Spaces:
Runtime error
Runtime error
| # Copyright 2023 Bytedance Ltd. and/or its affiliates | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| import glob | |
| import json | |
| from dataclasses import dataclass | |
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| import torch.nn as nn | |
| import torch.utils.checkpoint | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from diffusers.utils import BaseOutput, logging | |
| from diffusers.models.embeddings import TimestepEmbedding, Timesteps | |
| from .unet_3d_blocks import ( | |
| CrossAttnDownBlockPseudo3D, | |
| CrossAttnUpBlockPseudo3D, | |
| DownBlockPseudo3D, | |
| UNetMidBlockPseudo3DCrossAttn, | |
| UpBlockPseudo3D, | |
| get_down_block, | |
| get_up_block, | |
| ) | |
| from .resnet import PseudoConv3d | |
| from diffusers.models.cross_attention import AttnProcessor | |
| from typing import Dict | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class UNetPseudo3DConditionOutput(BaseOutput): | |
| sample: torch.FloatTensor | |
| class UNetPseudo3DConditionModel(ModelMixin, ConfigMixin): | |
| """ | |
| 这里把原来2D Unet的 2D卷积全换成新定义的PseudoConv3d。并且定义了从2D卷积继承的模型参数。 | |
| """ | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| sample_size: Optional[int] = None, | |
| in_channels: int = 4, | |
| out_channels: int = 4, | |
| center_input_sample: bool = False, | |
| flip_sin_to_cos: bool = True, | |
| freq_shift: int = 0, | |
| down_block_types: Tuple[str] = ( | |
| "CrossAttnDownBlockPseudo3D", | |
| "CrossAttnDownBlockPseudo3D", | |
| "CrossAttnDownBlockPseudo3D", | |
| "DownBlockPseudo3D", | |
| ), | |
| mid_block_type: str = "UNetMidBlockPseudo3DCrossAttn", | |
| up_block_types: Tuple[str] = ( | |
| "UpBlockPseudo3D", | |
| "CrossAttnUpBlockPseudo3D", | |
| "CrossAttnUpBlockPseudo3D", | |
| "CrossAttnUpBlockPseudo3D", | |
| ), | |
| only_cross_attention: Union[bool, Tuple[bool]] = False, | |
| block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
| layers_per_block: int = 2, | |
| downsample_padding: int = 1, | |
| mid_block_scale_factor: float = 1, | |
| act_fn: str = "silu", | |
| norm_num_groups: int = 32, | |
| norm_eps: float = 1e-5, | |
| cross_attention_dim: int = 1280, | |
| attention_head_dim: Union[int, Tuple[int]] = 8, | |
| dual_cross_attention: bool = False, | |
| use_linear_projection: bool = False, | |
| fps_embed_type: Optional[str] = None, | |
| num_fps_embeds: Optional[int] = None, | |
| upcast_attention: bool = False, | |
| resnet_time_scale_shift: str = "default", | |
| num_class_embeds=None, | |
| ): | |
| super().__init__() | |
| self.sample_size = sample_size | |
| time_embed_dim = block_out_channels[0] * 4 | |
| # input | |
| self.conv_in = PseudoConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)) | |
| # time | |
| self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) | |
| timestep_input_dim = block_out_channels[0] | |
| self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) | |
| # class embedding | |
| if fps_embed_type is None and num_fps_embeds is not None: | |
| self.fps_embedding = nn.Embedding(num_fps_embeds, time_embed_dim) | |
| elif fps_embed_type == "timestep": | |
| self.fps_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) | |
| elif fps_embed_type == "identity": | |
| self.fps_embedding = nn.Identity(time_embed_dim, time_embed_dim) | |
| else: | |
| self.fps_embedding = None | |
| self.down_blocks = nn.ModuleList([]) | |
| self.mid_block = None | |
| self.up_blocks = nn.ModuleList([]) | |
| if isinstance(only_cross_attention, bool): | |
| only_cross_attention = [only_cross_attention] * len(down_block_types) | |
| if isinstance(attention_head_dim, int): | |
| attention_head_dim = (attention_head_dim,) * len(down_block_types) | |
| # down | |
| output_channel = block_out_channels[0] | |
| for i, down_block_type in enumerate(down_block_types): | |
| input_channel = output_channel | |
| output_channel = block_out_channels[i] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| down_block = get_down_block( | |
| down_block_type, | |
| num_layers=layers_per_block, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| temb_channels=time_embed_dim, | |
| add_downsample=not is_final_block, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| cross_attention_dim=cross_attention_dim, | |
| attn_num_head_channels=attention_head_dim[i], | |
| downsample_padding=downsample_padding, | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention[i], | |
| upcast_attention=upcast_attention, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| ) | |
| self.down_blocks.append(down_block) | |
| # mid | |
| if mid_block_type == "UNetMidBlockPseudo3DCrossAttn": | |
| self.mid_block = UNetMidBlockPseudo3DCrossAttn( | |
| in_channels=block_out_channels[-1], | |
| temb_channels=time_embed_dim, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| output_scale_factor=mid_block_scale_factor, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| cross_attention_dim=cross_attention_dim, | |
| attn_num_head_channels=attention_head_dim[-1], | |
| resnet_groups=norm_num_groups, | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| upcast_attention=upcast_attention, | |
| ) | |
| else: | |
| raise ValueError(f"unknown mid_block_type : {mid_block_type}") | |
| # count how many layers upsample the images | |
| self.num_upsamplers = 0 | |
| # up | |
| reversed_block_out_channels = list(reversed(block_out_channels)) | |
| reversed_attention_head_dim = list(reversed(attention_head_dim)) | |
| only_cross_attention = list(reversed(only_cross_attention)) | |
| output_channel = reversed_block_out_channels[0] | |
| for i, up_block_type in enumerate(up_block_types): | |
| is_final_block = i == len(block_out_channels) - 1 | |
| prev_output_channel = output_channel | |
| output_channel = reversed_block_out_channels[i] | |
| input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] | |
| # add upsample block for all BUT final layer | |
| if not is_final_block: | |
| add_upsample = True | |
| self.num_upsamplers += 1 | |
| else: | |
| add_upsample = False | |
| up_block = get_up_block( | |
| up_block_type, | |
| num_layers=layers_per_block + 1, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| prev_output_channel=prev_output_channel, | |
| temb_channels=time_embed_dim, | |
| add_upsample=add_upsample, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| cross_attention_dim=cross_attention_dim, | |
| attn_num_head_channels=reversed_attention_head_dim[i], | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention[i], | |
| upcast_attention=upcast_attention, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| ) | |
| self.up_blocks.append(up_block) | |
| prev_output_channel = output_channel | |
| # out | |
| self.conv_norm_out = nn.GroupNorm( | |
| num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps | |
| ) | |
| self.conv_act = nn.SiLU() | |
| self.conv_out = PseudoConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1) | |
| def attn_processors(self) -> Dict[str, AttnProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttnProcessor]): | |
| if hasattr(module, "set_processor"): | |
| processors[f"{name}.processor"] = module.processor | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| def set_attn_processor(self, processor: Union[AttnProcessor, Dict[str, AttnProcessor]]): | |
| r""" | |
| Parameters: | |
| `processor (`dict` of `AttnProcessor` or `AttnProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
| of **all** `CrossAttention` layers. | |
| In case `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainablae attention processors.: | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
| f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor) | |
| else: | |
| module.set_processor(processor.pop(f"{name}.processor")) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| def set_attention_slice(self, slice_size): | |
| r""" | |
| Enable sliced attention computation. | |
| When this option is enabled, the attention module will split the input tensor in slices, to compute attention | |
| in several steps. This is useful to save some memory in exchange for a small speed decrease. | |
| Args: | |
| slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): | |
| When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If | |
| `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is | |
| provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` | |
| must be a multiple of `slice_size`. | |
| """ | |
| sliceable_head_dims = [] | |
| def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module): | |
| if hasattr(module, "set_attention_slice"): | |
| sliceable_head_dims.append(module.sliceable_head_dim) | |
| for child in module.children(): | |
| fn_recursive_retrieve_slicable_dims(child) | |
| # retrieve number of attention layers | |
| for module in self.children(): | |
| fn_recursive_retrieve_slicable_dims(module) | |
| num_slicable_layers = len(sliceable_head_dims) | |
| if slice_size == "auto": | |
| # half the attention head size is usually a good trade-off between | |
| # speed and memory | |
| slice_size = [dim // 2 for dim in sliceable_head_dims] | |
| elif slice_size == "max": | |
| # make smallest slice possible | |
| slice_size = num_slicable_layers * [1] | |
| slice_size = ( | |
| num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size | |
| ) | |
| if len(slice_size) != len(sliceable_head_dims): | |
| raise ValueError( | |
| f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" | |
| f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." | |
| ) | |
| for i in range(len(slice_size)): | |
| size = slice_size[i] | |
| dim = sliceable_head_dims[i] | |
| if size is not None and size > dim: | |
| raise ValueError(f"size {size} has to be smaller or equal to {dim}.") | |
| # Recursively walk through all the children. | |
| # Any children which exposes the set_attention_slice method | |
| # gets the message | |
| def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): | |
| if hasattr(module, "set_attention_slice"): | |
| module.set_attention_slice(slice_size.pop()) | |
| for child in module.children(): | |
| fn_recursive_set_attention_slice(child, slice_size) | |
| reversed_slice_size = list(reversed(slice_size)) | |
| for module in self.children(): | |
| fn_recursive_set_attention_slice(module, reversed_slice_size) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if isinstance( | |
| module, | |
| (CrossAttnDownBlockPseudo3D, DownBlockPseudo3D, CrossAttnUpBlockPseudo3D, UpBlockPseudo3D), | |
| ): | |
| module.gradient_checkpointing = value | |
| def forward( | |
| self, | |
| sample: torch.FloatTensor, | |
| timestep: Union[torch.Tensor, float, int], | |
| encoder_hidden_states: torch.Tensor, | |
| fps_labels: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| cross_attention_kwargs=None, | |
| down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, | |
| mid_block_additional_residual: Optional[torch.Tensor] = None, | |
| return_dict: bool = True, | |
| ) -> Union[UNetPseudo3DConditionOutput, Tuple]: | |
| # By default samples have to be AT least a multiple of the overall upsampling factor. | |
| # The overall upsampling factor is equal to 2 ** (# num of upsampling layears). | |
| # However, the upsampling interpolation output size can be forced to fit any upsampling size | |
| # on the fly if necessary. | |
| default_overall_up_factor = 2**self.num_upsamplers | |
| # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` | |
| forward_upsample_size = False | |
| upsample_size = None | |
| if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): | |
| logger.info("Forward upsample size to force interpolation output size.") | |
| forward_upsample_size = True | |
| # prepare attention_mask | |
| if attention_mask is not None: | |
| attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
| attention_mask = attention_mask.unsqueeze(1) | |
| # 0. center input if necessary | |
| if self.config.center_input_sample: | |
| sample = 2 * sample - 1.0 | |
| # 1. time | |
| timesteps = timestep | |
| if not torch.is_tensor(timesteps): | |
| # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
| # This would be a good case for the `match` statement (Python 3.10+) | |
| is_mps = sample.device.type == "mps" | |
| if isinstance(timestep, float): | |
| dtype = torch.float32 if is_mps else torch.float64 | |
| else: | |
| dtype = torch.int32 if is_mps else torch.int64 | |
| timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
| elif len(timesteps.shape) == 0: | |
| timesteps = timesteps[None].to(sample.device) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timesteps = timesteps.expand(sample.shape[0]) | |
| t_emb = self.time_proj(timesteps) | |
| # timesteps does not contain any weights and will always return f32 tensors | |
| # but time_embedding might actually be running in fp16. so we need to cast here. | |
| # there might be better ways to encapsulate this. | |
| t_emb = t_emb.to(dtype=self.dtype) | |
| emb = self.time_embedding(t_emb) | |
| if self.fps_embedding is not None: | |
| if fps_labels is None: | |
| raise ValueError("fps_labels should be provided when num_fps_embeds > 0") | |
| if self.config.fps_embed_type == "timestep": | |
| fps_labels = self.time_proj(fps_labels) # 和timesteps共用,都是sin embedding?这里的weight不更新的。 | |
| # 这里和上面timesteps does not contain any weights and will always return f32 tensors的bug一样。需要先cast过去,不然多机多卡就有问题了。 | |
| fps_labels = fps_labels.to(dtype=self.dtype) | |
| class_emb = self.fps_embedding(fps_labels) | |
| emb = emb + class_emb | |
| # 2. pre-process | |
| sample = self.conv_in(sample) | |
| # 3. down | |
| down_block_res_samples = (sample,) | |
| for downsample_block in self.down_blocks: | |
| if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
| sample, res_samples = downsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| ) | |
| else: | |
| sample, res_samples = downsample_block(hidden_states=sample, temb=emb) | |
| down_block_res_samples += res_samples | |
| if down_block_additional_residuals is not None: | |
| new_down_block_res_samples = () | |
| for down_block_res_sample, down_block_additional_residual in zip( | |
| down_block_res_samples, down_block_additional_residuals | |
| ): | |
| down_block_res_sample = down_block_res_sample + down_block_additional_residual | |
| new_down_block_res_samples += (down_block_res_sample,) | |
| down_block_res_samples = new_down_block_res_samples | |
| # 4. mid | |
| sample = self.mid_block( | |
| sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask | |
| ) | |
| if mid_block_additional_residual is not None: | |
| sample = sample + mid_block_additional_residual | |
| # 5. up | |
| for i, upsample_block in enumerate(self.up_blocks): | |
| is_final_block = i == len(self.up_blocks) - 1 | |
| res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
| down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
| # if we have not reached the final block and need to forward the | |
| # upsample size, we do it here | |
| if not is_final_block and forward_upsample_size: | |
| upsample_size = down_block_res_samples[-1].shape[2:] | |
| if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: | |
| sample = upsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| res_hidden_states_tuple=res_samples, | |
| encoder_hidden_states=encoder_hidden_states, | |
| upsample_size=upsample_size, | |
| attention_mask=attention_mask, | |
| ) | |
| else: | |
| sample = upsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| res_hidden_states_tuple=res_samples, | |
| upsample_size=upsample_size, | |
| ) | |
| # 6. post-process | |
| sample = self.conv_norm_out(sample) | |
| sample = self.conv_act(sample) | |
| sample = self.conv_out(sample) | |
| if not return_dict: | |
| return (sample,) | |
| return UNetPseudo3DConditionOutput(sample=sample) | |
| def from_2d_model(cls, model_path, condition_on_fps=False): | |
| ''' | |
| load a 2d model and convert it to a pseudo 3d model | |
| ''' | |
| config_path = os.path.join(model_path, "config.json") | |
| if not os.path.isfile(config_path): | |
| raise RuntimeError(f"{config_path} does not exist") | |
| with open(config_path, "r") as f: | |
| config = json.load(f) | |
| config.pop("_class_name") | |
| config.pop("_diffusers_version") | |
| block_replacer = { | |
| "CrossAttnDownBlock2D": "CrossAttnDownBlockPseudo3D", | |
| "DownBlock2D": "DownBlockPseudo3D", | |
| "UpBlock2D": "UpBlockPseudo3D", | |
| "CrossAttnUpBlock2D": "CrossAttnUpBlockPseudo3D", | |
| } | |
| def convert_2d_to_3d_block(block): | |
| return block_replacer[block] if block in block_replacer else block | |
| config["down_block_types"] = [ | |
| convert_2d_to_3d_block(block) for block in config["down_block_types"] | |
| ] | |
| config["up_block_types"] = [convert_2d_to_3d_block(block) for block in config["up_block_types"]] | |
| if condition_on_fps: | |
| # config["num_fps_embeds"] = 60 # 这个在 trainable embeding时候才需要~ | |
| config["fps_embed_type"] = "timestep" # 和timestep保持一致的type。 | |
| model = cls(**config) # 调用自身(init), 传入config参数全换成3d的setting | |
| state_dict_path_condidates = glob.glob(os.path.join(model_path, "*.bin")) | |
| if state_dict_path_condidates: | |
| state_dict = torch.load(state_dict_path_condidates[0], map_location="cpu") | |
| model.load_2d_state_dict(state_dict=state_dict) | |
| return model | |
| def load_2d_state_dict(self, state_dict, **kwargs): | |
| ''' | |
| 2D 部分的参数名完全不变。 | |
| ''' | |
| state_dict_3d = self.state_dict() | |
| for k, v in state_dict.items(): | |
| if k not in state_dict_3d: | |
| raise KeyError(f"2d state_dict key {k} does not exist in 3d model") | |
| elif v.shape != state_dict_3d[k].shape: | |
| raise ValueError(f"state_dict shape mismatch, 2d {v.shape}, 3d {state_dict_3d[k].shape}") | |
| for k, v in state_dict_3d.items(): | |
| if "_temporal" in k: | |
| continue | |
| if "gamma" in k: | |
| continue | |
| if k not in state_dict: | |
| if "fps_embedding" in k: | |
| # 忽略检查fps_embedding | |
| continue | |
| raise KeyError(f"3d state_dict key {k} does not exist in 2d model") | |
| state_dict_3d.update(state_dict) | |
| self.load_state_dict(state_dict_3d, **kwargs) | |