Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import torch | |
| from diffusers import StableDiffusionPipeline, DDIMScheduler | |
| from utils import video_to_frames, add_dict_to_yaml_file, save_video, seed_everything | |
| # from diffusers.utils import export_to_video | |
| from tokenflow_pnp import TokenFlow | |
| from preprocess_utils import * | |
| from tokenflow_utils import * | |
| # load sd model | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| # model_id = "stabilityai/stable-diffusion-2-1-base" | |
| # inv_pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(device) | |
| # inv_pipe.scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler") | |
| def randomize_seed_fn(): | |
| seed = random.randint(0, np.iinfo(np.int32).max) | |
| return seed | |
| def reset_do_inversion(): | |
| return True | |
| # def get_example(): | |
| # case = [ | |
| # [ | |
| # 'examples/wolf.mp4', | |
| # ], | |
| # [ | |
| # 'examples/woman-running.mp4', | |
| # ], | |
| # ] | |
| # return case | |
| def prep(config): | |
| # timesteps to save | |
| if config["sd_version"] == '2.1': | |
| model_key = "stabilityai/stable-diffusion-2-1-base" | |
| elif config["sd_version"] == '2.0': | |
| model_key = "stabilityai/stable-diffusion-2-base" | |
| elif config["sd_version"] == '1.5' or config["sd_version"] == 'ControlNet': | |
| model_key = "runwayml/stable-diffusion-v1-5" | |
| elif config["sd_version"] == 'depth': | |
| model_key = "stabilityai/stable-diffusion-2-depth" | |
| toy_scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler") | |
| toy_scheduler.set_timesteps(config["save_steps"]) | |
| timesteps_to_save, num_inference_steps = get_timesteps(toy_scheduler, num_inference_steps=config["save_steps"], | |
| strength=1.0, | |
| device=device) | |
| # seed_everything(config["seed"]) | |
| if not config["frames"]: # original non demo setting | |
| save_path = os.path.join(config["save_dir"], | |
| f'sd_{config["sd_version"]}', | |
| Path(config["data_path"]).stem, | |
| f'steps_{config["steps"]}', | |
| f'nframes_{config["n_frames"]}') | |
| os.makedirs(os.path.join(save_path, f'latents'), exist_ok=True) | |
| add_dict_to_yaml_file(os.path.join(config["save_dir"], 'inversion_prompts.yaml'), Path(config["data_path"]).stem, config["inversion_prompt"]) | |
| # save inversion prompt in a txt file | |
| with open(os.path.join(save_path, 'inversion_prompt.txt'), 'w') as f: | |
| f.write(config["inversion_prompt"]) | |
| else: | |
| save_path = None | |
| model = Preprocess(device, config) | |
| print(type(model.config["batch_size"])) | |
| frames, latents, total_inverted_latents, rgb_reconstruction = model.extract_latents( | |
| num_steps=model.config["steps"], | |
| save_path=save_path, | |
| batch_size=model.config["batch_size"], | |
| timesteps_to_save=timesteps_to_save, | |
| inversion_prompt=model.config["inversion_prompt"], | |
| ) | |
| return frames, latents, total_inverted_latents, rgb_reconstruction | |
| def preprocess_and_invert(input_video, | |
| frames, | |
| latents, | |
| inverted_latents, | |
| seed, | |
| randomize_seed, | |
| do_inversion, | |
| # save_dir: str = "latents", | |
| steps: int = 500, | |
| batch_size: int = 8, | |
| n_frames: int = 40, | |
| inversion_prompt:str = '', | |
| ): | |
| sd_version = "2.1" | |
| height = 512 | |
| weidth: int = 512 | |
| save_steps = 50 | |
| if do_inversion or randomize_seed: | |
| preprocess_config = {} | |
| preprocess_config['H'] = height | |
| preprocess_config['W'] = weidth | |
| preprocess_config['save_dir'] = 'latents' | |
| preprocess_config['sd_version'] = sd_version | |
| preprocess_config['steps'] = steps | |
| preprocess_config['batch_size'] = batch_size | |
| preprocess_config['save_steps'] = save_steps | |
| preprocess_config['n_frames'] = n_frames | |
| preprocess_config['seed'] = seed | |
| preprocess_config['inversion_prompt'] = inversion_prompt | |
| preprocess_config['frames'] = video_to_frames(input_video) | |
| preprocess_config['data_path'] = input_video.split(".")[0] | |
| if randomize_seed: | |
| seed = randomize_seed_fn() | |
| seed_everything(seed) | |
| frames, latents, total_inverted_latents, rgb_reconstruction = prep(preprocess_config) | |
| frames = gr.State(value=frames) | |
| latents = gr.State(value=latents) | |
| inverted_latents = gr.State(value=total_inverted_latents) | |
| do_inversion = False | |
| return frames, latents, inverted_latents, do_inversion | |
| def edit_with_pnp(input_video, | |
| frames, | |
| latents, | |
| inverted_latents, | |
| seed, | |
| randomize_seed, | |
| do_inversion, | |
| steps, | |
| prompt: str = "a marble sculpture of a woman running, Venus de Milo", | |
| # negative_prompt: str = "ugly, blurry, low res, unrealistic, unaesthetic", | |
| pnp_attn_t: float = 0.5, | |
| pnp_f_t: float = 0.8, | |
| batch_size: int = 8, #needs to be the same as for preprocess | |
| n_frames: int = 40,#needs to be the same as for preprocess | |
| n_timesteps: int = 50, | |
| gudiance_scale: float = 7.5, | |
| inversion_prompt: str = ""#needs to be the same as for preprocess | |
| ): | |
| config = {} | |
| config["sd_version"] = "2.1" | |
| config["device"] = device | |
| config["n_timesteps"] = n_timesteps | |
| config["n_frames"] = n_frames | |
| config["batch_size"] = batch_size | |
| config["guidance_scale"] = gudiance_scale | |
| config["prompt"] = prompt | |
| config["negative_prompt"] = "ugly, blurry, low res, unrealistic, unaesthetic", | |
| config["pnp_attn_t"] = pnp_attn_t | |
| config["pnp_f_t"] = pnp_f_t | |
| config["pnp_inversion_prompt"] = inversion_prompt | |
| if do_inversion: | |
| frames, latents, inverted_latents, do_inversion = preprocess_and_invert( | |
| input_video, | |
| frames, | |
| latents, | |
| inverted_latents, | |
| seed, | |
| randomize_seed, | |
| do_inversion, | |
| steps, | |
| batch_size, | |
| n_frames, | |
| inversion_prompt) | |
| do_inversion = False | |
| if randomize_seed: | |
| seed = randomize_seed_fn() | |
| seed_everything(seed) | |
| editor = TokenFlow(config=config, frames=frames.value, inverted_latents=inverted_latents.value) | |
| edited_frames = editor.edit_video() | |
| save_video(edited_frames, 'tokenflow_PnP_fps_30.mp4', fps=30) | |
| # path = export_to_video(edited_frames) | |
| return 'tokenflow_PnP_fps_30.mp4', frames, latents, inverted_latents, do_inversion | |
| ######## | |
| # demo # | |
| ######## | |
| intro = """ | |
| <h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;"> | |
| TokenFlow | |
| </h1> | |
| """ | |
| with gr.Blocks(css="style.css") as demo: | |
| gr.HTML(intro) | |
| frames = gr.State() | |
| inverted_latents = gr.State() | |
| latents = gr.State() | |
| do_inversion = gr.State(value=True) | |
| with gr.Row(): | |
| input_video = gr.Video(label="Input Video", interactive=True, elem_id="input_video") | |
| output_video = gr.Video(label="Edited Video", interactive=False, elem_id="output_video") | |
| input_video.style(height=365, width=365) | |
| output_video.style(height=365, width=365) | |
| with gr.Row(): | |
| prompt = gr.Textbox( | |
| label="Describe your edited video", | |
| max_lines=1, value="" | |
| ) | |
| # with gr.Group(visible=False) as share_btn_container: | |
| # with gr.Group(elem_id="share-btn-container"): | |
| # community_icon = gr.HTML(community_icon_html, visible=True) | |
| # loading_icon = gr.HTML(loading_icon_html, visible=False) | |
| # share_button = gr.Button("Share to community", elem_id="share-btn", visible=True) | |
| # with gr.Row(): | |
| # inversion_progress = gr.Textbox(visible=False, label="Inversion progress") | |
| with gr.Row(): | |
| run_button = gr.Button("Edit your video!", visible=True) | |
| with gr.Accordion("Advanced Options", open=False): | |
| with gr.Tabs() as tabs: | |
| with gr.TabItem('General options', id=2): | |
| with gr.Row(): | |
| with gr.Column(min_width=100): | |
| seed = gr.Number(value=0, precision=0, label="Seed", interactive=True) | |
| randomize_seed = gr.Checkbox(label='Randomize seed', value=False) | |
| gudiance_scale = gr.Slider(label='Guidance Scale', minimum=1, maximum=30, | |
| value=7.5, step=0.5, interactive=True) | |
| steps = gr.Slider(label='Inversion steps', minimum=100, maximum=500, | |
| value=500, step=1, interactive=True) | |
| n_timesteps = gr.Slider(label='Diffusion steps', minimum=25, maximum=100, | |
| value=50, step=1, interactive=True) | |
| with gr.Column(min_width=100): | |
| inversion_prompt = gr.Textbox(lines=1, label="Inversion prompt", interactive=True, placeholder="") | |
| batch_size = gr.Slider(label='Batch size', minimum=1, maximum=10, | |
| value=8, step=1, interactive=True) | |
| n_frames = gr.Slider(label='Num frames', minimum=20, maximum=200, | |
| value=40, step=1, interactive=True) | |
| pnp_attn_t = gr.Slider(label='pnp attention threshold', minimum=0, maximum=1, | |
| value=0.5, step=0.5, interactive=True) | |
| pnp_f_t = gr.Slider(label='pnp feature threshold', minimum=0, maximum=1, | |
| value=0.8, step=0.05, interactive=True) | |
| input_video.change( | |
| fn = reset_do_inversion, | |
| outputs = [do_inversion], | |
| queue = False) | |
| input_video.upload( | |
| fn = reset_do_inversion, | |
| outputs = [do_inversion], | |
| queue = False).then(fn = preprocess_and_invert, | |
| inputs = [input_video, | |
| frames, | |
| latents, | |
| inverted_latents, | |
| seed, | |
| randomize_seed, | |
| do_inversion, | |
| steps, | |
| batch_size, | |
| n_frames, | |
| inversion_prompt | |
| ], | |
| outputs = [frames, | |
| latents, | |
| inverted_latents, | |
| do_inversion | |
| ]) | |
| run_button.click(fn = edit_with_pnp, | |
| inputs = [input_video, | |
| frames, | |
| latents, | |
| inverted_latents, | |
| seed, | |
| randomize_seed, | |
| do_inversion, | |
| steps, | |
| prompt, | |
| pnp_attn_t, | |
| pnp_f_t, | |
| batch_size, | |
| n_frames, | |
| n_timesteps, | |
| gudiance_scale, | |
| inversion_prompt ], | |
| outputs = [output_video, frames, latents, inverted_latents, do_inversion] | |
| ) | |
| # gr.Examples( | |
| # examples=get_example(), | |
| # label='Examples', | |
| # inputs=[input_vid], | |
| # outputs=[input_vid] | |
| # ) | |
| demo.queue() | |
| demo.launch() |