Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,9 @@ import os
|
|
| 3 |
import subprocess
|
| 4 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
| 5 |
import black
|
| 6 |
-
import
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# Define functions for each feature
|
| 9 |
|
|
@@ -18,13 +20,13 @@ def chat_interface(input_text):
|
|
| 18 |
The chatbot's response.
|
| 19 |
"""
|
| 20 |
# Load the GPT-2 model which is compatible with AutoModelForCausalLM
|
| 21 |
-
model_name =
|
| 22 |
try:
|
| 23 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 24 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 25 |
-
generator = pipeline(
|
| 26 |
except EnvironmentError as e:
|
| 27 |
-
return f
|
| 28 |
|
| 29 |
# Truncate input text to avoid exceeding the model's maximum length
|
| 30 |
max_input_length = 900
|
|
@@ -33,16 +35,20 @@ def chat_interface(input_text):
|
|
| 33 |
input_ids = input_ids[:, :max_input_length]
|
| 34 |
|
| 35 |
# Generate chatbot response
|
| 36 |
-
outputs = model.generate(
|
|
|
|
|
|
|
| 37 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 38 |
return response
|
| 39 |
|
|
|
|
| 40 |
# 2. Terminal
|
| 41 |
-
def terminal_interface(command):
|
| 42 |
"""Executes commands in the terminal.
|
| 43 |
|
| 44 |
Args:
|
| 45 |
command: User's command.
|
|
|
|
| 46 |
|
| 47 |
Returns:
|
| 48 |
The terminal output.
|
|
@@ -51,10 +57,18 @@ def terminal_interface(command):
|
|
| 51 |
try:
|
| 52 |
process = subprocess.run(command.split(), capture_output=True, text=True)
|
| 53 |
output = process.stdout
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
except Exception as e:
|
| 55 |
-
output = f
|
| 56 |
return output
|
| 57 |
|
|
|
|
| 58 |
# 3. Code Editor
|
| 59 |
def code_editor_interface(code):
|
| 60 |
"""Provides code completion, formatting, and linting in the code editor.
|
|
@@ -73,14 +87,14 @@ def code_editor_interface(code):
|
|
| 73 |
|
| 74 |
# Lint code using pylint
|
| 75 |
try:
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
lint_message = f"Pylint score: {lint_results:.2f}"
|
| 79 |
except Exception as e:
|
| 80 |
lint_message = f"Pylint error: {e}"
|
| 81 |
|
| 82 |
return formatted_code, lint_message
|
| 83 |
|
|
|
|
| 84 |
# 4. Workspace
|
| 85 |
def workspace_interface(project_name):
|
| 86 |
"""Manages projects, files, and resources in the workspace.
|
|
@@ -91,18 +105,46 @@ def workspace_interface(project_name):
|
|
| 91 |
Returns:
|
| 92 |
Project creation status.
|
| 93 |
"""
|
|
|
|
| 94 |
# Create project directory
|
| 95 |
try:
|
| 96 |
-
os.makedirs(
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
| 98 |
except FileExistsError:
|
| 99 |
-
status = f'Project
|
| 100 |
return status
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
# 5. AI-Infused Tools
|
| 103 |
|
| 104 |
# Define custom AI-powered tools using Hugging Face models
|
| 105 |
|
|
|
|
| 106 |
# Example: Text summarization tool
|
| 107 |
def summarize_text(text):
|
| 108 |
"""Summarizes a given text using a Hugging Face model.
|
|
@@ -114,11 +156,11 @@ def summarize_text(text):
|
|
| 114 |
Summarized text.
|
| 115 |
"""
|
| 116 |
# Load the summarization model
|
| 117 |
-
model_name =
|
| 118 |
try:
|
| 119 |
-
summarizer = pipeline(
|
| 120 |
except EnvironmentError as e:
|
| 121 |
-
return f
|
| 122 |
|
| 123 |
# Truncate input text to avoid exceeding the model's maximum length
|
| 124 |
max_input_length = 1024
|
|
@@ -127,9 +169,55 @@ def summarize_text(text):
|
|
| 127 |
inputs = text[:max_input_length]
|
| 128 |
|
| 129 |
# Generate summary
|
| 130 |
-
summary = summarizer(inputs, max_length=100, min_length=30, do_sample=False)[0][
|
|
|
|
|
|
|
| 131 |
return summary
|
| 132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
# 6. Code Generation
|
| 134 |
def generate_code(idea):
|
| 135 |
"""Generates code based on a given idea using the EleutherAI/gpt-neo-2.7B model.
|
|
@@ -142,12 +230,12 @@ def generate_code(idea):
|
|
| 142 |
"""
|
| 143 |
|
| 144 |
# Load the code generation model
|
| 145 |
-
model_name =
|
| 146 |
try:
|
| 147 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 148 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 149 |
except EnvironmentError as e:
|
| 150 |
-
return f
|
| 151 |
|
| 152 |
# Generate the code
|
| 153 |
input_text = f"""
|
|
@@ -171,48 +259,98 @@ def generate_code(idea):
|
|
| 171 |
|
| 172 |
return generated_code
|
| 173 |
|
|
|
|
| 174 |
# Streamlit App
|
| 175 |
st.title("CodeCraft: Your AI-Powered Development Toolkit")
|
| 176 |
|
| 177 |
-
#
|
| 178 |
-
st.
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
#
|
| 200 |
-
st.
|
| 201 |
-
|
| 202 |
-
if st.button("
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import subprocess
|
| 4 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
| 5 |
import black
|
| 6 |
+
from pylint import epylint as lint
|
| 7 |
+
|
| 8 |
+
PROJECT_ROOT = "projects"
|
| 9 |
|
| 10 |
# Define functions for each feature
|
| 11 |
|
|
|
|
| 20 |
The chatbot's response.
|
| 21 |
"""
|
| 22 |
# Load the GPT-2 model which is compatible with AutoModelForCausalLM
|
| 23 |
+
model_name = "gpt2"
|
| 24 |
try:
|
| 25 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 26 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 27 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 28 |
except EnvironmentError as e:
|
| 29 |
+
return f"Error loading model: {e}"
|
| 30 |
|
| 31 |
# Truncate input text to avoid exceeding the model's maximum length
|
| 32 |
max_input_length = 900
|
|
|
|
| 35 |
input_ids = input_ids[:, :max_input_length]
|
| 36 |
|
| 37 |
# Generate chatbot response
|
| 38 |
+
outputs = model.generate(
|
| 39 |
+
input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True
|
| 40 |
+
)
|
| 41 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 42 |
return response
|
| 43 |
|
| 44 |
+
|
| 45 |
# 2. Terminal
|
| 46 |
+
def terminal_interface(command, project_name=None):
|
| 47 |
"""Executes commands in the terminal.
|
| 48 |
|
| 49 |
Args:
|
| 50 |
command: User's command.
|
| 51 |
+
project_name: Name of the project workspace to add installed packages.
|
| 52 |
|
| 53 |
Returns:
|
| 54 |
The terminal output.
|
|
|
|
| 57 |
try:
|
| 58 |
process = subprocess.run(command.split(), capture_output=True, text=True)
|
| 59 |
output = process.stdout
|
| 60 |
+
|
| 61 |
+
# If the command is to install a package, update the workspace
|
| 62 |
+
if "install" in command and project_name:
|
| 63 |
+
requirements_path = os.path.join(PROJECT_ROOT, project_name, "requirements.txt")
|
| 64 |
+
with open(requirements_path, "a") as req_file:
|
| 65 |
+
package_name = command.split()[-1]
|
| 66 |
+
req_file.write(f"{package_name}\n")
|
| 67 |
except Exception as e:
|
| 68 |
+
output = f"Error: {e}"
|
| 69 |
return output
|
| 70 |
|
| 71 |
+
|
| 72 |
# 3. Code Editor
|
| 73 |
def code_editor_interface(code):
|
| 74 |
"""Provides code completion, formatting, and linting in the code editor.
|
|
|
|
| 87 |
|
| 88 |
# Lint code using pylint
|
| 89 |
try:
|
| 90 |
+
(pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True)
|
| 91 |
+
lint_message = pylint_stdout.getvalue()
|
|
|
|
| 92 |
except Exception as e:
|
| 93 |
lint_message = f"Pylint error: {e}"
|
| 94 |
|
| 95 |
return formatted_code, lint_message
|
| 96 |
|
| 97 |
+
|
| 98 |
# 4. Workspace
|
| 99 |
def workspace_interface(project_name):
|
| 100 |
"""Manages projects, files, and resources in the workspace.
|
|
|
|
| 105 |
Returns:
|
| 106 |
Project creation status.
|
| 107 |
"""
|
| 108 |
+
project_path = os.path.join(PROJECT_ROOT, project_name)
|
| 109 |
# Create project directory
|
| 110 |
try:
|
| 111 |
+
os.makedirs(project_path)
|
| 112 |
+
requirements_path = os.path.join(project_path, "requirements.txt")
|
| 113 |
+
with open(requirements_path, "w") as req_file:
|
| 114 |
+
req_file.write("") # Initialize an empty requirements.txt file
|
| 115 |
+
status = f'Project "{project_name}" created successfully.'
|
| 116 |
except FileExistsError:
|
| 117 |
+
status = f'Project "{project_name}" already exists.'
|
| 118 |
return status
|
| 119 |
|
| 120 |
+
def add_code_to_workspace(project_name, code, file_name):
|
| 121 |
+
"""Adds selected code files to the workspace.
|
| 122 |
+
|
| 123 |
+
Args:
|
| 124 |
+
project_name: Name of the project.
|
| 125 |
+
code: Code to be added.
|
| 126 |
+
file_name: Name of the file to be created.
|
| 127 |
+
|
| 128 |
+
Returns:
|
| 129 |
+
File creation status.
|
| 130 |
+
"""
|
| 131 |
+
project_path = os.path.join(PROJECT_ROOT, project_name)
|
| 132 |
+
file_path = os.path.join(project_path, file_name)
|
| 133 |
+
|
| 134 |
+
try:
|
| 135 |
+
with open(file_path, "w") as code_file:
|
| 136 |
+
code_file.write(code)
|
| 137 |
+
status = f'File "{file_name}" added to project "{project_name}" successfully.'
|
| 138 |
+
except Exception as e:
|
| 139 |
+
status = f"Error: {e}"
|
| 140 |
+
return status
|
| 141 |
+
|
| 142 |
+
|
| 143 |
# 5. AI-Infused Tools
|
| 144 |
|
| 145 |
# Define custom AI-powered tools using Hugging Face models
|
| 146 |
|
| 147 |
+
|
| 148 |
# Example: Text summarization tool
|
| 149 |
def summarize_text(text):
|
| 150 |
"""Summarizes a given text using a Hugging Face model.
|
|
|
|
| 156 |
Summarized text.
|
| 157 |
"""
|
| 158 |
# Load the summarization model
|
| 159 |
+
model_name = "facebook/bart-large-cnn"
|
| 160 |
try:
|
| 161 |
+
summarizer = pipeline("summarization", model=model_name)
|
| 162 |
except EnvironmentError as e:
|
| 163 |
+
return f"Error loading model: {e}"
|
| 164 |
|
| 165 |
# Truncate input text to avoid exceeding the model's maximum length
|
| 166 |
max_input_length = 1024
|
|
|
|
| 169 |
inputs = text[:max_input_length]
|
| 170 |
|
| 171 |
# Generate summary
|
| 172 |
+
summary = summarizer(inputs, max_length=100, min_length=30, do_sample=False)[0][
|
| 173 |
+
"summary_text"
|
| 174 |
+
]
|
| 175 |
return summary
|
| 176 |
|
| 177 |
+
# Example: Sentiment analysis tool
|
| 178 |
+
def sentiment_analysis(text):
|
| 179 |
+
"""Performs sentiment analysis on a given text using a Hugging Face model.
|
| 180 |
+
|
| 181 |
+
Args:
|
| 182 |
+
text: Text to be analyzed.
|
| 183 |
+
|
| 184 |
+
Returns:
|
| 185 |
+
Sentiment analysis result.
|
| 186 |
+
"""
|
| 187 |
+
# Load the sentiment analysis model
|
| 188 |
+
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
|
| 189 |
+
try:
|
| 190 |
+
analyzer = pipeline("sentiment-analysis", model=model_name)
|
| 191 |
+
except EnvironmentError as e:
|
| 192 |
+
return f"Error loading model: {e}"
|
| 193 |
+
|
| 194 |
+
# Perform sentiment analysis
|
| 195 |
+
result = analyzer(text)[0]
|
| 196 |
+
return result
|
| 197 |
+
|
| 198 |
+
# Example: Text translation tool
|
| 199 |
+
def translate_text(text, target_language="fr"):
|
| 200 |
+
"""Translates a given text to the target language using a Hugging Face model.
|
| 201 |
+
|
| 202 |
+
Args:
|
| 203 |
+
text: Text to be translated.
|
| 204 |
+
target_language: The language to translate the text to.
|
| 205 |
+
|
| 206 |
+
Returns:
|
| 207 |
+
Translated text.
|
| 208 |
+
"""
|
| 209 |
+
# Load the translation model
|
| 210 |
+
model_name = f"Helsinki-NLP/opus-mt-en-{target_language}"
|
| 211 |
+
try:
|
| 212 |
+
translator = pipeline("translation", model=model_name)
|
| 213 |
+
except EnvironmentError as e:
|
| 214 |
+
return f"Error loading model: {e}"
|
| 215 |
+
|
| 216 |
+
# Translate text
|
| 217 |
+
translated_text = translator(text)[0]["translation_text"]
|
| 218 |
+
return translated_text
|
| 219 |
+
|
| 220 |
+
|
| 221 |
# 6. Code Generation
|
| 222 |
def generate_code(idea):
|
| 223 |
"""Generates code based on a given idea using the EleutherAI/gpt-neo-2.7B model.
|
|
|
|
| 230 |
"""
|
| 231 |
|
| 232 |
# Load the code generation model
|
| 233 |
+
model_name = "EleutherAI/gpt-neo-2.7B"
|
| 234 |
try:
|
| 235 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 236 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 237 |
except EnvironmentError as e:
|
| 238 |
+
return f"Error loading model: {e}"
|
| 239 |
|
| 240 |
# Generate the code
|
| 241 |
input_text = f"""
|
|
|
|
| 259 |
|
| 260 |
return generated_code
|
| 261 |
|
| 262 |
+
|
| 263 |
# Streamlit App
|
| 264 |
st.title("CodeCraft: Your AI-Powered Development Toolkit")
|
| 265 |
|
| 266 |
+
# Sidebar navigation
|
| 267 |
+
st.sidebar.title("Navigation")
|
| 268 |
+
app_mode = st.sidebar.selectbox("Choose the app mode", ["Tool Box", "Workspace Chat App"])
|
| 269 |
+
|
| 270 |
+
if app_mode == "Tool Box":
|
| 271 |
+
# Tool Box
|
| 272 |
+
st.header("AI-Powered Tools")
|
| 273 |
+
|
| 274 |
+
# Chat Interface
|
| 275 |
+
st.subheader("Chat with CodeCraft")
|
| 276 |
+
chat_input = st.text_area("Enter your message:")
|
| 277 |
+
if st.button("Send"):
|
| 278 |
+
chat_response = chat_interface(chat_input)
|
| 279 |
+
st.write(f"CodeCraft: {chat_response}")
|
| 280 |
+
|
| 281 |
+
# Terminal Interface
|
| 282 |
+
st.subheader("Terminal")
|
| 283 |
+
terminal_input = st.text_input("Enter a command:")
|
| 284 |
+
if st.button("Run"):
|
| 285 |
+
terminal_output = terminal_interface(terminal_input)
|
| 286 |
+
st.code(terminal_output, language="bash")
|
| 287 |
+
|
| 288 |
+
# Code Editor Interface
|
| 289 |
+
st.subheader("Code Editor")
|
| 290 |
+
code_editor = st.text_area("Write your code:", height=300)
|
| 291 |
+
if st.button("Format & Lint"):
|
| 292 |
+
formatted_code, lint_message = code_editor_interface(code_editor)
|
| 293 |
+
st.code(formatted_code, language="python")
|
| 294 |
+
st.info(lint_message)
|
| 295 |
+
|
| 296 |
+
# Text Summarization Tool
|
| 297 |
+
st.subheader("Summarize Text")
|
| 298 |
+
text_to_summarize = st.text_area("Enter text to summarize:")
|
| 299 |
+
if st.button("Summarize"):
|
| 300 |
+
summary = summarize_text(text_to_summarize)
|
| 301 |
+
st.write(f"Summary: {summary}")
|
| 302 |
+
|
| 303 |
+
# Sentiment Analysis Tool
|
| 304 |
+
st.subheader("Sentiment Analysis")
|
| 305 |
+
sentiment_text = st.text_area("Enter text for sentiment analysis:")
|
| 306 |
+
if st.button("Analyze Sentiment"):
|
| 307 |
+
sentiment = sentiment_analysis(sentiment_text)
|
| 308 |
+
st.write(f"Sentiment: {sentiment}")
|
| 309 |
+
|
| 310 |
+
# Text Translation Tool
|
| 311 |
+
st.subheader("Translate Text")
|
| 312 |
+
translation_text = st.text_area("Enter text to translate:")
|
| 313 |
+
target_language = st.text_input("Enter target language code (e.g., 'fr' for French):")
|
| 314 |
+
if st.button("Translate"):
|
| 315 |
+
translated_text = translate_text(translation_text, target_language)
|
| 316 |
+
st.write(f"Translated Text: {translated_text}")
|
| 317 |
+
|
| 318 |
+
# Code Generation
|
| 319 |
+
st.subheader("Code Generation")
|
| 320 |
+
code_idea = st.text_input("Enter your code idea:")
|
| 321 |
+
if st.button("Generate Code"):
|
| 322 |
+
generated_code = generate_code(code_idea)
|
| 323 |
+
st.code(generated_code, language="python")
|
| 324 |
+
|
| 325 |
+
elif app_mode == "Workspace Chat App":
|
| 326 |
+
# Workspace Chat App
|
| 327 |
+
st.header("Workspace Chat App")
|
| 328 |
+
|
| 329 |
+
# Project Workspace Creation
|
| 330 |
+
st.subheader("Create a New Project")
|
| 331 |
+
project_name = st.text_input("Enter project name:")
|
| 332 |
+
if st.button("Create Project"):
|
| 333 |
+
workspace_status = workspace_interface(project_name)
|
| 334 |
+
st.success(workspace_status)
|
| 335 |
+
|
| 336 |
+
# Add Code to Workspace
|
| 337 |
+
st.subheader("Add Code to Workspace")
|
| 338 |
+
code_to_add = st.text_area("Enter code to add to workspace:")
|
| 339 |
+
file_name = st.text_input("Enter file name (e.g., 'app.py'):")
|
| 340 |
+
if st.button("Add Code"):
|
| 341 |
+
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
|
| 342 |
+
st.success(add_code_status)
|
| 343 |
+
|
| 344 |
+
# Terminal Interface with Project Context
|
| 345 |
+
st.subheader("Terminal (Workspace Context)")
|
| 346 |
+
terminal_input = st.text_input("Enter a command within the workspace:")
|
| 347 |
+
if st.button("Run Command"):
|
| 348 |
+
terminal_output = terminal_interface(terminal_input, project_name)
|
| 349 |
+
st.code(terminal_output, language="bash")
|
| 350 |
+
|
| 351 |
+
# Chat Interface for Guidance
|
| 352 |
+
st.subheader("Chat with CodeCraft for Guidance")
|
| 353 |
+
chat_input = st.text_area("Enter your message for guidance:")
|
| 354 |
+
if st.button("Get Guidance"):
|
| 355 |
+
chat_response = chat_interface(chat_input)
|
| 356 |
+
st.write(f"CodeCraft: {chat_response}")
|