Spaces:
Running
on
Zero
Running
on
Zero
Linoy Tsaban
commited on
add ddpm inversion
Browse files
app.py
CHANGED
|
@@ -61,20 +61,22 @@ def prep(config):
|
|
| 61 |
model_key = "stabilityai/stable-diffusion-2-depth"
|
| 62 |
toy_scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
|
| 63 |
toy_scheduler.set_timesteps(config["save_steps"])
|
| 64 |
-
print("config[save_steps]", config["save_steps"])
|
| 65 |
timesteps_to_save, num_inference_steps = get_timesteps(toy_scheduler, num_inference_steps=config["save_steps"],
|
| 66 |
strength=1.0,
|
| 67 |
device=device)
|
| 68 |
-
|
| 69 |
|
| 70 |
# seed_everything(config["seed"])
|
| 71 |
if not config["frames"]: # original non demo setting
|
| 72 |
save_path = os.path.join(config["save_dir"],
|
|
|
|
| 73 |
f'sd_{config["sd_version"]}',
|
| 74 |
Path(config["data_path"]).stem,
|
| 75 |
f'steps_{config["steps"]}',
|
| 76 |
f'nframes_{config["n_frames"]}')
|
| 77 |
os.makedirs(os.path.join(save_path, f'latents'), exist_ok=True)
|
|
|
|
|
|
|
| 78 |
add_dict_to_yaml_file(os.path.join(config["save_dir"], 'inversion_prompts.yaml'), Path(config["data_path"]).stem, config["inversion_prompt"])
|
| 79 |
# save inversion prompt in a txt file
|
| 80 |
with open(os.path.join(save_path, 'inversion_prompt.txt'), 'w') as f:
|
|
@@ -82,43 +84,53 @@ def prep(config):
|
|
| 82 |
else:
|
| 83 |
save_path = None
|
| 84 |
|
| 85 |
-
model = Preprocess(device,
|
|
|
|
| 86 |
vae=vae,
|
| 87 |
text_encoder=text_encoder,
|
| 88 |
scheduler=scheduler,
|
| 89 |
tokenizer=tokenizer,
|
| 90 |
unet=unet)
|
| 91 |
-
|
| 92 |
-
|
| 93 |
num_steps=model.config["steps"],
|
| 94 |
save_path=save_path,
|
| 95 |
batch_size=model.config["batch_size"],
|
| 96 |
timesteps_to_save=timesteps_to_save,
|
| 97 |
inversion_prompt=model.config["inversion_prompt"],
|
|
|
|
|
|
|
|
|
|
| 98 |
)
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
def preprocess_and_invert(input_video,
|
| 104 |
frames,
|
| 105 |
latents,
|
| 106 |
inverted_latents,
|
|
|
|
| 107 |
seed,
|
| 108 |
randomize_seed,
|
| 109 |
do_inversion,
|
| 110 |
-
# save_dir: str = "latents",
|
| 111 |
steps,
|
| 112 |
n_timesteps = 50,
|
| 113 |
batch_size: int = 8,
|
| 114 |
n_frames: int = 40,
|
| 115 |
inversion_prompt:str = '',
|
|
|
|
| 116 |
|
| 117 |
):
|
| 118 |
sd_version = "2.1"
|
| 119 |
-
height = 512
|
| 120 |
weidth: int = 512
|
| 121 |
-
|
| 122 |
if do_inversion or randomize_seed:
|
| 123 |
preprocess_config = {}
|
| 124 |
preprocess_config['H'] = height
|
|
@@ -134,30 +146,37 @@ def preprocess_and_invert(input_video,
|
|
| 134 |
preprocess_config['frames'] = video_to_frames(input_video)
|
| 135 |
preprocess_config['data_path'] = input_video.split(".")[0]
|
| 136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
if randomize_seed:
|
| 139 |
seed = randomize_seed_fn()
|
| 140 |
seed_everything(seed)
|
| 141 |
|
| 142 |
-
frames, latents, total_inverted_latents, rgb_reconstruction = prep(preprocess_config)
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
do_inversion = False
|
| 149 |
|
| 150 |
-
return frames, latents, inverted_latents, do_inversion
|
| 151 |
|
| 152 |
|
| 153 |
def edit_with_pnp(input_video,
|
| 154 |
frames,
|
| 155 |
latents,
|
| 156 |
inverted_latents,
|
|
|
|
| 157 |
seed,
|
| 158 |
randomize_seed,
|
| 159 |
do_inversion,
|
| 160 |
steps,
|
|
|
|
| 161 |
prompt: str = "a marble sculpture of a woman running, Venus de Milo",
|
| 162 |
# negative_prompt: str = "ugly, blurry, low res, unrealistic, unaesthetic",
|
| 163 |
pnp_attn_t: float = 0.5,
|
|
@@ -183,14 +202,18 @@ def edit_with_pnp(input_video,
|
|
| 183 |
config["pnp_attn_t"] = pnp_attn_t
|
| 184 |
config["pnp_f_t"] = pnp_f_t
|
| 185 |
config["pnp_inversion_prompt"] = inversion_prompt
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
|
| 188 |
if do_inversion:
|
| 189 |
-
frames, latents, inverted_latents, do_inversion = preprocess_and_invert(
|
| 190 |
input_video,
|
| 191 |
frames,
|
| 192 |
latents,
|
| 193 |
inverted_latents,
|
|
|
|
| 194 |
seed,
|
| 195 |
randomize_seed,
|
| 196 |
do_inversion,
|
|
@@ -198,7 +221,8 @@ def edit_with_pnp(input_video,
|
|
| 198 |
n_timesteps,
|
| 199 |
batch_size,
|
| 200 |
n_frames,
|
| 201 |
-
inversion_prompt
|
|
|
|
| 202 |
do_inversion = False
|
| 203 |
|
| 204 |
|
|
@@ -207,12 +231,13 @@ def edit_with_pnp(input_video,
|
|
| 207 |
seed_everything(seed)
|
| 208 |
|
| 209 |
|
| 210 |
-
editor = TokenFlow(config=config,pipe=tokenflow_pipe, frames=frames.value, inverted_latents=inverted_latents.value)
|
| 211 |
edited_frames = editor.edit_video()
|
| 212 |
-
|
| 213 |
-
|
|
|
|
| 214 |
# path = export_to_video(edited_frames)
|
| 215 |
-
return
|
| 216 |
|
| 217 |
########
|
| 218 |
# demo #
|
|
@@ -238,6 +263,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 238 |
frames = gr.State()
|
| 239 |
inverted_latents = gr.State()
|
| 240 |
latents = gr.State()
|
|
|
|
| 241 |
do_inversion = gr.State(value=True)
|
| 242 |
|
| 243 |
with gr.Row():
|
|
@@ -252,15 +278,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 252 |
label="Describe your edited video",
|
| 253 |
max_lines=1, value=""
|
| 254 |
)
|
| 255 |
-
|
| 256 |
-
# with gr.Group(elem_id="share-btn-container"):
|
| 257 |
-
# community_icon = gr.HTML(community_icon_html, visible=True)
|
| 258 |
-
# loading_icon = gr.HTML(loading_icon_html, visible=False)
|
| 259 |
-
# share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
# with gr.Row():
|
| 263 |
-
# inversion_progress = gr.Textbox(visible=False, label="Inversion progress")
|
| 264 |
|
| 265 |
with gr.Row():
|
| 266 |
run_button = gr.Button("Edit your video!", visible=True)
|
|
@@ -274,8 +292,10 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 274 |
randomize_seed = gr.Checkbox(label='Randomize seed', value=False)
|
| 275 |
gudiance_scale = gr.Slider(label='Guidance Scale', minimum=1, maximum=30,
|
| 276 |
value=7.5, step=0.5, interactive=True)
|
| 277 |
-
steps = gr.Slider(label='Inversion steps', minimum=10, maximum=
|
| 278 |
-
value=
|
|
|
|
|
|
|
| 279 |
|
| 280 |
with gr.Column(min_width=100):
|
| 281 |
inversion_prompt = gr.Textbox(lines=1, label="Inversion prompt", interactive=True, placeholder="")
|
|
@@ -284,7 +304,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 284 |
n_frames = gr.Slider(label='Num frames', minimum=2, maximum=200,
|
| 285 |
value=24, step=1, interactive=True)
|
| 286 |
n_timesteps = gr.Slider(label='Diffusion steps', minimum=25, maximum=100,
|
| 287 |
-
value=
|
| 288 |
n_fps = gr.Slider(label='Frames per second', minimum=1, maximum=60,
|
| 289 |
value=10, step=1, interactive=True)
|
| 290 |
|
|
@@ -300,6 +320,11 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 300 |
fn = reset_do_inversion,
|
| 301 |
outputs = [do_inversion],
|
| 302 |
queue = False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
|
| 304 |
inversion_prompt.change(
|
| 305 |
fn = reset_do_inversion,
|
|
@@ -326,6 +351,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 326 |
frames,
|
| 327 |
latents,
|
| 328 |
inverted_latents,
|
|
|
|
| 329 |
seed,
|
| 330 |
randomize_seed,
|
| 331 |
do_inversion,
|
|
@@ -333,11 +359,13 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 333 |
n_timesteps,
|
| 334 |
batch_size,
|
| 335 |
n_frames,
|
| 336 |
-
inversion_prompt
|
|
|
|
| 337 |
],
|
| 338 |
outputs = [frames,
|
| 339 |
latents,
|
| 340 |
inverted_latents,
|
|
|
|
| 341 |
do_inversion
|
| 342 |
|
| 343 |
])
|
|
@@ -347,10 +375,12 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 347 |
frames,
|
| 348 |
latents,
|
| 349 |
inverted_latents,
|
|
|
|
| 350 |
seed,
|
| 351 |
randomize_seed,
|
| 352 |
do_inversion,
|
| 353 |
steps,
|
|
|
|
| 354 |
prompt,
|
| 355 |
pnp_attn_t,
|
| 356 |
pnp_f_t,
|
|
@@ -360,7 +390,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 360 |
gudiance_scale,
|
| 361 |
inversion_prompt,
|
| 362 |
n_fps ],
|
| 363 |
-
outputs = [output_video, frames, latents, inverted_latents, do_inversion]
|
| 364 |
)
|
| 365 |
|
| 366 |
gr.Examples(
|
|
@@ -371,4 +401,5 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 371 |
)
|
| 372 |
|
| 373 |
demo.queue()
|
|
|
|
| 374 |
demo.launch()
|
|
|
|
| 61 |
model_key = "stabilityai/stable-diffusion-2-depth"
|
| 62 |
toy_scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
|
| 63 |
toy_scheduler.set_timesteps(config["save_steps"])
|
|
|
|
| 64 |
timesteps_to_save, num_inference_steps = get_timesteps(toy_scheduler, num_inference_steps=config["save_steps"],
|
| 65 |
strength=1.0,
|
| 66 |
device=device)
|
| 67 |
+
|
| 68 |
|
| 69 |
# seed_everything(config["seed"])
|
| 70 |
if not config["frames"]: # original non demo setting
|
| 71 |
save_path = os.path.join(config["save_dir"],
|
| 72 |
+
f'inversion_{config[inversion]}',
|
| 73 |
f'sd_{config["sd_version"]}',
|
| 74 |
Path(config["data_path"]).stem,
|
| 75 |
f'steps_{config["steps"]}',
|
| 76 |
f'nframes_{config["n_frames"]}')
|
| 77 |
os.makedirs(os.path.join(save_path, f'latents'), exist_ok=True)
|
| 78 |
+
if opt[inversion] == 'ddpm':
|
| 79 |
+
os.makedirs(os.path.join(save_path, f'latents'), exist_ok=True)
|
| 80 |
add_dict_to_yaml_file(os.path.join(config["save_dir"], 'inversion_prompts.yaml'), Path(config["data_path"]).stem, config["inversion_prompt"])
|
| 81 |
# save inversion prompt in a txt file
|
| 82 |
with open(os.path.join(save_path, 'inversion_prompt.txt'), 'w') as f:
|
|
|
|
| 84 |
else:
|
| 85 |
save_path = None
|
| 86 |
|
| 87 |
+
model = Preprocess(device,
|
| 88 |
+
config,
|
| 89 |
vae=vae,
|
| 90 |
text_encoder=text_encoder,
|
| 91 |
scheduler=scheduler,
|
| 92 |
tokenizer=tokenizer,
|
| 93 |
unet=unet)
|
| 94 |
+
|
| 95 |
+
frames_and_latents, rgb_reconstruction = model.extract_latents(
|
| 96 |
num_steps=model.config["steps"],
|
| 97 |
save_path=save_path,
|
| 98 |
batch_size=model.config["batch_size"],
|
| 99 |
timesteps_to_save=timesteps_to_save,
|
| 100 |
inversion_prompt=model.config["inversion_prompt"],
|
| 101 |
+
inversion_type=model.config["inversion"],
|
| 102 |
+
skip_steps=model.config["skip_steps"],
|
| 103 |
+
reconstruction=model.config["reconstruct"]
|
| 104 |
)
|
| 105 |
|
| 106 |
+
if model.config["inversion"] == 'ddpm':
|
| 107 |
+
frames, latents, total_inverted_latents, zs = frames_and_latents
|
| 108 |
+
return frames, latents, total_inverted_latents, zs, rgb_reconstruction
|
| 109 |
+
else:
|
| 110 |
+
frames, latents, total_inverted_latents = frames_and_latents
|
| 111 |
+
return frames, latents, total_inverted_latents, rgb_reconstruction
|
| 112 |
+
|
| 113 |
|
| 114 |
def preprocess_and_invert(input_video,
|
| 115 |
frames,
|
| 116 |
latents,
|
| 117 |
inverted_latents,
|
| 118 |
+
zs,
|
| 119 |
seed,
|
| 120 |
randomize_seed,
|
| 121 |
do_inversion,
|
|
|
|
| 122 |
steps,
|
| 123 |
n_timesteps = 50,
|
| 124 |
batch_size: int = 8,
|
| 125 |
n_frames: int = 40,
|
| 126 |
inversion_prompt:str = '',
|
| 127 |
+
skip_steps: int = 15,
|
| 128 |
|
| 129 |
):
|
| 130 |
sd_version = "2.1"
|
| 131 |
+
height: int = 512
|
| 132 |
weidth: int = 512
|
| 133 |
+
|
| 134 |
if do_inversion or randomize_seed:
|
| 135 |
preprocess_config = {}
|
| 136 |
preprocess_config['H'] = height
|
|
|
|
| 146 |
preprocess_config['frames'] = video_to_frames(input_video)
|
| 147 |
preprocess_config['data_path'] = input_video.split(".")[0]
|
| 148 |
|
| 149 |
+
preprocess_config['inversion'] = 'ddpm'
|
| 150 |
+
preprocess_config['skip_steps'] = skip_steps
|
| 151 |
+
preprocess_config['reconstruct'] = False
|
| 152 |
+
|
| 153 |
+
|
| 154 |
|
| 155 |
if randomize_seed:
|
| 156 |
seed = randomize_seed_fn()
|
| 157 |
seed_everything(seed)
|
| 158 |
|
| 159 |
+
frames, latents, total_inverted_latents, zs, rgb_reconstruction = prep(preprocess_config)
|
| 160 |
+
|
| 161 |
+
frames = gr.State(value = frames)
|
| 162 |
+
latents = gr.State(value = latents)
|
| 163 |
+
inverted_latents = gr.State(value = total_inverted_latents)
|
| 164 |
+
zs = gr.State(value = zs)
|
| 165 |
do_inversion = False
|
| 166 |
|
| 167 |
+
return frames, latents, inverted_latents, zs, do_inversion
|
| 168 |
|
| 169 |
|
| 170 |
def edit_with_pnp(input_video,
|
| 171 |
frames,
|
| 172 |
latents,
|
| 173 |
inverted_latents,
|
| 174 |
+
zs,
|
| 175 |
seed,
|
| 176 |
randomize_seed,
|
| 177 |
do_inversion,
|
| 178 |
steps,
|
| 179 |
+
skip_steps: int = 15,
|
| 180 |
prompt: str = "a marble sculpture of a woman running, Venus de Milo",
|
| 181 |
# negative_prompt: str = "ugly, blurry, low res, unrealistic, unaesthetic",
|
| 182 |
pnp_attn_t: float = 0.5,
|
|
|
|
| 202 |
config["pnp_attn_t"] = pnp_attn_t
|
| 203 |
config["pnp_f_t"] = pnp_f_t
|
| 204 |
config["pnp_inversion_prompt"] = inversion_prompt
|
| 205 |
+
config["inversion"] = "ddpm"
|
| 206 |
+
config["skip_steps"] = skip_steps
|
| 207 |
+
|
| 208 |
|
| 209 |
|
| 210 |
if do_inversion:
|
| 211 |
+
frames, latents, inverted_latents, zs, do_inversion = preprocess_and_invert(
|
| 212 |
input_video,
|
| 213 |
frames,
|
| 214 |
latents,
|
| 215 |
inverted_latents,
|
| 216 |
+
zs,
|
| 217 |
seed,
|
| 218 |
randomize_seed,
|
| 219 |
do_inversion,
|
|
|
|
| 221 |
n_timesteps,
|
| 222 |
batch_size,
|
| 223 |
n_frames,
|
| 224 |
+
inversion_prompt,
|
| 225 |
+
skip_steps)
|
| 226 |
do_inversion = False
|
| 227 |
|
| 228 |
|
|
|
|
| 231 |
seed_everything(seed)
|
| 232 |
|
| 233 |
|
| 234 |
+
editor = TokenFlow(config=config,pipe=tokenflow_pipe, frames=frames.value, inverted_latents=inverted_latents.value, zs= zs.value)
|
| 235 |
edited_frames = editor.edit_video()
|
| 236 |
+
|
| 237 |
+
edit_video_path = f'tokenflow_PnP_fps_{n_fps}.mp4'
|
| 238 |
+
save_video(edited_frames, edit_video_path, fps=n_fps)
|
| 239 |
# path = export_to_video(edited_frames)
|
| 240 |
+
return edit_video_path, frames, latents, inverted_latents, zs, do_inversion
|
| 241 |
|
| 242 |
########
|
| 243 |
# demo #
|
|
|
|
| 263 |
frames = gr.State()
|
| 264 |
inverted_latents = gr.State()
|
| 265 |
latents = gr.State()
|
| 266 |
+
zs = gr.State()
|
| 267 |
do_inversion = gr.State(value=True)
|
| 268 |
|
| 269 |
with gr.Row():
|
|
|
|
| 278 |
label="Describe your edited video",
|
| 279 |
max_lines=1, value=""
|
| 280 |
)
|
| 281 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
|
| 283 |
with gr.Row():
|
| 284 |
run_button = gr.Button("Edit your video!", visible=True)
|
|
|
|
| 292 |
randomize_seed = gr.Checkbox(label='Randomize seed', value=False)
|
| 293 |
gudiance_scale = gr.Slider(label='Guidance Scale', minimum=1, maximum=30,
|
| 294 |
value=7.5, step=0.5, interactive=True)
|
| 295 |
+
steps = gr.Slider(label='Inversion steps', minimum=10, maximum=200,
|
| 296 |
+
value=50, step=1, interactive=True)
|
| 297 |
+
skip_steps = gr.Slider(label='Skip Steps', minimum=5, maximum=25,
|
| 298 |
+
value=5, step=1, interactive=True)
|
| 299 |
|
| 300 |
with gr.Column(min_width=100):
|
| 301 |
inversion_prompt = gr.Textbox(lines=1, label="Inversion prompt", interactive=True, placeholder="")
|
|
|
|
| 304 |
n_frames = gr.Slider(label='Num frames', minimum=2, maximum=200,
|
| 305 |
value=24, step=1, interactive=True)
|
| 306 |
n_timesteps = gr.Slider(label='Diffusion steps', minimum=25, maximum=100,
|
| 307 |
+
value=50, step=25, interactive=True)
|
| 308 |
n_fps = gr.Slider(label='Frames per second', minimum=1, maximum=60,
|
| 309 |
value=10, step=1, interactive=True)
|
| 310 |
|
|
|
|
| 320 |
fn = reset_do_inversion,
|
| 321 |
outputs = [do_inversion],
|
| 322 |
queue = False)
|
| 323 |
+
|
| 324 |
+
steps.change(
|
| 325 |
+
fn = reset_do_inversion,
|
| 326 |
+
outputs = [do_inversion],
|
| 327 |
+
queue = False)
|
| 328 |
|
| 329 |
inversion_prompt.change(
|
| 330 |
fn = reset_do_inversion,
|
|
|
|
| 351 |
frames,
|
| 352 |
latents,
|
| 353 |
inverted_latents,
|
| 354 |
+
zs,
|
| 355 |
seed,
|
| 356 |
randomize_seed,
|
| 357 |
do_inversion,
|
|
|
|
| 359 |
n_timesteps,
|
| 360 |
batch_size,
|
| 361 |
n_frames,
|
| 362 |
+
inversion_prompt,
|
| 363 |
+
skip_steps
|
| 364 |
],
|
| 365 |
outputs = [frames,
|
| 366 |
latents,
|
| 367 |
inverted_latents,
|
| 368 |
+
zs,
|
| 369 |
do_inversion
|
| 370 |
|
| 371 |
])
|
|
|
|
| 375 |
frames,
|
| 376 |
latents,
|
| 377 |
inverted_latents,
|
| 378 |
+
zs,
|
| 379 |
seed,
|
| 380 |
randomize_seed,
|
| 381 |
do_inversion,
|
| 382 |
steps,
|
| 383 |
+
skip_steps,
|
| 384 |
prompt,
|
| 385 |
pnp_attn_t,
|
| 386 |
pnp_f_t,
|
|
|
|
| 390 |
gudiance_scale,
|
| 391 |
inversion_prompt,
|
| 392 |
n_fps ],
|
| 393 |
+
outputs = [output_video, frames, latents, inverted_latents, zs, do_inversion]
|
| 394 |
)
|
| 395 |
|
| 396 |
gr.Examples(
|
|
|
|
| 401 |
)
|
| 402 |
|
| 403 |
demo.queue()
|
| 404 |
+
|
| 405 |
demo.launch()
|