Spaces:
Paused
Paused
| import os | |
| from transformers import pipeline | |
| HF_TOKEN = os.environ.get("HF_TOKEN") | |
| class CodeGenerator: | |
| def __init__(self, model_name='bigscience/T0_3B'): | |
| self.generator = pipeline('text-generation', model=model_name) | |
| def generate_code(self, task_description): | |
| """ | |
| Generates code based on the provided task description using the specified language model. | |
| Parameters: | |
| task_description (str): The task description or prompt for generating the code. | |
| Returns: | |
| str: The generated code. | |
| """ | |
| return self._generate_code_from_model(task_description) | |
| def _generate_code_from_model(self, input_text): | |
| """ | |
| Internal method to generate code from the model. | |
| Parameters: | |
| input_text (str): The input text for code generation. | |
| Returns: | |
| str: The code generated by the language model. | |
| """ | |
| return self.generator(input_text, max_length=50, num_return_sequences=1, do_sample=True)[0]['generated_text'] | |
| def main(): | |
| task_description = "Develop an app that allows users to search for and modify files on a remote server using the SSH protocol" | |
| code_generator = CodeGenerator() | |
| generated_code = code_generator.generate_code(task_description) | |
| print(generated_code) | |
| if __name__ == "__main__": | |
| main() |