Spaces:
Running
on
Zero
Running
on
Zero
| from typing import Type | |
| import torch | |
| import os | |
| from utils import isinstance_str, batch_cosine_sim | |
| def register_pivotal(diffusion_model, is_pivotal): | |
| for _, module in diffusion_model.named_modules(): | |
| # If for some reason this has a different name, create an issue and I'll fix it | |
| if isinstance_str(module, "BasicTransformerBlock"): | |
| setattr(module, "pivotal_pass", is_pivotal) | |
| def register_batch_idx(diffusion_model, batch_idx): | |
| for _, module in diffusion_model.named_modules(): | |
| # If for some reason this has a different name, create an issue and I'll fix it | |
| if isinstance_str(module, "BasicTransformerBlock"): | |
| setattr(module, "batch_idx", batch_idx) | |
| def register_time(model, t): | |
| conv_module = model.unet.up_blocks[1].resnets[1] | |
| setattr(conv_module, 't', t) | |
| down_res_dict = {0: [0, 1], 1: [0, 1], 2: [0, 1]} | |
| up_res_dict = {1: [0, 1, 2], 2: [0, 1, 2], 3: [0, 1, 2]} | |
| for res in up_res_dict: | |
| for block in up_res_dict[res]: | |
| module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1 | |
| setattr(module, 't', t) | |
| module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn2 | |
| setattr(module, 't', t) | |
| for res in down_res_dict: | |
| for block in down_res_dict[res]: | |
| module = model.unet.down_blocks[res].attentions[block].transformer_blocks[0].attn1 | |
| setattr(module, 't', t) | |
| module = model.unet.down_blocks[res].attentions[block].transformer_blocks[0].attn2 | |
| setattr(module, 't', t) | |
| module = model.unet.mid_block.attentions[0].transformer_blocks[0].attn1 | |
| setattr(module, 't', t) | |
| module = model.unet.mid_block.attentions[0].transformer_blocks[0].attn2 | |
| setattr(module, 't', t) | |
| def load_source_latents_t(t, latents_path): | |
| latents_t_path = os.path.join(latents_path, f'noisy_latents_{t}.pt') | |
| assert os.path.exists(latents_t_path), f'Missing latents at t {t} path {latents_t_path}' | |
| latents = torch.load(latents_t_path) | |
| return latents | |
| def register_conv_injection(model, injection_schedule): | |
| def conv_forward(self): | |
| def forward(input_tensor, temb): | |
| hidden_states = input_tensor | |
| hidden_states = self.norm1(hidden_states) | |
| hidden_states = self.nonlinearity(hidden_states) | |
| if self.upsample is not None: | |
| # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 | |
| if hidden_states.shape[0] >= 64: | |
| input_tensor = input_tensor.contiguous() | |
| hidden_states = hidden_states.contiguous() | |
| input_tensor = self.upsample(input_tensor) | |
| hidden_states = self.upsample(hidden_states) | |
| elif self.downsample is not None: | |
| input_tensor = self.downsample(input_tensor) | |
| hidden_states = self.downsample(hidden_states) | |
| hidden_states = self.conv1(hidden_states) | |
| if temb is not None: | |
| temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None] | |
| if temb is not None and self.time_embedding_norm == "default": | |
| hidden_states = hidden_states + temb | |
| hidden_states = self.norm2(hidden_states) | |
| if temb is not None and self.time_embedding_norm == "scale_shift": | |
| scale, shift = torch.chunk(temb, 2, dim=1) | |
| hidden_states = hidden_states * (1 + scale) + shift | |
| hidden_states = self.nonlinearity(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.conv2(hidden_states) | |
| if self.injection_schedule is not None and (self.t in self.injection_schedule or self.t == 1000): | |
| source_batch_size = int(hidden_states.shape[0] // 3) | |
| # inject unconditional | |
| hidden_states[source_batch_size:2 * source_batch_size] = hidden_states[:source_batch_size] | |
| # inject conditional | |
| hidden_states[2 * source_batch_size:] = hidden_states[:source_batch_size] | |
| if self.conv_shortcut is not None: | |
| input_tensor = self.conv_shortcut(input_tensor) | |
| output_tensor = (input_tensor + hidden_states) / self.output_scale_factor | |
| return output_tensor | |
| return forward | |
| conv_module = model.unet.up_blocks[1].resnets[1] | |
| conv_module.forward = conv_forward(conv_module) | |
| setattr(conv_module, 'injection_schedule', injection_schedule) | |
| def register_extended_attention_pnp(model, injection_schedule): | |
| def sa_forward(self): | |
| to_out = self.to_out | |
| if type(to_out) is torch.nn.modules.container.ModuleList: | |
| to_out = self.to_out[0] | |
| else: | |
| to_out = self.to_out | |
| def forward(x, encoder_hidden_states=None): | |
| batch_size, sequence_length, dim = x.shape | |
| h = self.heads | |
| n_frames = batch_size // 3 | |
| is_cross = encoder_hidden_states is not None | |
| encoder_hidden_states = encoder_hidden_states if is_cross else x | |
| q = self.to_q(x) | |
| k = self.to_k(encoder_hidden_states) | |
| v = self.to_v(encoder_hidden_states) | |
| if self.injection_schedule is not None and (self.t in self.injection_schedule or self.t == 1000): | |
| # inject unconditional | |
| q[n_frames:2 * n_frames] = q[:n_frames] | |
| k[n_frames:2 * n_frames] = k[:n_frames] | |
| # inject conditional | |
| q[2 * n_frames:] = q[:n_frames] | |
| k[2 * n_frames:] = k[:n_frames] | |
| k_source = k[:n_frames] | |
| k_uncond = k[n_frames:2 * n_frames].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1) | |
| k_cond = k[2 * n_frames:].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1) | |
| v_source = v[:n_frames] | |
| v_uncond = v[n_frames:2 * n_frames].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1) | |
| v_cond = v[2 * n_frames:].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1) | |
| q_source = self.head_to_batch_dim(q[:n_frames]) | |
| q_uncond = self.head_to_batch_dim(q[n_frames:2 * n_frames]) | |
| q_cond = self.head_to_batch_dim(q[2 * n_frames:]) | |
| k_source = self.head_to_batch_dim(k_source) | |
| k_uncond = self.head_to_batch_dim(k_uncond) | |
| k_cond = self.head_to_batch_dim(k_cond) | |
| v_source = self.head_to_batch_dim(v_source) | |
| v_uncond = self.head_to_batch_dim(v_uncond) | |
| v_cond = self.head_to_batch_dim(v_cond) | |
| q_src = q_source.view(n_frames, h, sequence_length, dim // h) | |
| k_src = k_source.view(n_frames, h, sequence_length, dim // h) | |
| v_src = v_source.view(n_frames, h, sequence_length, dim // h) | |
| q_uncond = q_uncond.view(n_frames, h, sequence_length, dim // h) | |
| k_uncond = k_uncond.view(n_frames, h, sequence_length * n_frames, dim // h) | |
| v_uncond = v_uncond.view(n_frames, h, sequence_length * n_frames, dim // h) | |
| q_cond = q_cond.view(n_frames, h, sequence_length, dim // h) | |
| k_cond = k_cond.view(n_frames, h, sequence_length * n_frames, dim // h) | |
| v_cond = v_cond.view(n_frames, h, sequence_length * n_frames, dim // h) | |
| out_source_all = [] | |
| out_uncond_all = [] | |
| out_cond_all = [] | |
| single_batch = n_frames<=12 | |
| b = n_frames if single_batch else 1 | |
| for frame in range(0, n_frames, b): | |
| out_source = [] | |
| out_uncond = [] | |
| out_cond = [] | |
| for j in range(h): | |
| sim_source_b = torch.bmm(q_src[frame: frame+ b, j], k_src[frame: frame+ b, j].transpose(-1, -2)) * self.scale | |
| sim_uncond_b = torch.bmm(q_uncond[frame: frame+ b, j], k_uncond[frame: frame+ b, j].transpose(-1, -2)) * self.scale | |
| sim_cond = torch.bmm(q_cond[frame: frame+ b, j], k_cond[frame: frame+ b, j].transpose(-1, -2)) * self.scale | |
| out_source.append(torch.bmm(sim_source_b.softmax(dim=-1), v_src[frame: frame+ b, j])) | |
| out_uncond.append(torch.bmm(sim_uncond_b.softmax(dim=-1), v_uncond[frame: frame+ b, j])) | |
| out_cond.append(torch.bmm(sim_cond.softmax(dim=-1), v_cond[frame: frame+ b, j])) | |
| out_source = torch.cat(out_source, dim=0) | |
| out_uncond = torch.cat(out_uncond, dim=0) | |
| out_cond = torch.cat(out_cond, dim=0) | |
| if single_batch: | |
| out_source = out_source.view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1) | |
| out_uncond = out_uncond.view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1) | |
| out_cond = out_cond.view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1) | |
| out_source_all.append(out_source) | |
| out_uncond_all.append(out_uncond) | |
| out_cond_all.append(out_cond) | |
| out_source = torch.cat(out_source_all, dim=0) | |
| out_uncond = torch.cat(out_uncond_all, dim=0) | |
| out_cond = torch.cat(out_cond_all, dim=0) | |
| out = torch.cat([out_source, out_uncond, out_cond], dim=0) | |
| out = self.batch_to_head_dim(out) | |
| return to_out(out) | |
| return forward | |
| for _, module in model.unet.named_modules(): | |
| if isinstance_str(module, "BasicTransformerBlock"): | |
| module.attn1.forward = sa_forward(module.attn1) | |
| setattr(module.attn1, 'injection_schedule', []) | |
| res_dict = {1: [1, 2], 2: [0, 1, 2], 3: [0, 1, 2]} | |
| # we are injecting attention in blocks 4 - 11 of the decoder, so not in the first block of the lowest resolution | |
| for res in res_dict: | |
| for block in res_dict[res]: | |
| module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1 | |
| module.forward = sa_forward(module) | |
| setattr(module, 'injection_schedule', injection_schedule) | |
| def register_extended_attention(model): | |
| def sa_forward(self): | |
| to_out = self.to_out | |
| if type(to_out) is torch.nn.modules.container.ModuleList: | |
| to_out = self.to_out[0] | |
| else: | |
| to_out = self.to_out | |
| def forward(x, encoder_hidden_states=None): | |
| batch_size, sequence_length, dim = x.shape | |
| h = self.heads | |
| n_frames = batch_size // 3 | |
| is_cross = encoder_hidden_states is not None | |
| encoder_hidden_states = encoder_hidden_states if is_cross else x | |
| q = self.to_q(x) | |
| k = self.to_k(encoder_hidden_states) | |
| v = self.to_v(encoder_hidden_states) | |
| k_source = k[:n_frames] | |
| k_uncond = k[n_frames: 2*n_frames].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1) | |
| k_cond = k[2*n_frames:].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1) | |
| v_source = v[:n_frames] | |
| v_uncond = v[n_frames:2*n_frames].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1) | |
| v_cond = v[2*n_frames:].reshape(1, n_frames * sequence_length, -1).repeat(n_frames, 1, 1) | |
| q_source = self.head_to_batch_dim(q[:n_frames]) | |
| q_uncond = self.head_to_batch_dim(q[n_frames: 2*n_frames]) | |
| q_cond = self.head_to_batch_dim(q[2 * n_frames:]) | |
| k_source = self.head_to_batch_dim(k_source) | |
| k_uncond = self.head_to_batch_dim(k_uncond) | |
| k_cond = self.head_to_batch_dim(k_cond) | |
| v_source = self.head_to_batch_dim(v_source) | |
| v_uncond = self.head_to_batch_dim(v_uncond) | |
| v_cond = self.head_to_batch_dim(v_cond) | |
| out_source = [] | |
| out_uncond = [] | |
| out_cond = [] | |
| q_src = q_source.view(n_frames, h, sequence_length, dim // h) | |
| k_src = k_source.view(n_frames, h, sequence_length, dim // h) | |
| v_src = v_source.view(n_frames, h, sequence_length, dim // h) | |
| q_uncond = q_uncond.view(n_frames, h, sequence_length, dim // h) | |
| k_uncond = k_uncond.view(n_frames, h, sequence_length * n_frames, dim // h) | |
| v_uncond = v_uncond.view(n_frames, h, sequence_length * n_frames, dim // h) | |
| q_cond = q_cond.view(n_frames, h, sequence_length, dim // h) | |
| k_cond = k_cond.view(n_frames, h, sequence_length * n_frames, dim // h) | |
| v_cond = v_cond.view(n_frames, h, sequence_length * n_frames, dim // h) | |
| for j in range(h): | |
| sim_source_b = torch.bmm(q_src[:, j], k_src[:, j].transpose(-1, -2)) * self.scale | |
| sim_uncond_b = torch.bmm(q_uncond[:, j], k_uncond[:, j].transpose(-1, -2)) * self.scale | |
| sim_cond = torch.bmm(q_cond[:, j], k_cond[:, j].transpose(-1, -2)) * self.scale | |
| out_source.append(torch.bmm(sim_source_b.softmax(dim=-1), v_src[:, j])) | |
| out_uncond.append(torch.bmm(sim_uncond_b.softmax(dim=-1), v_uncond[:, j])) | |
| out_cond.append(torch.bmm(sim_cond.softmax(dim=-1), v_cond[:, j])) | |
| out_source = torch.cat(out_source, dim=0).view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1) | |
| out_uncond = torch.cat(out_uncond, dim=0).view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1) | |
| out_cond = torch.cat(out_cond, dim=0).view(h, n_frames,sequence_length, dim // h).permute(1, 0, 2, 3).reshape(h * n_frames, sequence_length, -1) | |
| out = torch.cat([out_source, out_uncond, out_cond], dim=0) | |
| out = self.batch_to_head_dim(out) | |
| return to_out(out) | |
| return forward | |
| for _, module in model.unet.named_modules(): | |
| if isinstance_str(module, "BasicTransformerBlock"): | |
| module.attn1.forward = sa_forward(module.attn1) | |
| res_dict = {1: [1, 2], 2: [0, 1, 2], 3: [0, 1, 2]} | |
| # we are injecting attention in blocks 4 - 11 of the decoder, so not in the first block of the lowest resolution | |
| for res in res_dict: | |
| for block in res_dict[res]: | |
| module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1 | |
| module.forward = sa_forward(module) | |
| def make_tokenflow_attention_block(block_class: Type[torch.nn.Module]) -> Type[torch.nn.Module]: | |
| class TokenFlowBlock(block_class): | |
| def forward( | |
| self, | |
| hidden_states, | |
| attention_mask=None, | |
| encoder_hidden_states=None, | |
| encoder_attention_mask=None, | |
| timestep=None, | |
| cross_attention_kwargs=None, | |
| class_labels=None, | |
| ) -> torch.Tensor: | |
| batch_size, sequence_length, dim = hidden_states.shape | |
| n_frames = batch_size // 3 | |
| mid_idx = n_frames // 2 | |
| hidden_states = hidden_states.view(3, n_frames, sequence_length, dim) | |
| if self.use_ada_layer_norm: | |
| norm_hidden_states = self.norm1(hidden_states, timestep) | |
| elif self.use_ada_layer_norm_zero: | |
| norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
| hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
| ) | |
| else: | |
| norm_hidden_states = self.norm1(hidden_states) | |
| norm_hidden_states = norm_hidden_states.view(3, n_frames, sequence_length, dim) | |
| if self.pivotal_pass: | |
| self.pivot_hidden_states = norm_hidden_states | |
| else: | |
| idx1 = [] | |
| idx2 = [] | |
| batch_idxs = [self.batch_idx] | |
| if self.batch_idx > 0: | |
| batch_idxs.append(self.batch_idx - 1) | |
| sim = batch_cosine_sim(norm_hidden_states[0].reshape(-1, dim), | |
| self.pivot_hidden_states[0][batch_idxs].reshape(-1, dim)) | |
| if len(batch_idxs) == 2: | |
| sim1, sim2 = sim.chunk(2, dim=1) | |
| # sim: n_frames * seq_len, len(batch_idxs) * seq_len | |
| idx1.append(sim1.argmax(dim=-1)) # n_frames * seq_len | |
| idx2.append(sim2.argmax(dim=-1)) # n_frames * seq_len | |
| else: | |
| idx1.append(sim.argmax(dim=-1)) | |
| idx1 = torch.stack(idx1 * 3, dim=0) # 3, n_frames * seq_len | |
| idx1 = idx1.squeeze(1) | |
| if len(batch_idxs) == 2: | |
| idx2 = torch.stack(idx2 * 3, dim=0) # 3, n_frames * seq_len | |
| idx2 = idx2.squeeze(1) | |
| # 1. Self-Attention | |
| cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} | |
| if self.pivotal_pass: | |
| # norm_hidden_states.shape = 3, n_frames * seq_len, dim | |
| self.attn_output = self.attn1( | |
| norm_hidden_states.view(batch_size, sequence_length, dim), | |
| encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
| **cross_attention_kwargs, | |
| ) | |
| # 3, n_frames * seq_len, dim - > 3 * n_frames, seq_len, dim | |
| self.kf_attn_output = self.attn_output | |
| else: | |
| batch_kf_size, _, _ = self.kf_attn_output.shape | |
| self.attn_output = self.kf_attn_output.view(3, batch_kf_size // 3, sequence_length, dim)[:, | |
| batch_idxs] # 3, n_frames, seq_len, dim --> 3, len(batch_idxs), seq_len, dim | |
| if self.use_ada_layer_norm_zero: | |
| self.attn_output = gate_msa.unsqueeze(1) * self.attn_output | |
| # gather values from attn_output, using idx as indices, and get a tensor of shape 3, n_frames, seq_len, dim | |
| if not self.pivotal_pass: | |
| if len(batch_idxs) == 2: | |
| attn_1, attn_2 = self.attn_output[:, 0], self.attn_output[:, 1] | |
| attn_output1 = attn_1.gather(dim=1, index=idx1.unsqueeze(-1).repeat(1, 1, dim)) | |
| attn_output2 = attn_2.gather(dim=1, index=idx2.unsqueeze(-1).repeat(1, 1, dim)) | |
| s = torch.arange(0, n_frames).to(idx1.device) + batch_idxs[0] * n_frames | |
| # distance from the pivot | |
| p1 = batch_idxs[0] * n_frames + n_frames // 2 | |
| p2 = batch_idxs[1] * n_frames + n_frames // 2 | |
| d1 = torch.abs(s - p1) | |
| d2 = torch.abs(s - p2) | |
| # weight | |
| w1 = d2 / (d1 + d2) | |
| w1 = torch.sigmoid(w1) | |
| w1 = w1.unsqueeze(0).unsqueeze(-1).unsqueeze(-1).repeat(3, 1, sequence_length, dim) | |
| attn_output1 = attn_output1.view(3, n_frames, sequence_length, dim) | |
| attn_output2 = attn_output2.view(3, n_frames, sequence_length, dim) | |
| attn_output = w1 * attn_output1 + (1 - w1) * attn_output2 | |
| else: | |
| attn_output = self.attn_output[:,0].gather(dim=1, index=idx1.unsqueeze(-1).repeat(1, 1, dim)) | |
| attn_output = attn_output.reshape( | |
| batch_size, sequence_length, dim) # 3 * n_frames, seq_len, dim | |
| else: | |
| attn_output = self.attn_output | |
| hidden_states = hidden_states.reshape(batch_size, sequence_length, dim) # 3 * n_frames, seq_len, dim | |
| hidden_states = attn_output + hidden_states | |
| if self.attn2 is not None: | |
| norm_hidden_states = ( | |
| self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) | |
| ) | |
| # 2. Cross-Attention | |
| attn_output = self.attn2( | |
| norm_hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=encoder_attention_mask, | |
| **cross_attention_kwargs, | |
| ) | |
| hidden_states = attn_output + hidden_states | |
| # 3. Feed-forward | |
| norm_hidden_states = self.norm3(hidden_states) | |
| if self.use_ada_layer_norm_zero: | |
| norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
| ff_output = self.ff(norm_hidden_states) | |
| if self.use_ada_layer_norm_zero: | |
| ff_output = gate_mlp.unsqueeze(1) * ff_output | |
| hidden_states = ff_output + hidden_states | |
| return hidden_states | |
| return TokenFlowBlock | |
| def set_tokenflow( | |
| model: torch.nn.Module): | |
| """ | |
| Sets the tokenflow attention blocks in a model. | |
| """ | |
| for _, module in model.named_modules(): | |
| if isinstance_str(module, "BasicTransformerBlock"): | |
| make_tokenflow_block_fn = make_tokenflow_attention_block | |
| module.__class__ = make_tokenflow_block_fn(module.__class__) | |
| # Something needed for older versions of diffusers | |
| if not hasattr(module, "use_ada_layer_norm_zero"): | |
| module.use_ada_layer_norm = False | |
| module.use_ada_layer_norm_zero = False | |
| return model | |