FaceLift / app_old.py
weijielyu's picture
demo
f9b802b
raw
history blame
16.7 kB
# Copyright (C) 2025, FaceLift Research Group
# https://github.com/weijielyu/FaceLift
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact: wlyu3@ucmerced.edu
"""
FaceLift: Single Image 3D Face Reconstruction
Generates 3D head models from single images using multi-view diffusion and GS-LRM.
"""
# Disable HF fast transfer if hf_transfer is not installed
# This MUST be done before importing huggingface_hub
import os
if os.environ.get("HF_HUB_ENABLE_HF_TRANSFER") == "1":
try:
import hf_transfer
except ImportError:
print("⚠️ hf_transfer not available, disabling fast download")
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0"
import json
from pathlib import Path
from datetime import datetime
import uuid
import time
import shutil
import gradio as gr
import numpy as np
import torch
import yaml
from easydict import EasyDict as edict
from einops import rearrange
from PIL import Image
from huggingface_hub import snapshot_download
import spaces
# Install diff-gaussian-rasterization at runtime (requires GPU)
import subprocess
import sys
# Outputs directory for generated files
OUTPUTS_DIR = Path.cwd() / "outputs"
OUTPUTS_DIR.mkdir(exist_ok=True)
# -----------------------------
# Ensure diff-gaussian-rasterization builds for current GPU
# -----------------------------
try:
import diff_gaussian_rasterization # noqa: F401
except ImportError:
print("Installing diff-gaussian-rasterization (compiling for detected CUDA arch)...")
env = os.environ.copy()
try:
import torch as _torch
if _torch.cuda.is_available():
maj, minr = _torch.cuda.get_device_capability()
arch = f"{maj}.{minr}" # e.g., "9.0" on H100/H200, "8.0" on A100
env["TORCH_CUDA_ARCH_LIST"] = f"{arch}+PTX"
else:
# Build stage may not see a GPU on HF Spaces: compile a cross-arch set
env["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6;8.9;9.0+PTX"
except Exception:
env["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6;8.9;9.0+PTX"
# (Optional) side-step allocator+NVML quirks in restrictive containers
env.setdefault("PYTORCH_NO_CUDA_MEMORY_CACHING", "1")
subprocess.check_call(
[sys.executable, "-m", "pip", "install",
"git+https://github.com/graphdeco-inria/diff-gaussian-rasterization"],
env=env,
)
import diff_gaussian_rasterization # noqa: F401
from gslrm.model.gaussians_renderer import render_turntable, imageseq2video
from mvdiffusion.pipelines.pipeline_mvdiffusion_unclip import StableUnCLIPImg2ImgPipeline
from utils_folder.face_utils import preprocess_image, preprocess_image_without_cropping
# HuggingFace repository configuration
HF_REPO_ID = "wlyu/OpenFaceLift"
def download_weights_from_hf() -> Path:
"""Download model weights from HuggingFace if not already present.
Returns:
Path to the downloaded repository
"""
workspace_dir = Path(__file__).parent
# Check if weights already exist locally
mvdiffusion_path = workspace_dir / "checkpoints/mvdiffusion/pipeckpts"
gslrm_path = workspace_dir / "checkpoints/gslrm/ckpt_0000000000021125.pt"
if mvdiffusion_path.exists() and gslrm_path.exists():
print("Using local model weights")
return workspace_dir
print(f"Downloading model weights from HuggingFace: {HF_REPO_ID}")
print("This may take a few minutes on first run...")
# Download to local directory
snapshot_download(
repo_id=HF_REPO_ID,
local_dir=str(workspace_dir / "checkpoints"),
local_dir_use_symlinks=False,
)
print("Model weights downloaded successfully!")
return workspace_dir
class FaceLiftPipeline:
"""Pipeline for FaceLift 3D head generation from single images."""
def __init__(self):
# Download weights from HuggingFace if needed
workspace_dir = download_weights_from_hf()
# Setup paths
self.output_dir = workspace_dir / "outputs"
self.examples_dir = workspace_dir / "examples"
self.output_dir.mkdir(exist_ok=True)
# Parameters
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.image_size = 512
self.camera_indices = [2, 1, 0, 5, 4, 3]
# Load models (keep on CPU for ZeroGPU compatibility)
print("Loading models...")
try:
self.mvdiffusion_pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained(
str(workspace_dir / "checkpoints/mvdiffusion/pipeckpts"),
torch_dtype=torch.float16,
)
# Don't move to device or enable xformers here - will be done in GPU-decorated function
self._models_on_gpu = False
with open(workspace_dir / "configs/gslrm.yaml", "r") as f:
config = edict(yaml.safe_load(f))
module_name, class_name = config.model.class_name.rsplit(".", 1)
module = __import__(module_name, fromlist=[class_name])
ModelClass = getattr(module, class_name)
self.gs_lrm_model = ModelClass(config)
checkpoint = torch.load(
workspace_dir / "checkpoints/gslrm/ckpt_0000000000021125.pt",
map_location="cpu"
)
# Filter out loss_calculator weights (training-only, not needed for inference)
state_dict = {k: v for k, v in checkpoint["model"].items()
if not k.startswith("loss_calculator.")}
self.gs_lrm_model.load_state_dict(state_dict)
# Keep on CPU initially - will move to GPU in decorated function
self.color_prompt_embedding = torch.load(
workspace_dir / "mvdiffusion/fixed_prompt_embeds_6view/clr_embeds.pt",
map_location="cpu"
)
with open(workspace_dir / "utils_folder/opencv_cameras.json", 'r') as f:
self.cameras_data = json.load(f)["frames"]
print("Models loaded successfully!")
except Exception as e:
print(f"Error loading models: {e}")
import traceback
traceback.print_exc()
raise
def _move_models_to_gpu(self):
"""Move models to GPU and enable optimizations. Called within @spaces.GPU context."""
if not self._models_on_gpu and torch.cuda.is_available():
print("Moving models to GPU...")
self.device = torch.device("cuda:0")
self.mvdiffusion_pipeline.to(self.device)
self.mvdiffusion_pipeline.unet.enable_xformers_memory_efficient_attention()
self.gs_lrm_model.to(self.device)
self.gs_lrm_model.eval() # Set to eval mode
self.color_prompt_embedding = self.color_prompt_embedding.to(self.device)
self._models_on_gpu = True
torch.cuda.empty_cache() # Clear cache after moving models
print("Models on GPU, xformers enabled!")
@spaces.GPU(duration=120)
def generate_3d_head(self, image_path, auto_crop=True, guidance_scale=3.0,
random_seed=4, num_steps=50):
"""Generate 3D head from single image."""
try:
# Move models to GPU now that we're in the GPU context
self._move_models_to_gpu()
# Setup output directory
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_dir = self.output_dir / timestamp
output_dir.mkdir(exist_ok=True)
# Preprocess input
original_img = np.array(Image.open(image_path))
input_image = preprocess_image(original_img) if auto_crop else \
preprocess_image_without_cropping(original_img)
if input_image.size != (self.image_size, self.image_size):
input_image = input_image.resize((self.image_size, self.image_size))
input_path = output_dir / "input.png"
input_image.save(input_path)
# Generate multi-view images
generator = torch.Generator(device=self.mvdiffusion_pipeline.unet.device)
generator.manual_seed(random_seed)
result = self.mvdiffusion_pipeline(
input_image, None,
prompt_embeds=self.color_prompt_embedding,
height=self.image_size,
width=self.image_size,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
num_inference_steps=num_steps,
generator=generator,
eta=1.0,
)
selected_views = result.images[:6]
# Save multi-view composite
multiview_image = Image.new("RGB", (self.image_size * 6, self.image_size))
for i, view in enumerate(selected_views):
multiview_image.paste(view, (self.image_size * i, 0))
multiview_path = output_dir / "multiview.png"
multiview_image.save(multiview_path)
# Move diffusion model to CPU to free GPU memory for GS-LRM
print("Moving diffusion model to CPU to free memory...")
self.mvdiffusion_pipeline.to("cpu")
# Delete intermediate variables to free memory
del result, generator
torch.cuda.empty_cache()
torch.cuda.synchronize()
# Prepare 3D reconstruction input
view_arrays = [np.array(view) for view in selected_views]
lrm_input = torch.from_numpy(np.stack(view_arrays, axis=0)).float()
lrm_input = lrm_input[None].to(self.device) / 255.0
lrm_input = rearrange(lrm_input, "b v h w c -> b v c h w")
# Prepare camera parameters
selected_cameras = [self.cameras_data[i] for i in self.camera_indices]
fxfycxcy_list = [[c["fx"], c["fy"], c["cx"], c["cy"]] for c in selected_cameras]
c2w_list = [np.linalg.inv(np.array(c["w2c"])) for c in selected_cameras]
fxfycxcy = torch.from_numpy(np.stack(fxfycxcy_list, axis=0).astype(np.float32))
c2w = torch.from_numpy(np.stack(c2w_list, axis=0).astype(np.float32))
fxfycxcy = fxfycxcy[None].to(self.device)
c2w = c2w[None].to(self.device)
batch_indices = torch.stack([
torch.zeros(lrm_input.size(1)).long(),
torch.arange(lrm_input.size(1)).long(),
], dim=-1)[None].to(self.device)
batch = edict({
"image": lrm_input,
"c2w": c2w,
"fxfycxcy": fxfycxcy,
"index": batch_indices,
})
# Ensure GS-LRM model is on GPU
if next(self.gs_lrm_model.parameters()).device.type == "cpu":
print("Moving GS-LRM model to GPU...")
self.gs_lrm_model.to(self.device)
torch.cuda.empty_cache()
# Final memory cleanup before reconstruction
torch.cuda.empty_cache()
# Run 3D reconstruction
with torch.no_grad(), torch.autocast(enabled=True, device_type="cuda", dtype=torch.float16):
result = self.gs_lrm_model.forward(batch, create_visual=False, split_data=True)
comp_image = result.render[0].unsqueeze(0).detach()
gaussians = result.gaussians[0]
# Clear CUDA cache after reconstruction
torch.cuda.empty_cache()
# Save filtered gaussians
filtered_gaussians = gaussians.apply_all_filters(
cam_origins=None,
opacity_thres=0.04,
scaling_thres=0.2,
floater_thres=0.75,
crop_bbx=[-0.91, 0.91, -0.91, 0.91, -1.0, 1.0],
nearfar_percent=(0.0001, 1.0),
)
ply_path = output_dir / "gaussians.ply"
filtered_gaussians.save_ply(str(ply_path))
# Save output image
comp_image = rearrange(comp_image, "x v c h w -> (x h) (v w) c")
comp_image = (comp_image.cpu().numpy() * 255.0).clip(0, 255).astype(np.uint8)
output_path = output_dir / "output.png"
Image.fromarray(comp_image).save(output_path)
# Generate turntable video
turntable_resolution = 512
num_turntable_views = 180
turntable_frames = render_turntable(gaussians, rendering_resolution=turntable_resolution,
num_views=num_turntable_views)
turntable_frames = rearrange(turntable_frames, "h (v w) c -> v h w c", v=num_turntable_views)
turntable_frames = np.ascontiguousarray(turntable_frames)
turntable_path = output_dir / "turntable.mp4"
imageseq2video(turntable_frames, str(turntable_path), fps=30)
# Final CUDA cache clear
torch.cuda.empty_cache()
return str(input_path), str(multiview_path), str(output_path), \
str(turntable_path), str(ply_path)
except Exception as e:
import traceback
error_details = traceback.format_exc()
print(f"Error details:\n{error_details}")
raise gr.Error(f"Generation failed: {str(e)}")
def main():
"""Run the FaceLift application."""
pipeline = FaceLiftPipeline()
# Prepare examples (same as before)
examples = []
if pipeline.examples_dir.exists():
examples = [[str(f), True, 3.0, 4, 50] for f in sorted(pipeline.examples_dir.iterdir())
if f.suffix.lower() in {'.png', '.jpg', '.jpeg'}]
with gr.Blocks(title="FaceLift: Single Image 3D Face Reconstruction") as demo:
# Wrapper to return outputs for display
def _generate_and_filter_outputs(image_path, auto_crop, guidance_scale, random_seed, num_steps):
input_path, multiview_path, output_path, turntable_path, ply_path = \
pipeline.generate_3d_head(image_path, auto_crop, guidance_scale, random_seed, num_steps)
return output_path, turntable_path, ply_path
gr.Markdown("## FaceLift: Single Image 3D Face Reconstruction.")
gr.Markdown("""
### 💡 Tips for Best Results
- Works best with near-frontal portrait images
- The provided checkpoints were not trained with accessories (glasses, hats, etc.). Portraits containing accessories may produce suboptimal results.
- If face detection fails, try disabling auto-cropping and manually crop to square
""")
with gr.Row():
with gr.Column(scale=1):
in_image = gr.Image(type="filepath", label="Input Portrait Image")
auto_crop = gr.Checkbox(value=True, label="Auto Cropping")
guidance = gr.Slider(1.0, 10.0, 3.0, step=0.1, label="Guidance Scale")
seed = gr.Number(value=4, label="Random Seed")
steps = gr.Slider(10, 100, 50, step=5, label="Generation Steps")
run_btn = gr.Button("Generate 3D Head", variant="primary")
# Examples (match input signature)
if examples:
gr.Examples(
examples=examples,
inputs=[in_image, auto_crop, guidance, seed, steps],
examples_per_page=10,
)
with gr.Column(scale=1):
out_recon = gr.Image(label="3D Reconstruction Views")
out_video = gr.PlayableVideo(label="Turntable Animation (360° View)", height=600)
out_ply = gr.File(label="Download 3D Model (.ply)")
# Run generation and display all outputs
run_btn.click(
fn=_generate_and_filter_outputs,
inputs=[in_image, auto_crop, guidance, seed, steps],
outputs=[out_recon, out_video, out_ply],
)
demo.queue(max_size=10)
demo.launch(share=True, server_name="0.0.0.0", server_port=7860, show_error=True)
if __name__ == "__main__":
main()