Spaces:
Running
on
Zero
Running
on
Zero
| import glob | |
| import os | |
| import numpy as np | |
| import cv2 | |
| from pathlib import Path | |
| import torch | |
| import torch.nn as nn | |
| import torchvision.transforms as T | |
| import argparse | |
| from PIL import Image | |
| import yaml | |
| import inspect | |
| from tqdm import tqdm | |
| from transformers import logging | |
| from diffusers import DDIMScheduler, StableDiffusionPipeline | |
| from tokenflow_utils import * | |
| from utils import save_video, seed_everything | |
| # suppress partial model loading warning | |
| logging.set_verbosity_error() | |
| VAE_BATCH_SIZE = 10 | |
| class TokenFlow(nn.Module): | |
| def __init__(self, config, | |
| pipe, | |
| frames = None, | |
| inverted_latents = None, #X0,...,XT, | |
| zs = None): | |
| super().__init__() | |
| self.config = config | |
| self.device = config["device"] | |
| sd_version = config["sd_version"] | |
| self.sd_version = sd_version | |
| if sd_version == '2.1': | |
| model_key = "stabilityai/stable-diffusion-2-1-base" | |
| elif sd_version == '2.0': | |
| model_key = "stabilityai/stable-diffusion-2-base" | |
| elif sd_version == '1.5': | |
| model_key = "runwayml/stable-diffusion-v1-5" | |
| elif sd_version == 'depth': | |
| model_key = "stabilityai/stable-diffusion-2-depth" | |
| else: | |
| raise ValueError(f'Stable-diffusion version {sd_version} not supported.') | |
| # Create SD models | |
| print('Loading SD model') | |
| # pipe = StableDiffusionPipeline.from_pretrained(model_key, torch_dtype=torch.float16).to("cuda") | |
| # pipe.enable_xformers_memory_efficient_attention() | |
| self.vae = pipe.vae | |
| self.tokenizer = pipe.tokenizer | |
| self.text_encoder = pipe.text_encoder | |
| self.unet = pipe.unet | |
| self.scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler") | |
| self.scheduler.set_timesteps(config["n_timesteps"], device=self.device) | |
| print('SD model loaded') | |
| # data | |
| self.inversion = config['inversion'] | |
| if self.inversion == 'ddpm': | |
| self.skip_steps = config['skip_steps'] | |
| self.eta = 1.0 | |
| else: | |
| self.eta = 0.0 | |
| self.extra_step_kwargs = self.prepare_extra_step_kwargs(self.eta) | |
| # data | |
| self.frames, self.inverted_latents, self.zs = frames, inverted_latents, zs | |
| self.latents_path = self.get_latents_path() | |
| # load frames | |
| self.paths, self.frames, self.latents, self.eps = self.get_data() | |
| if self.sd_version == 'depth': | |
| self.depth_maps = self.prepare_depth_maps() | |
| self.text_embeds = self.get_text_embeds(config["prompt"], config["negative_prompt"]) | |
| # pnp_inversion_prompt = self.get_pnp_inversion_prompt() | |
| self.pnp_guidance_embeds = self.get_text_embeds(config["pnp_inversion_prompt"], config["pnp_inversion_prompt"]).chunk(2)[0] | |
| def prepare_depth_maps(self, model_type='DPT_Large', device='cuda'): | |
| depth_maps = [] | |
| midas = torch.hub.load("intel-isl/MiDaS", model_type) | |
| midas.to(device) | |
| midas.eval() | |
| midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms") | |
| if model_type == "DPT_Large" or model_type == "DPT_Hybrid": | |
| transform = midas_transforms.dpt_transform | |
| else: | |
| transform = midas_transforms.small_transform | |
| for i in range(len(self.paths)): | |
| img = cv2.imread(self.paths[i]) | |
| img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
| latent_h = img.shape[0] // 8 | |
| latent_w = img.shape[1] // 8 | |
| input_batch = transform(img).to(device) | |
| prediction = midas(input_batch) | |
| depth_map = torch.nn.functional.interpolate( | |
| prediction.unsqueeze(1), | |
| size=(latent_h, latent_w), | |
| mode="bicubic", | |
| align_corners=False, | |
| ) | |
| depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True) | |
| depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True) | |
| depth_map = 2.0 * (depth_map - depth_min) / (depth_max - depth_min) - 1.0 | |
| depth_maps.append(depth_map) | |
| return torch.cat(depth_maps).to(torch.float16).to(self.device) | |
| def get_pnp_inversion_prompt(self): | |
| inv_prompts_path = os.path.join(str(Path(self.latents_path).parent), 'inversion_prompt.txt') | |
| # read inversion prompt | |
| with open(inv_prompts_path, 'r') as f: | |
| inv_prompt = f.read() | |
| return inv_prompt | |
| def get_latents_path(self): | |
| read_from_files = self.frames is None | |
| if read_from_files: | |
| latents_path = os.path.join(self.config["latents_path"], f'sd_{self.config["sd_version"]}', | |
| Path(self.config["data_path"]).stem, f'steps_{self.config["n_inversion_steps"]}') | |
| latents_path = [x for x in glob.glob(f'{latents_path}/*') if '.' not in Path(x).name] | |
| n_frames = [int([x for x in latents_path[i].split('/') if 'nframes' in x][0].split('_')[1]) for i in range(len(latents_path))] | |
| latents_path = latents_path[np.argmax(n_frames)] | |
| self.config["n_frames"] = min(max(n_frames), self.config["n_frames"]) | |
| else: | |
| n_frames = self.frames.shape[0] | |
| self.config["n_frames"] = min(n_frames, self.config["n_frames"]) | |
| if self.config["n_frames"] % self.config["batch_size"] != 0: | |
| # make n_frames divisible by batch_size | |
| self.config["n_frames"] = self.config["n_frames"] - (self.config["n_frames"] % self.config["batch_size"]) | |
| if read_from_files: | |
| return os.path.join(latents_path, 'latents') | |
| else: | |
| return None | |
| def get_text_embeds(self, prompt, negative_prompt, batch_size=1): | |
| # Tokenize text and get embeddings | |
| text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, | |
| truncation=True, return_tensors='pt') | |
| text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0] | |
| # Do the same for unconditional embeddings | |
| uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length, | |
| return_tensors='pt') | |
| uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] | |
| # Cat for final embeddings | |
| text_embeddings = torch.cat([uncond_embeddings] * batch_size + [text_embeddings] * batch_size) | |
| return text_embeddings | |
| def encode_imgs(self, imgs, batch_size=VAE_BATCH_SIZE, deterministic=False): | |
| imgs = 2 * imgs - 1 | |
| latents = [] | |
| for i in range(0, len(imgs), batch_size): | |
| posterior = self.vae.encode(imgs[i:i + batch_size]).latent_dist | |
| latent = posterior.mean if deterministic else posterior.sample() | |
| latents.append(latent * 0.18215) | |
| latents = torch.cat(latents) | |
| return latents | |
| def decode_latents(self, latents, batch_size=VAE_BATCH_SIZE): | |
| latents = 1 / 0.18215 * latents | |
| imgs = [] | |
| for i in range(0, len(latents), batch_size): | |
| imgs.append(self.vae.decode(latents[i:i + batch_size]).sample) | |
| imgs = torch.cat(imgs) | |
| imgs = (imgs / 2 + 0.5).clamp(0, 1) | |
| return imgs | |
| def get_data(self): | |
| read_from_files = self.frames is None | |
| # read_from_files = True | |
| if read_from_files: | |
| # load frames | |
| paths = [os.path.join(self.config["data_path"], "%05d.jpg" % idx) for idx in | |
| range(self.config["n_frames"])] | |
| if not os.path.exists(paths[0]): | |
| paths = [os.path.join(self.config["data_path"], "%05d.png" % idx) for idx in | |
| range(self.config["n_frames"])] | |
| frames = [Image.open(paths[idx]).convert('RGB') for idx in range(self.config["n_frames"])] | |
| if frames[0].size[0] == frames[0].size[1]: | |
| frames = [frame.resize((512, 512), resample=Image.Resampling.LANCZOS) for frame in frames] | |
| frames = torch.stack([T.ToTensor()(frame) for frame in frames]).to(torch.float16).to(self.device) | |
| save_video(frames, f'{self.config["output_path"]}/input_fps10.mp4', fps=10) | |
| save_video(frames, f'{self.config["output_path"]}/input_fps20.mp4', fps=20) | |
| save_video(frames, f'{self.config["output_path"]}/input_fps30.mp4', fps=30) | |
| else: | |
| frames = self.frames | |
| # encode to latents | |
| latents = self.encode_imgs(frames, deterministic=True).to(torch.float16).to(self.device) | |
| # get noise | |
| if self.inversion == 'ddim': | |
| eps = self.get_ddim_eps(latents, range(self.config["n_frames"])).to(torch.float16).to(self.device) | |
| elif self.inversion == 'ddpm': | |
| eps = self.get_ddpm_noise() | |
| else: | |
| raise NotImplementedError() | |
| if not read_from_files: | |
| return None, frames, latents, eps | |
| return paths, frames, latents, eps | |
| def get_ddim_eps(self, latent, indices): | |
| read_from_files = self.inverted_latents is None | |
| if read_from_files: | |
| noisest = max([int(x.split('_')[-1].split('.')[0]) for x in glob.glob(os.path.join(self.latents_path, f'noisy_latents_*.pt'))]) | |
| latents_path = os.path.join(self.latents_path, f'noisy_latents_{noisest}.pt') | |
| noisy_latent = torch.load(latents_path)[indices].to(self.device) | |
| else: | |
| noisest = max([int(key.split("_")[-1]) for key in self.inverted_latents.keys()]) | |
| noisy_latent = self.inverted_latents[f'noisy_latents_{noisest}'][indices] | |
| alpha_prod_T = self.scheduler.alphas_cumprod[noisest] | |
| mu_T, sigma_T = alpha_prod_T ** 0.5, (1 - alpha_prod_T) ** 0.5 | |
| eps = (noisy_latent - mu_T * latent) / sigma_T | |
| return eps | |
| def get_ddpm_noise(self): | |
| read_from_files = self.inverted_latents is None | |
| idx_to_t = {int(k): int(v) for k, v in enumerate(self.scheduler.timesteps)} | |
| t = idx_to_t[self.skip_steps] | |
| if read_from_files: | |
| x0_path = os.path.join(self.latents_path, f'noisy_latents_{t}.pt') | |
| zs_path = os.path.join(self.latents_path, f'noise_total.pt') | |
| x0 = torch.load(x0_path)[:self.config["n_frames"]].to(self.device) | |
| zs = torch.load(zs_path)[self.skip_steps:, :self.config["n_frames"]].to(self.device) | |
| else: | |
| x0 = self.inverted_latents[f'noisy_latents_{t}'][:self.config["n_frames"]].to(self.device) | |
| zs = self.zs[self.skip_steps:, :self.config["n_frames"]].to(self.device) | |
| return x0, zs | |
| def prepare_extra_step_kwargs(self, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| return extra_step_kwargs | |
| def denoise_step(self, x, t, indices, zs=None): | |
| # register the time step and features in pnp injection modules | |
| read_files = self.inverted_latents is None | |
| if read_files: | |
| source_latents = load_source_latents_t(t, self.latents_path)[indices] | |
| else: | |
| source_latents = self.inverted_latents[f'noisy_latents_{t}'][indices] | |
| latent_model_input = torch.cat([source_latents] + ([x] * 2)) | |
| if self.sd_version == 'depth': | |
| latent_model_input = torch.cat([latent_model_input, torch.cat([self.depth_maps[indices]] * 3)], dim=1) | |
| register_time(self, t.item()) | |
| # compute text embeddings | |
| text_embed_input = torch.cat([self.pnp_guidance_embeds.repeat(len(indices), 1, 1), | |
| torch.repeat_interleave(self.text_embeds, len(indices), dim=0)]) | |
| # apply the denoising network | |
| noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embed_input)['sample'] | |
| # perform guidance | |
| _, noise_pred_uncond, noise_pred_cond = noise_pred.chunk(3) | |
| noise_pred = noise_pred_uncond + self.config["guidance_scale"] * (noise_pred_cond - noise_pred_uncond) | |
| # compute the denoising step with the reference model | |
| denoised_latent = self.scheduler.step(noise_pred, t, x, variance_noise=zs, **self.extra_step_kwargs)[ | |
| 'prev_sample'] | |
| return denoised_latent | |
| def batched_denoise_step(self, x, t, indices, zs=None): | |
| batch_size = self.config["batch_size"] | |
| denoised_latents = [] | |
| pivotal_idx = torch.randint(batch_size, (len(x) // batch_size,)) + torch.arange(0, len(x), batch_size) | |
| register_pivotal(self, True) | |
| if zs is None: | |
| zs_input = None | |
| else: | |
| zs_input = zs[pivotal_idx] | |
| self.denoise_step(x[pivotal_idx], t, indices[pivotal_idx], zs_input) | |
| register_pivotal(self, False) | |
| for i, b in enumerate(range(0, len(x), batch_size)): | |
| register_batch_idx(self, i) | |
| if zs is None: | |
| zs_input = None | |
| else: | |
| zs_input = zs[b:b + batch_size] | |
| denoised_latents.append(self.denoise_step(x[b:b + batch_size], t, indices[b:b + batch_size] | |
| , zs_input)) | |
| denoised_latents = torch.cat(denoised_latents) | |
| return denoised_latents | |
| def init_method(self, conv_injection_t, qk_injection_t): | |
| self.qk_injection_timesteps = self.scheduler.timesteps[:qk_injection_t] if qk_injection_t >= 0 else [] | |
| self.conv_injection_timesteps = self.scheduler.timesteps[:conv_injection_t] if conv_injection_t >= 0 else [] | |
| register_extended_attention_pnp(self, self.qk_injection_timesteps) | |
| register_conv_injection(self, self.conv_injection_timesteps) | |
| set_tokenflow(self.unet) | |
| def save_vae_recon(self): | |
| os.makedirs(f'{self.config["output_path"]}/vae_recon', exist_ok=True) | |
| decoded = self.decode_latents(self.latents) | |
| for i in range(len(decoded)): | |
| T.ToPILImage()(decoded[i]).save(f'{self.config["output_path"]}/vae_recon/%05d.png' % i) | |
| save_video(decoded, f'{self.config["output_path"]}/vae_recon_10.mp4', fps=10) | |
| save_video(decoded, f'{self.config["output_path"]}/vae_recon_20.mp4', fps=20) | |
| save_video(decoded, f'{self.config["output_path"]}/vae_recon_30.mp4', fps=30) | |
| def edit_video(self): | |
| save_files = self.inverted_latents is None # if we're in the original non-demo setting | |
| if save_files: | |
| os.makedirs(f'{self.config["output_path"]}/img_ode', exist_ok=True) | |
| self.save_vae_recon() | |
| # self.save_vae_recon() | |
| pnp_f_t = int(self.config["n_timesteps"] * self.config["pnp_f_t"]) | |
| pnp_attn_t = int(self.config["n_timesteps"] * self.config["pnp_attn_t"]) | |
| self.init_method(conv_injection_t=pnp_f_t, qk_injection_t=pnp_attn_t) | |
| if self.inversion == 'ddim': | |
| noisy_latents = self.scheduler.add_noise(self.latents, self.eps, self.scheduler.timesteps[0]) | |
| elif self.inversion == 'ddpm': | |
| noisy_latents = self.eps[0] | |
| else: | |
| raise NotImplementedError() | |
| edited_frames = self.sample_loop(noisy_latents, torch.arange(self.config["n_frames"])) | |
| if save_files: | |
| save_video(edited_frames, f'{self.config["output_path"]}/tokenflow_PnP_fps_10.mp4') | |
| save_video(edited_frames, f'{self.config["output_path"]}/tokenflow_PnP_fps_20.mp4', fps=20) | |
| save_video(edited_frames, f'{self.config["output_path"]}/tokenflow_PnP_fps_30.mp4', fps=30) | |
| print('Done!') | |
| else: | |
| return edited_frames | |
| def sample_loop(self, x, indices): | |
| save_files = self.inverted_latents is None # if we're in the original non-demo settinge | |
| if save_files: | |
| os.makedirs(f'{self.config["output_path"]}/img_ode', exist_ok=True) | |
| timesteps = self.scheduler.timesteps | |
| if self.inversion == 'ddpm': | |
| zs_total = self.eps[1] | |
| t_to_idx = {int(v): k for k, v in enumerate(timesteps[-zs_total.shape[0]:])} | |
| timesteps = timesteps[-zs_total.shape[0]:] | |
| for i, t in enumerate(tqdm(timesteps, desc="Sampling")): | |
| if self.inversion == 'ddpm': | |
| idx = t_to_idx[int(t)] | |
| zs = zs_total[idx] | |
| else: | |
| zs = None | |
| x = self.batched_denoise_step(x, t, indices, zs) | |
| decoded_latents = self.decode_latents(x) | |
| if save_files: | |
| for i in range(len(decoded_latents)): | |
| T.ToPILImage()(decoded_latents[i]).save(f'{self.config["output_path"]}/img_ode/%05d.png' % i) | |
| return decoded_latents | |
| # def run(config): | |
| # seed_everything(config["seed"]) | |
| # print(config) | |
| # editor = TokenFlow(config) | |
| # editor.edit_video() | |
| # if __name__ == '__main__': | |
| # parser = argparse.ArgumentParser() | |
| # parser.add_argument('--config_path', type=str, default='configs/config_pnp.yaml') | |
| # opt = parser.parse_args() | |
| # with open(opt.config_path, "r") as f: | |
| # config = yaml.safe_load(f) | |
| # config["output_path"] = os.path.join(config["output_path"] + f'_pnp_SD_{config["sd_version"]}', | |
| # Path(config["data_path"]).stem, | |
| # config["prompt"][:240], | |
| # f'attn_{config["pnp_attn_t"]}_f_{config["pnp_f_t"]}', | |
| # f'batch_size_{str(config["batch_size"])}', | |
| # str(config["n_timesteps"]), | |
| # ) | |
| # os.makedirs(config["output_path"], exist_ok=True) | |
| # print(config["data_path"]) | |
| # assert os.path.exists(config["data_path"]), "Data path does not exist" | |
| # with open(os.path.join(config["output_path"], "config.yaml"), "w") as f: | |
| # yaml.dump(config, f) | |
| # run(config) | |