_uploader_1, image_uploader_2, instruction_text, output_image],
241
+ cache_examples=False,
242
+ )
243
+
244
+ run_button.click(
245
+ fn=process_request,
246
+ inputs=[image_uploader_1, image_uploader_2, instruction_text],
247
+ outputs=output_image
248
+ )
249
+
250
+ if __name__ == "__main__":
251
+ print("Launching Gradio Demo...")
252
+ demo.launch(server_name=server_name, server_port=server_port)
web_generate.py ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from dreamomni2.pipeline_dreamomni2 import DreamOmni2Pipeline
3
+ from diffusers.utils import load_image
4
+ from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
5
+ # from qwen_vl_utils import process_vision_info
6
+ from utils.vprocess import process_vision_info, resizeinput
7
+ import os
8
+ import re
9
+ from PIL import Image
10
+ import gradio as gr
11
+ import uuid
12
+ import argparse
13
+
14
+ def parse_args():
15
+ """Parses command-line arguments for model paths and server configuration."""
16
+ parser = argparse.ArgumentParser(description="Launch DreamOmni2 Editing Gradio Demo.")
17
+ parser.add_argument(
18
+ "--vlm_path",
19
+ type=str,
20
+ default="vlm-model",
21
+ help="Path to the Qwen2_5_VL VLM model directory."
22
+ )
23
+ parser.add_argument(
24
+ "--gen_lora_path",
25
+ type=str,
26
+ default="gen_lora",
27
+ help="Path to the FLUX.1-Kontext generation LoRA weights directory."
28
+ )
29
+ parser.add_argument(
30
+ "--server_name",
31
+ type=str,
32
+ default="0.0.0.0",
33
+ help="The server name (IP address) to host the Gradio demo."
34
+ )
35
+ parser.add_argument(
36
+ "--server_port",
37
+ type=int,
38
+ default=7860,
39
+ help="The port number to host the Gradio demo."
40
+ )
41
+ args = parser.parse_args()
42
+ return args
43
+
44
+ ARGS = parse_args()
45
+ vlm_path = ARGS.vlm_path
46
+ gen_lora_path = ARGS.gen_lora_path
47
+ server_name = ARGS.server_name
48
+ server_port = ARGS.server_port
49
+ device = "cuda"
50
+
51
+ def extract_gen_content(text):
52
+ text = text[6:-7]
53
+ return text
54
+
55
+ print(f"Loading models from vlm_path: {vlm_path}, gen_lora_path: {gen_lora_path}")
56
+
57
+ pipe = DreamOmni2Pipeline.from_pretrained(
58
+ "black-forest-labs/FLUX.1-Kontext-dev",
59
+ torch_dtype=torch.bfloat16
60
+ )
61
+ pipe.to(device)
62
+ pipe.load_lora_weights(gen_lora_path, adapter_name="generation")
63
+ pipe.set_adapters(["generation"], adapter_weights=[1])
64
+
65
+ vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
66
+ vlm_path,
67
+ torch_dtype="bfloat16",
68
+ device_map="cuda"
69
+ )
70
+ processor = AutoProcessor.from_pretrained(vlm_path)
71
+
72
+
73
+ def infer_vlm(input_img_path, input_instruction, prefix):
74
+ if not vlm_model or not processor:
75
+ raise gr.Error("VLM Model not loaded. Cannot process prompt.")
76
+ tp = []
77
+ for path in input_img_path:
78
+ tp.append({"type": "image", "image": path})
79
+ tp.append({"type": "text", "text": input_instruction + prefix})
80
+ messages = [{"role": "user", "content": tp}]
81
+
82
+ text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
83
+ image_inputs, video_inputs = process_vision_info(messages)
84
+ inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt")
85
+ inputs = inputs.to("cuda")
86
+
87
+ generated_ids = vlm_model.generate(**inputs, do_sample=False, max_new_tokens=4096)
88
+ generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
89
+ output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)
90
+ return output_text[0]
91
+
92
+
93
+ PREFERRED_KONTEXT_RESOLUTIONS = [
94
+ (672, 1568),
95
+ (688, 1504),
96
+ (720, 1456),
97
+ (752, 1392),
98
+ (800, 1328),
99
+ (832, 1248),
100
+ (880, 1184),
101
+ (944, 1104),
102
+ (1024, 1024),
103
+ (1104, 944),
104
+ (1184, 880),
105
+ (1248, 832),
106
+ (1328, 800),
107
+ (1392, 752),
108
+ (1456, 720),
109
+ (1504, 688),
110
+ (1568, 672),
111
+ ]
112
+ def find_closest_resolution(width, height, preferred_resolutions):
113
+ input_ratio = width / height
114
+ closest_resolution = min(
115
+ preferred_resolutions,
116
+ key=lambda res: abs((res[0] / res[1]) - input_ratio)
117
+ )
118
+ return closest_resolution
119
+
120
+ def perform_generation(input_img_paths, input_instruction, output_path, height=1024, width=1024):
121
+ prefix = " It is generation task."
122
+ source_imgs = []
123
+ for path in input_img_paths:
124
+ img = load_image(path)
125
+ # source_imgs.append(img)
126
+ source_imgs.append(resizeinput(img))
127
+ prompt = infer_vlm(input_img_paths, input_instruction, prefix)
128
+ prompt = extract_gen_content(prompt)
129
+ print(f"Generated Prompt for VLM: {prompt}")
130
+
131
+ image = pipe(
132
+ images=source_imgs,
133
+ height=height,
134
+ width=width,
135
+ prompt=prompt,
136
+ num_inference_steps=30,
137
+ guidance_scale=3.5,
138
+ ).images[0]
139
+
140
+ image.save(output_path)
141
+ print(f"Generation result saved to {output_path}")
142
+
143
+ # --- Gradio Interface Logic ---
144
+
145
+ def process_request(image_file_1, image_file_2, instruction):
146
+ # debugpy.listen(5678)
147
+ # print("Waiting for debugger attach...")
148
+ # debugpy.wait_for_client()
149
+ if not image_file_1 or not image_file_2:
150
+ raise gr.Error("Please upload both images.")
151
+ if not instruction:
152
+ raise gr.Error("Please provide an instruction.")
153
+ if not pipe or not vlm_model:
154
+ raise gr.Error("Models not loaded. Check the console for errors.")
155
+
156
+ output_path = f"/tmp/{uuid.uuid4()}.png"
157
+ input_img_paths = [image_file_1, image_file_2] # List of file paths from the two gr.File inputs
158
+
159
+ perform_generation(input_img_paths, instruction, output_path)
160
+
161
+ return output_path
162
+
163
+
164
+ css = """
165
+ .text-center { text-align: center; }
166
+ .result-img img {
167
+ max-height: 60vh !important;
168
+ min-height: 30vh !important;
169
+ width: auto !important;
170
+ object-fit: contain;
171
+ }
172
+ .input-img img {
173
+ max-height: 30vh !important;
174
+ width: auto !important;
175
+ object-fit: contain;
176
+ }
177
+ """
178
+
179
+
180
+ with gr.Blocks(theme=gr.themes.Soft(), title="DreamOmni2", css=css) as demo:
181
+ gr.HTML(
182
+ """
183
+ <h1 style="text-align:center; font-size:48px; font-weight:bold; margin-bottom:20px;">
184
+ DreamOmni2: Omni-purpose Image Generation and Editing
185
+ </h1>
186
+ """
187
+ )
188
+ gr.Markdown(
189
+ "Select a mode, upload two images, provide an instruction, and click 'Run'.",
190
+ elem_classes="text-center"
191
+ )
192
+ with gr.Row():
193
+ with gr.Column(scale=2):
194
+ gr.Markdown("⬆️ Upload images. Click or drag to upload.")
195
+
196
+ with gr.Row():
197
+ image_uploader_1 = gr.Image(
198
+ label="Img 1",
199
+ type="filepath",
200
+ interactive=True,
201
+ elem_classes="input-img",
202
+ )
203
+ image_uploader_2 = gr.Image(
204
+ label="Img 2",
205
+ type="filepath",
206
+ interactive=True,
207
+ elem_classes="input-img",
208
+ )
209
+
210
+ instruction_text = gr.Textbox(
211
+ label="Instruction",
212
+ lines=2,
213
+ placeholder="Input your instruction for generation or editing here...",
214
+ )
215
+ run_button = gr.Button("Run", variant="primary")
216
+
217
+ with gr.Column(scale=2):
218
+ gr.Markdown("🖼️ **Generation Mode**: Create new scenes from reference images."
219
+ "Tip: If the result is not what you expect, try clicking **Run** again. ")
220
+ output_image = gr.Image(
221
+ label="Result",
222
+ type="filepath",
223
+ elem_classes="result-img",
224
+ )
225
+
226
+ # --- Examples ---
227
+ gr.Markdown("## Examples")
228
+ gr.Examples(
229
+ label="Generation Examples",
230
+ examples=[
231
+ [
232
+ "example_input/gen_tests/img1.jpg",
233
+ "example_input/gen_tests/img2.jpg",
234
+ "In the scene, the character from the first image stands on the left, and the character from the second image stands on the right. They are shaking hands against the backdrop of a spaceship interior.",
235
+ "example_input/gen_tests/gen_res.png"
236
+ ]
237
+ ],
238
+ inputs=[image_uploader_1, image_uploader_2, instruction_text, output_image],
239
+ cache_examples=False,
240
+ )
241
+
242
+ run_button.click(
243
+ fn=process_request,
244
+ inputs=[image_uploader_1, image_uploader_2, instruction_text],
245
+ outputs=output_image
246
+ )
247
+
248
+ if __name__ == "__main__":
249
+
250
+ print("Launching Gradio Demo...")
251
+ demo.launch(server_name="0.0.0.0", server_port=7861, )