Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import cv2 | |
| import os | |
| import torch | |
| from einops import rearrange | |
| class HEDNetwork(torch.nn.Module): | |
| def __init__(self, model_path): | |
| super().__init__() | |
| self.netVggOne = torch.nn.Sequential( | |
| torch.nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1), | |
| torch.nn.ReLU(inplace=False), | |
| torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1), | |
| torch.nn.ReLU(inplace=False) | |
| ) | |
| self.netVggTwo = torch.nn.Sequential( | |
| torch.nn.MaxPool2d(kernel_size=2, stride=2), | |
| torch.nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1), | |
| torch.nn.ReLU(inplace=False), | |
| torch.nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1), | |
| torch.nn.ReLU(inplace=False) | |
| ) | |
| self.netVggThr = torch.nn.Sequential( | |
| torch.nn.MaxPool2d(kernel_size=2, stride=2), | |
| torch.nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1), | |
| torch.nn.ReLU(inplace=False), | |
| torch.nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1), | |
| torch.nn.ReLU(inplace=False), | |
| torch.nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1), | |
| torch.nn.ReLU(inplace=False) | |
| ) | |
| self.netVggFou = torch.nn.Sequential( | |
| torch.nn.MaxPool2d(kernel_size=2, stride=2), | |
| torch.nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=1), | |
| torch.nn.ReLU(inplace=False), | |
| torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1), | |
| torch.nn.ReLU(inplace=False), | |
| torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1), | |
| torch.nn.ReLU(inplace=False) | |
| ) | |
| self.netVggFiv = torch.nn.Sequential( | |
| torch.nn.MaxPool2d(kernel_size=2, stride=2), | |
| torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1), | |
| torch.nn.ReLU(inplace=False), | |
| torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1), | |
| torch.nn.ReLU(inplace=False), | |
| torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1), | |
| torch.nn.ReLU(inplace=False) | |
| ) | |
| self.netScoreOne = torch.nn.Conv2d(in_channels=64, out_channels=1, kernel_size=1, stride=1, padding=0) | |
| self.netScoreTwo = torch.nn.Conv2d(in_channels=128, out_channels=1, kernel_size=1, stride=1, padding=0) | |
| self.netScoreThr = torch.nn.Conv2d(in_channels=256, out_channels=1, kernel_size=1, stride=1, padding=0) | |
| self.netScoreFou = torch.nn.Conv2d(in_channels=512, out_channels=1, kernel_size=1, stride=1, padding=0) | |
| self.netScoreFiv = torch.nn.Conv2d(in_channels=512, out_channels=1, kernel_size=1, stride=1, padding=0) | |
| self.netCombine = torch.nn.Sequential( | |
| torch.nn.Conv2d(in_channels=5, out_channels=1, kernel_size=1, stride=1, padding=0), | |
| torch.nn.Sigmoid() | |
| ) | |
| self.load_state_dict({strKey.replace('module', 'net'): tenWeight for strKey, tenWeight in torch.load(model_path).items()}) | |
| def forward(self, tenInput): | |
| tenInput = tenInput * 255.0 | |
| tenInput = tenInput - torch.tensor(data=[104.00698793, 116.66876762, 122.67891434], dtype=tenInput.dtype, device=tenInput.device).view(1, 3, 1, 1) | |
| tenVggOne = self.netVggOne(tenInput) | |
| tenVggTwo = self.netVggTwo(tenVggOne) | |
| tenVggThr = self.netVggThr(tenVggTwo) | |
| tenVggFou = self.netVggFou(tenVggThr) | |
| tenVggFiv = self.netVggFiv(tenVggFou) | |
| tenScoreOne = self.netScoreOne(tenVggOne) | |
| tenScoreTwo = self.netScoreTwo(tenVggTwo) | |
| tenScoreThr = self.netScoreThr(tenVggThr) | |
| tenScoreFou = self.netScoreFou(tenVggFou) | |
| tenScoreFiv = self.netScoreFiv(tenVggFiv) | |
| tenScoreOne = torch.nn.functional.interpolate(input=tenScoreOne, size=(tenInput.shape[2], tenInput.shape[3]), mode='bilinear', align_corners=False) | |
| tenScoreTwo = torch.nn.functional.interpolate(input=tenScoreTwo, size=(tenInput.shape[2], tenInput.shape[3]), mode='bilinear', align_corners=False) | |
| tenScoreThr = torch.nn.functional.interpolate(input=tenScoreThr, size=(tenInput.shape[2], tenInput.shape[3]), mode='bilinear', align_corners=False) | |
| tenScoreFou = torch.nn.functional.interpolate(input=tenScoreFou, size=(tenInput.shape[2], tenInput.shape[3]), mode='bilinear', align_corners=False) | |
| tenScoreFiv = torch.nn.functional.interpolate(input=tenScoreFiv, size=(tenInput.shape[2], tenInput.shape[3]), mode='bilinear', align_corners=False) | |
| return self.netCombine(torch.cat([ tenScoreOne, tenScoreTwo, tenScoreThr, tenScoreFou, tenScoreFiv ], 1)) | |
| class HEDdetector: | |
| def __init__(self, network ): | |
| self.netNetwork = network | |
| def __call__(self, input_image): | |
| if isinstance(input_image, torch.Tensor): | |
| # 输入的就是 b c h w的tensor 范围是-1~1,需要转换为0~1 | |
| input_image = (input_image + 1) / 2 | |
| input_image = input_image.float().cuda() | |
| edge = self.netNetwork(input_image) # 范围也是0~1, 不用转了直接用 | |
| return edge | |
| else: | |
| assert input_image.ndim == 3 | |
| input_image = input_image[:, :, ::-1].copy() | |
| with torch.no_grad(): | |
| image_hed = torch.from_numpy(input_image).float().cuda() | |
| image_hed = image_hed / 255.0 | |
| image_hed = rearrange(image_hed, 'h w c -> 1 c h w') | |
| edge = self.netNetwork(image_hed)[0] | |
| edge = (edge.cpu().numpy() * 255.0).clip(0, 255).astype(np.uint8) | |
| return edge[0] | |
| def nms(x, t, s): | |
| x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s) | |
| f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) | |
| f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) | |
| f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) | |
| f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) | |
| y = np.zeros_like(x) | |
| for f in [f1, f2, f3, f4]: | |
| np.putmask(y, cv2.dilate(x, kernel=f) == x, x) | |
| z = np.zeros_like(y, dtype=np.uint8) | |
| z[y > t] = 255 | |
| return z | |