FaceLift / gslrm /model /transform_data.py
weijielyu's picture
demo
cb4cbb0
# Copyright © 2025, Adobe Inc. and its licensors. All rights reserved.
#
# This file is licensed under the Adobe Research License. You may obtain a copy
# of the license at https://raw.githubusercontent.com/adobe-research/FaceLift/main/LICENSE.md
"""
Data transformation utilities for GSLRM model.
This module contains classes and utilities for transforming input and target data
for training and inference in the GSLRM (Gaussian Splatting Latent Radiance Model).
"""
import itertools
import random
from typing import Dict, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from easydict import EasyDict as edict
# =============================================================================
# Utility Functions
# =============================================================================
def compute_camera_rays(
fxfycxcy: torch.Tensor,
c2w: torch.Tensor,
h: int,
w: int,
device: torch.device
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Compute camera rays for given intrinsics and extrinsics.
Args:
fxfycxcy: Camera intrinsics [b*v, 4]
c2w: Camera-to-world matrices [b*v, 4, 4]
h: Image height
w: Image width
device: Target device
Returns:
Tuple of (ray_origins, ray_directions, ray_directions_camera)
"""
y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij")
y, x = y.to(device), x.to(device)
b_v = fxfycxcy.size(0)
x = x[None, :, :].expand(b_v, -1, -1).reshape(b_v, -1)
y = y[None, :, :].expand(b_v, -1, -1).reshape(b_v, -1)
# Convert to normalized camera coordinates
x = (x + 0.5 - fxfycxcy[:, 2:3]) / fxfycxcy[:, 0:1]
y = (y + 0.5 - fxfycxcy[:, 3:4]) / fxfycxcy[:, 1:2]
z = torch.ones_like(x)
ray_d_cam = torch.stack([x, y, z], dim=2) # [b*v, h*w, 3]
ray_d_cam = ray_d_cam / torch.norm(ray_d_cam, dim=2, keepdim=True)
# Transform to world coordinates
ray_d = torch.bmm(ray_d_cam, c2w[:, :3, :3].transpose(1, 2))
ray_d = ray_d / torch.norm(ray_d, dim=2, keepdim=True)
ray_o = c2w[:, :3, 3][:, None, :].expand_as(ray_d)
return ray_o, ray_d, ray_d_cam
def sample_patch_rays(
image: torch.Tensor,
fxfycxcy: torch.Tensor,
c2w: torch.Tensor,
patch_size: int,
h: int,
w: int
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Sample rays at patch centers for efficient processing.
Args:
image: Input images [b*v, c, h, w]
fxfycxcy: Camera intrinsics [b*v, 4]
c2w: Camera-to-world matrices [b*v, 4, 4]
patch_size: Size of patches
h: Image height
w: Image width
Returns:
Tuple of (colors, ray_origins, ray_directions, xy_norm, projection_matrices)
"""
b_v, c = image.shape[:2]
device = image.device
start_patch_center = patch_size / 2.0
y, x = torch.meshgrid(
torch.arange(h // patch_size) * patch_size + start_patch_center,
torch.arange(w // patch_size) * patch_size + start_patch_center,
indexing="ij",
)
y, x = y.to(device), x.to(device)
x_flat = x[None, :, :].expand(b_v, -1, -1).reshape(b_v, -1)
y_flat = y[None, :, :].expand(b_v, -1, -1).reshape(b_v, -1)
# Sample colors at patch centers
ray_color = F.grid_sample(
image,
torch.stack([x_flat / w * 2.0 - 1.0, y_flat / h * 2.0 - 1.0], dim=2).reshape(
b_v, -1, 1, 2
),
align_corners=False,
).squeeze(-1).permute(0, 2, 1).contiguous()
# Compute normalized coordinates
ray_xy_norm = torch.stack([x_flat / w, y_flat / h], dim=2)
# Compute projection matrices
K_norm = torch.eye(3, device=device).unsqueeze(0).repeat(b_v, 1, 1)
K_norm[:, 0, 0] = fxfycxcy[:, 0] / w
K_norm[:, 1, 1] = fxfycxcy[:, 1] / h
K_norm[:, 0, 2] = fxfycxcy[:, 2] / w
K_norm[:, 1, 2] = fxfycxcy[:, 3] / h
w2c = torch.inverse(c2w)
proj_mat = torch.bmm(K_norm, w2c[:, :3, :4])
proj_mat = proj_mat.reshape(b_v, 12)
proj_mat = proj_mat / (proj_mat.norm(dim=1, keepdim=True) + 1e-6)
proj_mat = proj_mat.reshape(b_v, 3, 4)
proj_mat = proj_mat * proj_mat[:, 0:1, 0:1].sign()
# Compute ray directions
x_norm = (x_flat - fxfycxcy[:, 2:3]) / fxfycxcy[:, 0:1]
y_norm = (y_flat - fxfycxcy[:, 3:4]) / fxfycxcy[:, 1:2]
z_norm = torch.ones_like(x_norm)
ray_d = torch.stack([x_norm, y_norm, z_norm], dim=2)
ray_d = torch.bmm(ray_d, c2w[:, :3, :3].transpose(1, 2))
ray_d = ray_d / torch.norm(ray_d, dim=2, keepdim=True)
ray_o = c2w[:, :3, 3][:, None, :].expand_as(ray_d)
return ray_color, ray_o, ray_d, ray_xy_norm, proj_mat
# =============================================================================
# Main Classes
# =============================================================================
class SplitData(nn.Module):
"""
Split data batch into input and target views for training.
"""
def __init__(self, config):
super().__init__()
self.config = config
@torch.no_grad()
def forward(self, data_batch: Dict[str, torch.Tensor], target_has_input: bool = True) -> Tuple[edict, edict]:
"""
Split data into input and target views.
Args:
data_batch: Dictionary containing batch data
target_has_input: Whether target views can overlap with input views
Returns:
Tuple of (input_data, target_data)
"""
input_data, target_data = {}, {}
index = None
for key, value in data_batch.items():
# Always use first N views as input
input_data[key] = value[:, :self.config.training.dataset.num_input_views, ...]
# Calculate num_target_views from num_views (not explicitly in config)
num_target_views = self.config.training.dataset.num_views
if num_target_views >= value.size(1):
target_data[key] = value
else:
if index is None:
index = self._generate_target_indices(
value, target_has_input
)
target_data[key] = self._gather_target_data(value, index)
return edict(input_data), edict(target_data)
def _generate_target_indices(self, value: torch.Tensor, target_has_input: bool) -> torch.Tensor:
"""Generate indices for target view selection."""
b, v = value.shape[:2]
# Get config values
num_input_views = self.config.training.dataset.num_input_views
num_views = self.config.training.dataset.num_views
num_target_views = num_views # Use all views as targets
if target_has_input:
# Random sampling from all views
index = np.array([
random.sample(range(v), num_target_views)
for _ in range(b)
])
else:
# Use last N views to avoid overlap with input views
assert (
num_input_views + num_target_views <= num_views
), "num_input_views + num_target_views must <= num_views to avoid duplicate views"
index = np.array([
[num_views - 1 - j for j in range(num_target_views)]
for _ in range(b)
])
return torch.from_numpy(index).long().to(value.device)
def _gather_target_data(self, value: torch.Tensor, index: torch.Tensor) -> torch.Tensor:
"""Gather target data using provided indices."""
value_index = index
if value.dim() > 2:
dummy_dims = [1] * (value.dim() - 2)
value_index = index.reshape(index.size(0), index.size(1), *dummy_dims)
try:
return torch.gather(
value,
dim=1,
index=value_index.expand(-1, -1, *value.size()[2:]),
)
except Exception as e:
print(f"Error gathering data for key with value shape: {value.size()}")
print(f"Index shape: {value_index.size()}")
raise e
class TransformInput(nn.Module):
"""
Transform input data for feeding into the transformer network.
"""
def __init__(self, config):
super().__init__()
self.config = config
@torch.no_grad()
def forward(self, data_batch: edict, patch_size: Optional[int] = None) -> edict:
"""
Transform input images to rays and other representations.
Args:
data_batch: Input data batch
patch_size: Optional patch size for patch-based processing
Returns:
Transformed input data
"""
self._validate_input(data_batch)
image, fxfycxcy, c2w, index = (
data_batch.image, data_batch.fxfycxcy,
data_batch.c2w, data_batch.index
)
b, v, c, h, w = image.size()
# Reshape for processing
image_flat = image.reshape(b * v, c, h * w)
fxfycxcy_flat = fxfycxcy.reshape(b * v, 4)
c2w_flat = c2w.reshape(b * v, 4, 4)
# Compute normalized coordinates for full image
xy_norm = self._compute_normalized_coordinates(b, v, h, w, image.device)
# Compute camera rays
ray_o, ray_d, ray_d_cam = compute_camera_rays(
fxfycxcy_flat, c2w_flat, h, w, image.device
)
# Process patches if patch_size is provided
patch_data = self._process_patches(
image_flat, fxfycxcy_flat, c2w_flat, patch_size, h, w, b, v, c
) if patch_size is not None else (None, None, None, None, None)
# Reshape outputs
ray_o = ray_o.reshape(b, v, h, w, 3).permute(0, 1, 4, 2, 3)
ray_d = ray_d.reshape(b, v, h, w, 3).permute(0, 1, 4, 2, 3)
ray_d_cam = ray_d_cam.reshape(b, v, h, w, 3).permute(0, 1, 4, 2, 3)
return edict(
image=image,
ray_o=ray_o,
ray_d=ray_d,
ray_d_cam=ray_d_cam,
fxfycxcy=fxfycxcy,
c2w=c2w,
index=index,
xy_norm=xy_norm,
ray_color_patch=patch_data[0],
ray_o_patch=patch_data[1],
ray_d_patch=patch_data[2],
ray_xy_norm_patch=patch_data[3],
proj_mat=patch_data[4],
)
def _validate_input(self, data_batch: edict) -> None:
"""Validate input data dimensions."""
assert data_batch.image.dim() == 5, f"image dim should be 5, got {data_batch.image.dim()}"
assert data_batch.fxfycxcy.dim() == 3, f"fxfycxcy dim should be 3, got {data_batch.fxfycxcy.dim()}"
assert data_batch.c2w.dim() == 4, f"c2w dim should be 4, got {data_batch.c2w.dim()}"
def _compute_normalized_coordinates(self, b: int, v: int, h: int, w: int, device: torch.device) -> torch.Tensor:
"""Compute normalized coordinates for the full image."""
y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij")
y, x = y.to(device), x.to(device)
y_norm = (y + 0.5) / h * 2 - 1
x_norm = (x + 0.5) / w * 2 - 1
return torch.stack([x_norm, y_norm], dim=0)[None, None, :, :, :].expand(b, v, -1, -1, -1)
def _process_patches(
self,
image: torch.Tensor,
fxfycxcy: torch.Tensor,
c2w: torch.Tensor,
patch_size: int,
h: int,
w: int,
b: int,
v: int,
c: int
) -> Tuple[Optional[torch.Tensor], ...]:
"""Process patch-based data if patch_size is provided."""
ray_color, ray_o, ray_d, ray_xy_norm, proj_mat = sample_patch_rays(
image.reshape(b * v, c, h, w), fxfycxcy, c2w, patch_size, h, w
)
n_patch = ray_color.size(1)
return (
ray_color.reshape(b, v, n_patch, c),
ray_o.reshape(b, v, n_patch, 3),
ray_d.reshape(b, v, n_patch, 3),
ray_xy_norm.reshape(b, v, n_patch, 2),
proj_mat.reshape(b, v, 3, 4),
)
class TransformTarget(nn.Module):
"""
Handles target image transformations during training.
Currently implements random cropping for data augmentation.
"""
def __init__(self, config: edict):
super().__init__()
self.config = config
@torch.no_grad()
def forward(self, data_batch: edict) -> edict:
"""
Apply transformations to target data.
Args:
data_batch: Dictionary containing 'image' and 'fxfycxcy'
Returns:
Transformed data batch
"""
image = data_batch["image"] # [b, v, c, h, w]
fxfycxcy = data_batch["fxfycxcy"] # [b, v, 4]
b, v, c, h, w = image.size()
crop_size = getattr(self.config.training, 'crop_size', min(h, w))
# Apply random cropping if image is larger than crop size
if h > crop_size or w > crop_size:
crop_image = torch.zeros(
(b, v, c, crop_size, crop_size),
dtype=image.dtype,
device=image.device
)
crop_fxfycxcy = fxfycxcy.clone()
for i in range(b):
for j in range(v):
# Random crop position
idx_x = torch.randint(low=0, high=w - crop_size, size=(1,)).item()
idx_y = torch.randint(low=0, high=h - crop_size, size=(1,)).item()
# Apply crop
crop_image[i, j] = image[
i, j, :, idx_y:idx_y + crop_size, idx_x:idx_x + crop_size
]
# Adjust camera intrinsics
crop_fxfycxcy[i, j, 2] -= idx_x # cx
crop_fxfycxcy[i, j, 3] -= idx_y # cy
data_batch["image"] = crop_image
data_batch["fxfycxcy"] = crop_fxfycxcy
return data_batch