Spaces:
Running
on
Zero
Running
on
Zero
Linoy Tsaban
commited on
Commit
·
1a2c8b5
1
Parent(s):
8832b9b
Create preprocess_utils.py
Browse files- preprocess_utils.py +179 -0
preprocess_utils.py
ADDED
|
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import CLIPTextModel, CLIPTokenizer, logging
|
| 2 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler
|
| 3 |
+
# suppress partial model loading warning
|
| 4 |
+
logging.set_verbosity_error()
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
from tqdm import tqdm, trange
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
import argparse
|
| 11 |
+
from torchvision.io import write_video
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
from util import *
|
| 14 |
+
import torchvision.transforms as T
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def get_timesteps(scheduler, num_inference_steps, strength, device):
|
| 18 |
+
# get the original timestep using init_timestep
|
| 19 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
| 20 |
+
|
| 21 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
| 22 |
+
timesteps = scheduler.timesteps[t_start:]
|
| 23 |
+
|
| 24 |
+
return timesteps, num_inference_steps - t_start
|
| 25 |
+
|
| 26 |
+
@torch.no_grad()
|
| 27 |
+
def decode_latents(pipe, latents):
|
| 28 |
+
decoded = []
|
| 29 |
+
batch_size = 8
|
| 30 |
+
for b in range(0, latents.shape[0], batch_size):
|
| 31 |
+
latents_batch = 1 / 0.18215 * latents[b:b + batch_size]
|
| 32 |
+
imgs = pipe.vae.decode(latents_batch).sample
|
| 33 |
+
imgs = (imgs / 2 + 0.5).clamp(0, 1)
|
| 34 |
+
decoded.append(imgs)
|
| 35 |
+
return torch.cat(decoded)
|
| 36 |
+
|
| 37 |
+
@torch.no_grad()
|
| 38 |
+
def ddim_inversion(pipe, cond, latent_frames, batch_size, save_latents=True, timesteps_to_save=None):
|
| 39 |
+
|
| 40 |
+
timesteps = reversed(pipe.scheduler.timesteps)
|
| 41 |
+
timesteps_to_save = timesteps_to_save if timesteps_to_save is not None else timesteps
|
| 42 |
+
for i, t in enumerate(tqdm(timesteps)):
|
| 43 |
+
for b in range(0, latent_frames.shape[0], batch_size):
|
| 44 |
+
x_batch = latent_frames[b:b + batch_size]
|
| 45 |
+
model_input = x_batch
|
| 46 |
+
cond_batch = cond.repeat(x_batch.shape[0], 1, 1)
|
| 47 |
+
#remove comment from commented block to support controlnet
|
| 48 |
+
# if self.sd_version == 'depth':
|
| 49 |
+
# depth_maps = torch.cat([self.depth_maps[b: b + batch_size]])
|
| 50 |
+
# model_input = torch.cat([x_batch, depth_maps],dim=1)
|
| 51 |
+
|
| 52 |
+
alpha_prod_t = pipe.scheduler.alphas_cumprod[t]
|
| 53 |
+
alpha_prod_t_prev = (
|
| 54 |
+
pipe.scheduler.alphas_cumprod[timesteps[i - 1]]
|
| 55 |
+
if i > 0 else pipe.scheduler.final_alpha_cumprod
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
mu = alpha_prod_t ** 0.5
|
| 59 |
+
mu_prev = alpha_prod_t_prev ** 0.5
|
| 60 |
+
sigma = (1 - alpha_prod_t) ** 0.5
|
| 61 |
+
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
#remove line below and replace with commented block to support controlnet
|
| 65 |
+
eps = pipe.unet(model_input, t, encoder_hidden_states=cond_batch).sample
|
| 66 |
+
# if self.sd_version != 'ControlNet':
|
| 67 |
+
# eps = pipe.unet(model_input, t, encoder_hidden_states=cond_batch).sample
|
| 68 |
+
# else:
|
| 69 |
+
# eps = self.controlnet_pred(x_batch, t, cond_batch, torch.cat([self.canny_cond[b: b + batch_size]]))
|
| 70 |
+
|
| 71 |
+
pred_x0 = (x_batch - sigma_prev * eps) / mu_prev
|
| 72 |
+
latent_frames[b:b + batch_size] = mu * pred_x0 + sigma * eps
|
| 73 |
+
|
| 74 |
+
# if save_latents and t in timesteps_to_save:
|
| 75 |
+
# torch.save(latent_frames, os.path.join(save_path, 'latents', f'noisy_latents_{t}.pt'))
|
| 76 |
+
# torch.save(latent_frames, os.path.join(save_path, 'latents', f'noisy_latents_{t}.pt'))
|
| 77 |
+
return latent_frames
|
| 78 |
+
|
| 79 |
+
@torch.no_grad()
|
| 80 |
+
def ddim_sample(pipe, x, cond, batch_size):
|
| 81 |
+
timesteps = pipe.scheduler.timesteps
|
| 82 |
+
for i, t in enumerate(tqdm(timesteps)):
|
| 83 |
+
for b in range(0, x.shape[0], batch_size):
|
| 84 |
+
x_batch = x[b:b + batch_size]
|
| 85 |
+
model_input = x_batch
|
| 86 |
+
cond_batch = cond.repeat(x_batch.shape[0], 1, 1)
|
| 87 |
+
|
| 88 |
+
#remove comment from commented block to support controlnet
|
| 89 |
+
# if self.sd_version == 'depth':
|
| 90 |
+
# depth_maps = torch.cat([self.depth_maps[b: b + batch_size]])
|
| 91 |
+
# model_input = torch.cat([x_batch, depth_maps],dim=1)
|
| 92 |
+
|
| 93 |
+
alpha_prod_t = pipe.scheduler.alphas_cumprod[t]
|
| 94 |
+
alpha_prod_t_prev = (
|
| 95 |
+
pipe.scheduler.alphas_cumprod[timesteps[i + 1]]
|
| 96 |
+
if i < len(timesteps) - 1
|
| 97 |
+
else pipe.scheduler.final_alpha_cumprod
|
| 98 |
+
)
|
| 99 |
+
mu = alpha_prod_t ** 0.5
|
| 100 |
+
sigma = (1 - alpha_prod_t) ** 0.5
|
| 101 |
+
mu_prev = alpha_prod_t_prev ** 0.5
|
| 102 |
+
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
|
| 103 |
+
|
| 104 |
+
#remove line below and replace with commented block to support controlnet
|
| 105 |
+
eps = pipe.unet(model_input, t, encoder_hidden_states=cond_batch).sample
|
| 106 |
+
# if self.sd_version != 'ControlNet':
|
| 107 |
+
# eps = pipe.unet(model_input, t, encoder_hidden_states=cond_batch).sample
|
| 108 |
+
# else:
|
| 109 |
+
# eps = self.controlnet_pred(x_batch, t, cond_batch, torch.cat([self.canny_cond[b: b + batch_size]]))
|
| 110 |
+
|
| 111 |
+
pred_x0 = (x_batch - sigma * eps) / mu
|
| 112 |
+
x[b:b + batch_size] = mu_prev * pred_x0 + sigma_prev * eps
|
| 113 |
+
return x
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
@torch.no_grad()
|
| 117 |
+
def get_text_embeds(pipe, prompt, negative_prompt, batch_size=1, device="cuda"):
|
| 118 |
+
# Tokenize text and get embeddings
|
| 119 |
+
text_input = pipe.tokenizer(prompt, padding='max_length', max_length=pipe.tokenizer.model_max_length,
|
| 120 |
+
truncation=True, return_tensors='pt')
|
| 121 |
+
text_embeddings = pipe.text_encoder(text_input.input_ids.to(pipe.device))[0]
|
| 122 |
+
|
| 123 |
+
# Do the same for unconditional embeddings
|
| 124 |
+
uncond_input = pipe.tokenizer(negative_prompt, padding='max_length', max_length=pipe.tokenizer.model_max_length,
|
| 125 |
+
return_tensors='pt')
|
| 126 |
+
|
| 127 |
+
uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(pipe.device))[0]
|
| 128 |
+
|
| 129 |
+
# Cat for final embeddings
|
| 130 |
+
text_embeddings = torch.cat([uncond_embeddings] * batch_size + [text_embeddings] * batch_size)
|
| 131 |
+
return text_embeddings
|
| 132 |
+
|
| 133 |
+
@torch.no_grad()
|
| 134 |
+
def extract_latents(pipe,
|
| 135 |
+
num_steps,
|
| 136 |
+
latent_frames,
|
| 137 |
+
batch_size,
|
| 138 |
+
timesteps_to_save,
|
| 139 |
+
inversion_prompt=''):
|
| 140 |
+
pipe.scheduler.set_timesteps(num_steps)
|
| 141 |
+
cond = get_text_embeds(pipe, inversion_prompt, "", device=pipe.device)[1].unsqueeze(0)
|
| 142 |
+
# latent_frames = self.latents
|
| 143 |
+
|
| 144 |
+
inverted_latents = ddim_inversion(pipe, cond,
|
| 145 |
+
latent_frames,
|
| 146 |
+
batch_size=batch_size,
|
| 147 |
+
save_latents=False,
|
| 148 |
+
timesteps_to_save=timesteps_to_save)
|
| 149 |
+
|
| 150 |
+
# latent_reconstruction = ddim_sample(pipe, inverted_latents, cond, batch_size=batch_size)
|
| 151 |
+
|
| 152 |
+
# rgb_reconstruction = decode_latents(pipe, latent_reconstruction)
|
| 153 |
+
|
| 154 |
+
# return rgb_reconstruction
|
| 155 |
+
return inverted_latents
|
| 156 |
+
|
| 157 |
+
@torch.no_grad()
|
| 158 |
+
def encode_imgs(pipe, imgs, batch_size=10, deterministic=True):
|
| 159 |
+
imgs = 2 * imgs - 1
|
| 160 |
+
latents = []
|
| 161 |
+
for i in range(0, len(imgs), batch_size):
|
| 162 |
+
posterior = pipe.vae.encode(imgs[i:i + batch_size]).latent_dist
|
| 163 |
+
latent = posterior.mean if deterministic else posterior.sample()
|
| 164 |
+
latents.append(latent * 0.18215)
|
| 165 |
+
latents = torch.cat(latents)
|
| 166 |
+
return latents
|
| 167 |
+
|
| 168 |
+
def get_data(pipe, frames, n_frames):
|
| 169 |
+
"""
|
| 170 |
+
converts frames to tensors, saves to device and encodes to obtain latents
|
| 171 |
+
"""
|
| 172 |
+
frames = frames[:n_frames]
|
| 173 |
+
if frames[0].size[0] == frames[0].size[1]:
|
| 174 |
+
frames = [frame.convert("RGB").resize((512, 512), resample=Image.Resampling.LANCZOS) for frame in frames]
|
| 175 |
+
stacked_tensor_frames = torch.stack([T.ToTensor()(frame) for frame in frames]).to(torch.float16).to(pipe.device)
|
| 176 |
+
# encode to latents
|
| 177 |
+
latents = encode_imgs(pipe, stacked_tensor_frames, deterministic=True).to(torch.float16).to(pipe.device)
|
| 178 |
+
return stacked_tensor_frames, latents
|
| 179 |
+
|