FaceLift / gslrm /model /gslrm.py
weijielyu's picture
demo
cb4cbb0
# Copyright © 2025, Adobe Inc. and its licensors. All rights reserved.
#
# This file is licensed under the Adobe Research License. You may obtain a copy
# of the license at https://raw.githubusercontent.com/adobe-research/FaceLift/main/LICENSE.md
"""
GSLRM (Gaussian Splatting Large Reconstruction Model)
This module implements a transformer-based model for generating 3D Gaussian splats
from multi-view images. The model uses a combination of image tokenization,
transformer processing, and Gaussian splatting for novel view synthesis.
Classes:
Renderer: Handles Gaussian splatting rendering operations
GaussiansUpsampler: Converts transformer tokens to Gaussian parameters
LossComputer: Computes various loss functions for training
TransformTarget: Handles target image transformations (cropping, etc.)
GSLRM: Main model class that orchestrates the entire pipeline
"""
import copy
from typing import List, Optional, Tuple
import lpips
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from easydict import EasyDict as edict
from einops import rearrange
from einops.layers.torch import Rearrange
# Local imports
from .gaussians_renderer import (
GaussianModel,
deferred_gaussian_render,
render_opencv_cam,
)
from .transform_data import SplitData, TransformInput, TransformTarget
from .utils_transformer import (
TransformerBlock,
_init_weights,
)
class Renderer(nn.Module):
"""
Handles Gaussian splatting rendering operations.
Supports both deferred rendering (for training with gradients) and
standard rendering (for inference).
"""
def __init__(self, config: edict):
super().__init__()
self.config = config
# Initialize Gaussian model with scaling modifier
self.scaling_modifier = config.model.gaussians.get("scaling_modifier", None)
self.gaussians_model = GaussianModel(
config.model.gaussians.sh_degree,
self.scaling_modifier
)
print(f"Renderer initialized with scaling_modifier: {self.scaling_modifier}")
@torch.cuda.amp.custom_fwd(cast_inputs=torch.float32)
def forward(
self,
xyz: torch.Tensor, # [b, n_gaussians, 3]
features: torch.Tensor, # [b, n_gaussians, (sh_degree+1)^2, 3]
scaling: torch.Tensor, # [b, n_gaussians, 3]
rotation: torch.Tensor, # [b, n_gaussians, 4]
opacity: torch.Tensor, # [b, n_gaussians, 1]
height: int,
width: int,
C2W: torch.Tensor, # [b, v, 4, 4]
fxfycxcy: torch.Tensor, # [b, v, 4]
deferred: bool = True,
) -> torch.Tensor: # [b, v, 3, height, width]
"""
Render Gaussian splats to images.
Args:
xyz: Gaussian positions
features: Gaussian spherical harmonic features
scaling: Gaussian scaling parameters
rotation: Gaussian rotation quaternions
opacity: Gaussian opacity values
height: Output image height
width: Output image width
C2W: Camera-to-world transformation matrices
fxfycxcy: Camera intrinsics (fx, fy, cx, cy)
deferred: Whether to use deferred rendering (maintains gradients)
Returns:
Rendered images
"""
if deferred:
return deferred_gaussian_render(
xyz, features, scaling, rotation, opacity,
height, width, C2W, fxfycxcy, self.scaling_modifier
)
else:
return self._render_sequential(
xyz, features, scaling, rotation, opacity,
height, width, C2W, fxfycxcy
)
def _render_sequential(
self, xyz, features, scaling, rotation, opacity,
height, width, C2W, fxfycxcy
) -> torch.Tensor:
"""Sequential rendering without gradient support (used for inference)."""
b, v = C2W.size(0), C2W.size(1)
renderings = torch.zeros(
b, v, 3, height, width, dtype=torch.float32, device=xyz.device
)
for i in range(b):
pc = self.gaussians_model.set_data(
xyz[i], features[i], scaling[i], rotation[i], opacity[i]
)
for j in range(v):
renderings[i, j] = render_opencv_cam(
pc, height, width, C2W[i, j], fxfycxcy[i, j]
)["render"]
return renderings
class GaussiansUpsampler(nn.Module):
"""
Converts transformer output tokens to Gaussian splatting parameters.
Takes high-dimensional transformer features and projects them to the
concatenated Gaussian parameter space (xyz + features + scaling + rotation + opacity).
"""
def __init__(self, config: edict):
super().__init__()
self.config = config
# Layer normalization before final projection
self.layernorm = nn.LayerNorm(config.model.transformer.d, bias=False)
# Calculate output dimension for Gaussian parameters
sh_dim = (config.model.gaussians.sh_degree + 1) ** 2 * 3
gaussian_param_dim = 3 + sh_dim + 3 + 4 + 1 # xyz + features + scaling + rotation + opacity
# Check upsampling factor (currently only supports 1x)
upsample_factor = config.model.gaussians.upsampler.upsample_factor
if upsample_factor > 1:
raise NotImplementedError("GaussiansUpsampler only supports upsample_factor=1")
# Linear projection to Gaussian parameters
self.linear = nn.Linear(
config.model.transformer.d,
gaussian_param_dim,
bias=False,
)
def forward(
self,
gaussians: torch.Tensor, # [b, n_gaussians, d]
images: torch.Tensor # [b, l, d] (unused but kept for interface compatibility)
) -> torch.Tensor: # [b, n_gaussians, gaussian_param_dim]
"""
Convert transformer tokens to Gaussian parameters.
Args:
gaussians: Transformer output tokens for Gaussians
images: Image tokens (unused but kept for compatibility)
Returns:
Raw Gaussian parameters (before conversion to final format)
"""
upsample_factor = self.config.model.gaussians.upsampler.upsample_factor
if upsample_factor > 1:
raise NotImplementedError("GaussiansUpsampler only supports upsample_factor=1")
return self.linear(self.layernorm(gaussians))
def to_gs(self, gaussians: torch.Tensor) -> Tuple[torch.Tensor, ...]:
"""
Convert raw Gaussian parameters to final format.
Args:
gaussians: Raw Gaussian parameters [b, n_gaussians, param_dim]
Returns:
Tuple of (xyz, features, scaling, rotation, opacity)
"""
sh_dim = (self.config.model.gaussians.sh_degree + 1) ** 2 * 3
# Split concatenated parameters
xyz, features, scaling, rotation, opacity = gaussians.split(
[3, sh_dim, 3, 4, 1], dim=2
)
# Reshape features to proper spherical harmonics format
features = features.reshape(
features.size(0),
features.size(1),
(self.config.model.gaussians.sh_degree + 1) ** 2,
3,
)
# Apply activation functions with specific biases
# Scaling: exp(x - 2.3) clamped to prevent too large values
scaling = (scaling - 2.3).clamp(max=-1.20)
# Opacity: sigmoid(x - 2.0) to get values in [0, 1]
opacity = opacity - 2.0
return xyz, features, scaling, rotation, opacity
class GSLRM(nn.Module):
"""
Gaussian Splatting Large Reconstruction Model.
A transformer-based model that generates 3D Gaussian splats from multi-view images.
The model processes input images through tokenization, transformer layers, and
generates Gaussian parameters for novel view synthesis.
Architecture:
1. Image tokenization with patch-based encoding
2. Transformer processing with Gaussian positional embeddings
3. Gaussian parameter generation and upsampling
4. Rendering and loss computation
"""
def __init__(self, config: edict):
super().__init__()
self.config = config
# Initialize data processing modules
self._init_data_processors(config)
# Initialize core model components
self._init_tokenizer(config)
self._init_positional_embeddings(config)
self._init_transformer(config)
self._init_gaussian_modules(config)
self._init_rendering_modules(config)
# Initialize training state management
self._init_training_state(config)
def _init_data_processors(self, config: edict) -> None:
"""Initialize data splitting and transformation modules."""
self.data_splitter = SplitData(config)
self.input_transformer = TransformInput(config)
self.target_transformer = TransformTarget(config)
def _init_tokenizer(self, config: edict) -> None:
"""Initialize image tokenization pipeline."""
patch_size = config.model.image_tokenizer.patch_size
input_channels = config.model.image_tokenizer.in_channels
hidden_dim = config.model.transformer.d
self.patch_embedder = nn.Sequential(
Rearrange(
"batch views channels (height patch_h) (width patch_w) -> (batch views) (height width) (patch_h patch_w channels)",
patch_h=patch_size,
patch_w=patch_size,
),
nn.Linear(
input_channels * (patch_size ** 2),
hidden_dim,
bias=False,
),
)
self.patch_embedder.apply(_init_weights)
def _init_positional_embeddings(self, config: edict) -> None:
"""Initialize positional embeddings for reference/source markers and Gaussians."""
hidden_dim = config.model.transformer.d
# Optional reference/source view markers
self.view_type_embeddings = None
if config.model.get("add_refsrc_marker", False):
self.view_type_embeddings = nn.Parameter(
torch.randn(2, hidden_dim) # [reference_marker, source_marker]
)
nn.init.trunc_normal_(self.view_type_embeddings, std=0.02)
# Gaussian positional embeddings
num_gaussians = config.model.gaussians.n_gaussians
self.gaussian_position_embeddings = nn.Parameter(
torch.randn(num_gaussians, hidden_dim)
)
nn.init.trunc_normal_(self.gaussian_position_embeddings, std=0.02)
def _init_transformer(self, config: edict) -> None:
"""Initialize transformer architecture."""
hidden_dim = config.model.transformer.d
head_dim = config.model.transformer.d_head
num_layers = config.model.transformer.n_layer
self.input_layer_norm = nn.LayerNorm(hidden_dim, bias=False)
self.transformer_layers = nn.ModuleList([
TransformerBlock(hidden_dim, head_dim)
for _ in range(num_layers)
])
self.transformer_layers.apply(_init_weights)
def _init_gaussian_modules(self, config: edict) -> None:
"""Initialize Gaussian parameter generation modules."""
hidden_dim = config.model.transformer.d
patch_size = config.model.image_tokenizer.patch_size
sh_degree = config.model.gaussians.sh_degree
# Calculate output dimension for pixel-aligned Gaussians
# Components: xyz(3) + sh_features((sh_degree+1)^2*3) + scaling(3) + rotation(4) + opacity(1)
gaussian_param_dim = 3 + (sh_degree + 1) ** 2 * 3 + 3 + 4 + 1
# Gaussian upsampler for transformer tokens
self.gaussian_upsampler = GaussiansUpsampler(config)
self.gaussian_upsampler.apply(_init_weights)
# Pixel-aligned Gaussian decoder
self.pixel_gaussian_decoder = nn.Sequential(
nn.LayerNorm(hidden_dim, bias=False),
nn.Linear(
hidden_dim,
(patch_size ** 2) * gaussian_param_dim,
bias=False,
),
)
self.pixel_gaussian_decoder.apply(_init_weights)
def _init_rendering_modules(self, config: edict) -> None:
"""Initialize rendering and loss computation modules."""
self.gaussian_renderer = Renderer(config)
def _init_training_state(self, config: edict) -> None:
"""Initialize training state management variables."""
self.training_step = None
self.training_start_step = None
self.training_max_step = None
self.original_config = copy.deepcopy(config)
def _create_transformer_layer_runner(self, start_layer: int, end_layer: int):
"""
Create a function to run a subset of transformer layers.
Args:
start_layer: Starting layer index
end_layer: Ending layer index (exclusive)
Returns:
Function that processes tokens through specified layers
"""
def run_transformer_layers(token_sequence: torch.Tensor) -> torch.Tensor:
for layer_idx in range(start_layer, min(end_layer, len(self.transformer_layers))):
token_sequence = self.transformer_layers[layer_idx](token_sequence)
return token_sequence
return run_transformer_layers
def _create_posed_images_with_plucker(self, input_data: edict) -> torch.Tensor:
"""
Create posed images by concatenating RGB with Plucker coordinates.
Args:
input_data: Input data containing images and ray information
Returns:
Posed images with Plucker coordinates [batch, views, channels, height, width]
"""
# Normalize RGB to [-1, 1] range
normalized_rgb = input_data.image[:, :, :3, :, :] * 2.0 - 1.0
if self.config.model.get("use_custom_plucker", False):
# Custom Plucker: RGB + ray_direction + nearest_points
ray_origin_dot_direction = torch.sum(
-input_data.ray_o * input_data.ray_d, dim=2, keepdim=True
)
nearest_points = input_data.ray_o + ray_origin_dot_direction * input_data.ray_d
return torch.cat([
normalized_rgb,
input_data.ray_d,
nearest_points,
], dim=2)
elif self.config.model.get("use_aug_plucker", False):
# Augmented Plucker: RGB + cross_product + ray_direction + nearest_points
ray_cross_product = torch.cross(input_data.ray_o, input_data.ray_d, dim=2)
ray_origin_dot_direction = torch.sum(
-input_data.ray_o * input_data.ray_d, dim=2, keepdim=True
)
nearest_points = input_data.ray_o + ray_origin_dot_direction * input_data.ray_d
return torch.cat([
normalized_rgb,
ray_cross_product,
input_data.ray_d,
nearest_points,
], dim=2)
else:
# Standard Plucker: RGB + cross_product + ray_direction
ray_cross_product = torch.cross(input_data.ray_o, input_data.ray_d, dim=2)
return torch.cat([
normalized_rgb,
ray_cross_product,
input_data.ray_d,
], dim=2)
def _add_view_type_embeddings(
self,
image_tokens: torch.Tensor,
batch_size: int,
num_views: int,
num_patches: int,
hidden_dim: int
) -> torch.Tensor:
"""Add view type embeddings to distinguish reference vs source views."""
image_tokens = image_tokens.reshape(batch_size, num_views, num_patches, hidden_dim)
# Create view type markers: first view is reference, rest are source
view_markers = [self.view_type_embeddings[0]] + [
self.view_type_embeddings[1] for _ in range(1, num_views)
]
view_markers = torch.stack(view_markers, dim=0)[None, :, None, :] # [1, views, 1, hidden_dim]
# Add markers to image tokens
image_tokens = image_tokens + view_markers
return image_tokens.reshape(batch_size, num_views * num_patches, hidden_dim)
def _process_through_transformer(
self,
gaussian_tokens: torch.Tensor,
image_tokens: torch.Tensor
) -> torch.Tensor:
"""Process combined tokens through transformer with gradient checkpointing."""
# Combine Gaussian and image tokens
combined_tokens = torch.cat((gaussian_tokens, image_tokens), dim=1)
combined_tokens = self.input_layer_norm(combined_tokens)
# Process through transformer layers with gradient checkpointing
checkpoint_interval = self.config.training.runtime.grad_checkpoint_every
num_layers = len(self.transformer_layers)
for start_idx in range(0, num_layers, checkpoint_interval):
end_idx = start_idx + checkpoint_interval
layer_runner = self._create_transformer_layer_runner(start_idx, end_idx)
combined_tokens = torch.utils.checkpoint.checkpoint(
layer_runner,
combined_tokens,
use_reentrant=False,
)
return combined_tokens
def _apply_hard_pixel_alignment(
self,
pixel_aligned_xyz: torch.Tensor,
input_data: edict
) -> torch.Tensor:
"""Apply hard pixel alignment to ensure Gaussians align with ray directions."""
depth_bias = self.config.model.get("depth_preact_bias", 0.0)
# Apply sigmoid activation to depth values
depth_values = torch.sigmoid(
pixel_aligned_xyz.mean(dim=2, keepdim=True) + depth_bias
)
# Apply different depth computation strategies
if (self.config.model.get("use_aug_plucker", False) or
self.config.model.get("use_custom_plucker", False)):
# For Plucker coordinates: use dot product offset
ray_origin_dot_direction = torch.sum(
-input_data.ray_o * input_data.ray_d, dim=2, keepdim=True
)
depth_values = (2.0 * depth_values - 1.0) * 1.8 + ray_origin_dot_direction
elif (self.config.model.get("depth_min", -1.0) > 0.0 and
self.config.model.get("depth_max", -1.0) > 0.0):
# Use explicit depth range
depth_min = self.config.model.depth_min
depth_max = self.config.model.depth_max
depth_values = depth_values * (depth_max - depth_min) + depth_min
elif self.config.model.get("depth_reference_origin", False):
# Reference from ray origin norm
ray_origin_norm = input_data.ray_o.norm(dim=2, p=2, keepdim=True)
depth_values = (2.0 * depth_values - 1.0) * 1.8 + ray_origin_norm
else:
# Default depth computation
depth_values = (2.0 * depth_values - 1.0) * 1.5 + 2.7
# Compute final 3D positions along rays
aligned_positions = input_data.ray_o + depth_values * input_data.ray_d
# Apply coordinate clipping if enabled (only during training)
if (self.config.model.get("clip_xyz", False) and
not self.config.inference):
aligned_positions = aligned_positions.clamp(-1.0, 1.0)
return aligned_positions
def _create_gaussian_models_and_stats(
self,
xyz: torch.Tensor,
features: torch.Tensor,
scaling: torch.Tensor,
rotation: torch.Tensor,
opacity: torch.Tensor,
num_pixel_aligned: int,
num_views: int,
height: int,
width: int,
patch_size: int
) -> Tuple[List, torch.Tensor, List[float]]:
"""
Create Gaussian models for each batch item and compute usage statistics.
Returns:
Tuple of (gaussian_models, pixel_aligned_positions, usage_statistics)
"""
gaussian_models = []
pixel_aligned_positions_list = []
usage_statistics = []
batch_size = xyz.size(0)
opacity_threshold = 0.05
for batch_idx in range(batch_size):
# Create fresh Gaussian model for this batch item
self.gaussian_renderer.gaussians_model.empty()
gaussian_model = copy.deepcopy(self.gaussian_renderer.gaussians_model)
# Set Gaussian data
gaussian_model = gaussian_model.set_data(
xyz[batch_idx].detach().float(),
features[batch_idx].detach().float(),
scaling[batch_idx].detach().float(),
rotation[batch_idx].detach().float(),
opacity[batch_idx].detach().float(),
)
gaussian_models.append(gaussian_model)
# Compute usage statistics (fraction of Gaussians above opacity threshold)
opacity_mask = gaussian_model.get_opacity > opacity_threshold
usage_ratio = opacity_mask.sum() / opacity_mask.numel()
if torch.is_tensor(usage_ratio):
usage_ratio = usage_ratio.item()
usage_statistics.append(usage_ratio)
# Extract pixel-aligned positions and reshape
pixel_xyz = gaussian_model.get_xyz[-num_pixel_aligned:, :]
pixel_xyz_reshaped = rearrange(
pixel_xyz,
"(views height width patch_h patch_w) coords -> views coords (height patch_h) (width patch_w)",
views=num_views,
height=height // patch_size,
width=width // patch_size,
patch_h=patch_size,
patch_w=patch_size,
)
pixel_aligned_positions_list.append(pixel_xyz_reshaped)
# Stack pixel-aligned positions
pixel_aligned_positions = torch.stack(pixel_aligned_positions_list, dim=0)
return gaussian_models, pixel_aligned_positions, usage_statistics
def forward(
self,
batch_data: edict,
create_visual: bool = False,
split_data: bool = True
) -> edict:
"""
Forward pass of the GSLRM model.
Args:
batch_data: Input batch containing:
- image: Multi-view images [batch, views, channels, height, width]
- fxfycxcy: Camera intrinsics [batch, views, 4]
- c2w: Camera-to-world matrices [batch, views, 4, 4]
create_visual: Whether to create visualization outputs
split_data: Whether to split input/target data
Returns:
Dictionary containing model outputs including Gaussians, renders, and losses
"""
with torch.no_grad():
target_data = None
if split_data:
batch_data, target_data = self.data_splitter(
batch_data, self.config.training.dataset.target_has_input
)
target_data = self.target_transformer(target_data)
input_data = self.input_transformer(batch_data)
# Prepare posed images with Plucker coordinates [batch, views, channels, height, width]
posed_images = self._create_posed_images_with_plucker(input_data)
# Process images through tokenization and transformer
batch_size, num_views, channels, height, width = posed_images.size()
# Tokenize images into patches
image_patch_tokens = self.patch_embedder(posed_images) # [batch*views, num_patches, hidden_dim]
_, num_patches, hidden_dim = image_patch_tokens.size()
image_patch_tokens = image_patch_tokens.reshape(
batch_size, num_views * num_patches, hidden_dim
) # [batch, views*patches, hidden_dim]
# Add view type embeddings if enabled (reference vs source views)
if self.view_type_embeddings is not None:
image_patch_tokens = self._add_view_type_embeddings(
image_patch_tokens, batch_size, num_views, num_patches, hidden_dim
)
# Prepare Gaussian tokens with positional embeddings
gaussian_tokens = self.gaussian_position_embeddings.expand(batch_size, -1, -1)
# Process through transformer with gradient checkpointing
combined_tokens = self._process_through_transformer(
gaussian_tokens, image_patch_tokens
)
# Split back into Gaussian and image tokens
num_gaussians = self.config.model.gaussians.n_gaussians
gaussian_tokens, image_patch_tokens = combined_tokens.split(
[num_gaussians, num_views * num_patches], dim=1
)
# Generate Gaussian parameters from transformer outputs
gaussian_params = self.gaussian_upsampler(gaussian_tokens, image_patch_tokens)
# Generate pixel-aligned Gaussians from image tokens
pixel_aligned_gaussian_params = self.pixel_gaussian_decoder(image_patch_tokens)
# Calculate Gaussian parameter dimensions
sh_degree = self.config.model.gaussians.sh_degree
gaussian_param_dim = 3 + (sh_degree + 1) ** 2 * 3 + 3 + 4 + 1
pixel_aligned_gaussian_params = pixel_aligned_gaussian_params.reshape(
batch_size, -1, gaussian_param_dim
) # [batch, views*pixels, gaussian_params]
num_pixel_aligned_gaussians = pixel_aligned_gaussian_params.size(1)
# Combine all Gaussian parameters
all_gaussian_params = torch.cat((gaussian_params, pixel_aligned_gaussian_params), dim=1)
# Convert to final Gaussian format
xyz, features, scaling, rotation, opacity = self.gaussian_upsampler.to_gs(all_gaussian_params)
# Extract pixel-aligned Gaussian positions for processing
pixel_aligned_xyz = xyz[:, -num_pixel_aligned_gaussians:, :]
patch_size = self.config.model.image_tokenizer.patch_size
pixel_aligned_xyz = rearrange(
pixel_aligned_xyz,
"batch (views height width patch_h patch_w) coords -> batch views coords (height patch_h) (width patch_w)",
views=num_views,
height=height // patch_size,
width=width // patch_size,
patch_h=patch_size,
patch_w=patch_size,
)
# Apply hard pixel alignment if enabled
if self.config.model.hard_pixelalign:
pixel_aligned_xyz = self._apply_hard_pixel_alignment(
pixel_aligned_xyz, input_data
)
# Reshape back to flat format and update xyz
pixel_aligned_xyz_flat = rearrange(
pixel_aligned_xyz,
"batch views coords (height patch_h) (width patch_w) -> batch (views height width patch_h patch_w) coords",
patch_h=patch_size,
patch_w=patch_size,
)
# Replace pixel-aligned Gaussians in the full xyz tensor
xyz = torch.cat(
(xyz[:, :-num_pixel_aligned_gaussians, :], pixel_aligned_xyz_flat),
dim=1
)
# Create Gaussian splatting result structure
gaussian_splat_result = edict(
xyz=xyz,
features=features,
scaling=scaling,
rotation=rotation,
opacity=opacity,
)
# Perform rendering and loss computation if target data is available
rendered_images = None
if target_data is not None:
target_height, target_width = target_data.image.size(3), target_data.image.size(4)
# Render images using Gaussian splatting
rendered_images = self.gaussian_renderer(
xyz, features, scaling, rotation, opacity,
target_height, target_width,
C2W=target_data.c2w,
fxfycxcy=target_data.fxfycxcy,
)
# Create Gaussian models for each batch item and compute usage statistics
gaussian_models, pixel_aligned_positions, usage_statistics = self._create_gaussian_models_and_stats(
xyz, features, scaling, rotation, opacity,
num_pixel_aligned_gaussians, num_views, height, width, patch_size
)
# Compile final results
return edict(
input=input_data,
target=target_data,
gaussians=gaussian_models,
pixelalign_xyz=pixel_aligned_positions,
img_tokens=image_patch_tokens,
loss_metrics=None,
render=rendered_images,
)