Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
bd9eb72
1
Parent(s):
dc5c57c
Initial commit
Browse files- .gitignore +57 -0
- README.md +39 -1
- app.py +269 -4
- configs/gslrm.yaml +140 -0
- gslrm/__init__.py +8 -0
- gslrm/model/__init__.py +8 -0
- gslrm/model/gaussians_renderer.py +1028 -0
- gslrm/model/gslrm.py +1647 -0
- gslrm/model/transform_data.py +410 -0
- gslrm/model/utils_losses.py +309 -0
- gslrm/model/utils_transformer.py +295 -0
- mvdiffusion/__init__.py +8 -0
- mvdiffusion/models/__init__.py +8 -0
- mvdiffusion/models/transformer_mv2d_image.py +1016 -0
- mvdiffusion/models/unet_mv2d_blocks.py +932 -0
- mvdiffusion/models/unet_mv2d_condition.py +1568 -0
- mvdiffusion/pipelines/__init__.py +8 -0
- mvdiffusion/pipelines/pipeline_mvdiffusion_unclip.py +627 -0
- requirements.txt +36 -0
- utils_folder/__init__.py +8 -0
- utils_folder/face_utils.py +240 -0
- utils_folder/opencv_cameras.json +245 -0
.gitignore
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
*.so
|
| 6 |
+
.Python
|
| 7 |
+
build/
|
| 8 |
+
develop-eggs/
|
| 9 |
+
dist/
|
| 10 |
+
downloads/
|
| 11 |
+
eggs/
|
| 12 |
+
.eggs/
|
| 13 |
+
lib/
|
| 14 |
+
lib64/
|
| 15 |
+
parts/
|
| 16 |
+
sdist/
|
| 17 |
+
var/
|
| 18 |
+
wheels/
|
| 19 |
+
*.egg-info/
|
| 20 |
+
.installed.cfg
|
| 21 |
+
*.egg
|
| 22 |
+
|
| 23 |
+
# Virtual environments
|
| 24 |
+
venv/
|
| 25 |
+
ENV/
|
| 26 |
+
env/
|
| 27 |
+
|
| 28 |
+
# Model checkpoints and data (downloaded from HuggingFace)
|
| 29 |
+
checkpoints/
|
| 30 |
+
*.pt
|
| 31 |
+
*.pth
|
| 32 |
+
*.ckpt
|
| 33 |
+
*.safetensors
|
| 34 |
+
|
| 35 |
+
# Output files
|
| 36 |
+
outputs/
|
| 37 |
+
*.ply
|
| 38 |
+
*.mp4
|
| 39 |
+
|
| 40 |
+
# Examples (if large)
|
| 41 |
+
examples/
|
| 42 |
+
|
| 43 |
+
# IDE
|
| 44 |
+
.vscode/
|
| 45 |
+
.idea/
|
| 46 |
+
*.swp
|
| 47 |
+
*.swo
|
| 48 |
+
*~
|
| 49 |
+
|
| 50 |
+
# OS
|
| 51 |
+
.DS_Store
|
| 52 |
+
Thumbs.db
|
| 53 |
+
|
| 54 |
+
# Gradio cache
|
| 55 |
+
gradio_cached_examples/
|
| 56 |
+
flagged/
|
| 57 |
+
|
README.md
CHANGED
|
@@ -10,4 +10,42 @@ pinned: false
|
|
| 10 |
license: cc-by-nc-sa-4.0
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
license: cc-by-nc-sa-4.0
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# FaceLift: Single Image 3D Face Reconstruction
|
| 14 |
+
|
| 15 |
+
Transform a single portrait image into a complete 3D head model using multi-view diffusion and Gaussian Splatting.
|
| 16 |
+
|
| 17 |
+
## Features
|
| 18 |
+
|
| 19 |
+
- **Single Image Input**: Upload any portrait photo
|
| 20 |
+
- **Automatic Face Detection**: Optional auto-cropping and alignment
|
| 21 |
+
- **Multi-view Generation**: Creates 6 consistent views using diffusion models
|
| 22 |
+
- **3D Reconstruction**: Generates high-quality 3D Gaussian splats
|
| 23 |
+
- **Turntable Animation**: Exports rotating 360° video
|
| 24 |
+
- **Downloadable Model**: Get the 3D model as a .ply file
|
| 25 |
+
|
| 26 |
+
## Usage
|
| 27 |
+
|
| 28 |
+
1. Upload a portrait image
|
| 29 |
+
2. Adjust parameters (optional):
|
| 30 |
+
- Auto Cropping: Enable for automatic face detection
|
| 31 |
+
- Guidance Scale: Controls generation quality (default: 3.0)
|
| 32 |
+
- Random Seed: For reproducible results
|
| 33 |
+
- Generation Steps: Higher = better quality but slower
|
| 34 |
+
3. Click Submit and wait for processing
|
| 35 |
+
4. Download the 3D model or turntable video
|
| 36 |
+
|
| 37 |
+
## Citation
|
| 38 |
+
|
| 39 |
+
```
|
| 40 |
+
@article{facelift2025,
|
| 41 |
+
title={FaceLift: Single Image 3D Face Reconstruction},
|
| 42 |
+
author={FaceLift Research Group},
|
| 43 |
+
year={2025}
|
| 44 |
+
}
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
## License
|
| 48 |
+
|
| 49 |
+
This software is free for non-commercial, research and evaluation use under the CC-BY-NC-SA-4.0 license.
|
| 50 |
+
|
| 51 |
+
For commercial use inquiries, contact: wlyu3@ucmerced.edu
|
app.py
CHANGED
|
@@ -1,7 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
def greet(name):
|
| 4 |
-
return "Hello " + name + "!!"
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
| 1 |
+
# Copyright (C) 2025, FaceLift Research Group
|
| 2 |
+
# https://github.com/weijielyu/FaceLift
|
| 3 |
+
#
|
| 4 |
+
# This software is free for non-commercial, research and evaluation use
|
| 5 |
+
# under the terms of the LICENSE.md file.
|
| 6 |
+
#
|
| 7 |
+
# For inquiries contact: wlyu3@ucmerced.edu
|
| 8 |
+
|
| 9 |
+
"""
|
| 10 |
+
FaceLift: Single Image 3D Face Reconstruction
|
| 11 |
+
Generates 3D head models from single images using multi-view diffusion and GS-LRM.
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
import json
|
| 15 |
+
from pathlib import Path
|
| 16 |
+
from datetime import datetime
|
| 17 |
+
|
| 18 |
import gradio as gr
|
| 19 |
+
import numpy as np
|
| 20 |
+
import torch
|
| 21 |
+
import yaml
|
| 22 |
+
from easydict import EasyDict as edict
|
| 23 |
+
from einops import rearrange
|
| 24 |
+
from PIL import Image
|
| 25 |
+
from huggingface_hub import snapshot_download
|
| 26 |
+
|
| 27 |
+
from gslrm.model.gaussians_renderer import render_turntable, imageseq2video
|
| 28 |
+
from mvdiffusion.pipelines.pipeline_mvdiffusion_unclip import StableUnCLIPImg2ImgPipeline
|
| 29 |
+
from utils_folder.face_utils import preprocess_image, preprocess_image_without_cropping
|
| 30 |
+
|
| 31 |
+
# HuggingFace repository configuration
|
| 32 |
+
HF_REPO_ID = "wlyu/OpenFaceLift"
|
| 33 |
+
|
| 34 |
+
def download_weights_from_hf() -> Path:
|
| 35 |
+
"""Download model weights from HuggingFace if not already present.
|
| 36 |
+
|
| 37 |
+
Returns:
|
| 38 |
+
Path to the downloaded repository
|
| 39 |
+
"""
|
| 40 |
+
workspace_dir = Path(__file__).parent
|
| 41 |
+
|
| 42 |
+
# Check if weights already exist locally
|
| 43 |
+
mvdiffusion_path = workspace_dir / "checkpoints/mvdiffusion/pipeckpts"
|
| 44 |
+
gslrm_path = workspace_dir / "checkpoints/gslrm/ckpt_0000000000021125.pt"
|
| 45 |
+
|
| 46 |
+
if mvdiffusion_path.exists() and gslrm_path.exists():
|
| 47 |
+
print("Using local model weights")
|
| 48 |
+
return workspace_dir
|
| 49 |
+
|
| 50 |
+
print(f"Downloading model weights from HuggingFace: {HF_REPO_ID}")
|
| 51 |
+
print("This may take a few minutes on first run...")
|
| 52 |
+
|
| 53 |
+
# Download to local directory
|
| 54 |
+
snapshot_download(
|
| 55 |
+
repo_id=HF_REPO_ID,
|
| 56 |
+
local_dir=str(workspace_dir / "checkpoints"),
|
| 57 |
+
local_dir_use_symlinks=False,
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
print("Model weights downloaded successfully!")
|
| 61 |
+
return workspace_dir
|
| 62 |
+
|
| 63 |
+
class FaceLiftPipeline:
|
| 64 |
+
"""Pipeline for FaceLift 3D head generation from single images."""
|
| 65 |
+
|
| 66 |
+
def __init__(self):
|
| 67 |
+
# Download weights from HuggingFace if needed
|
| 68 |
+
workspace_dir = download_weights_from_hf()
|
| 69 |
+
|
| 70 |
+
# Setup paths
|
| 71 |
+
self.output_dir = workspace_dir / "outputs"
|
| 72 |
+
self.examples_dir = workspace_dir / "examples"
|
| 73 |
+
self.output_dir.mkdir(exist_ok=True)
|
| 74 |
+
|
| 75 |
+
# Parameters
|
| 76 |
+
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 77 |
+
self.image_size = 512
|
| 78 |
+
self.camera_indices = [2, 1, 0, 5, 4, 3]
|
| 79 |
+
|
| 80 |
+
# Load models
|
| 81 |
+
print("Loading models...")
|
| 82 |
+
self.mvdiffusion_pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained(
|
| 83 |
+
str(workspace_dir / "checkpoints/mvdiffusion/pipeckpts"),
|
| 84 |
+
torch_dtype=torch.float16,
|
| 85 |
+
)
|
| 86 |
+
self.mvdiffusion_pipeline.unet.enable_xformers_memory_efficient_attention()
|
| 87 |
+
self.mvdiffusion_pipeline.to(self.device)
|
| 88 |
+
|
| 89 |
+
with open(workspace_dir / "configs/gslrm.yaml", "r") as f:
|
| 90 |
+
config = edict(yaml.safe_load(f))
|
| 91 |
+
|
| 92 |
+
module_name, class_name = config.model.class_name.rsplit(".", 1)
|
| 93 |
+
module = __import__(module_name, fromlist=[class_name])
|
| 94 |
+
ModelClass = getattr(module, class_name)
|
| 95 |
+
|
| 96 |
+
self.gs_lrm_model = ModelClass(config)
|
| 97 |
+
checkpoint = torch.load(
|
| 98 |
+
workspace_dir / "checkpoints/gslrm/ckpt_0000000000021125.pt",
|
| 99 |
+
map_location="cpu"
|
| 100 |
+
)
|
| 101 |
+
self.gs_lrm_model.load_state_dict(checkpoint["model"])
|
| 102 |
+
self.gs_lrm_model.to(self.device)
|
| 103 |
+
|
| 104 |
+
self.color_prompt_embedding = torch.load(
|
| 105 |
+
workspace_dir / "mvdiffusion/fixed_prompt_embeds_6view/clr_embeds.pt",
|
| 106 |
+
map_location=self.device
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
with open(workspace_dir / "utils_folder/opencv_cameras.json", 'r') as f:
|
| 110 |
+
self.cameras_data = json.load(f)["frames"]
|
| 111 |
+
|
| 112 |
+
print("Models loaded successfully!")
|
| 113 |
+
|
| 114 |
+
def generate_3d_head(self, image_path, auto_crop=True, guidance_scale=3.0,
|
| 115 |
+
random_seed=4, num_steps=50):
|
| 116 |
+
"""Generate 3D head from single image."""
|
| 117 |
+
try:
|
| 118 |
+
# Setup output directory
|
| 119 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 120 |
+
output_dir = self.output_dir / timestamp
|
| 121 |
+
output_dir.mkdir(exist_ok=True)
|
| 122 |
+
|
| 123 |
+
# Preprocess input
|
| 124 |
+
original_img = np.array(Image.open(image_path))
|
| 125 |
+
input_image = preprocess_image(original_img) if auto_crop else \
|
| 126 |
+
preprocess_image_without_cropping(original_img)
|
| 127 |
+
|
| 128 |
+
if input_image.size != (self.image_size, self.image_size):
|
| 129 |
+
input_image = input_image.resize((self.image_size, self.image_size))
|
| 130 |
+
|
| 131 |
+
input_path = output_dir / "input.png"
|
| 132 |
+
input_image.save(input_path)
|
| 133 |
+
|
| 134 |
+
# Generate multi-view images
|
| 135 |
+
generator = torch.Generator(device=self.mvdiffusion_pipeline.unet.device)
|
| 136 |
+
generator.manual_seed(random_seed)
|
| 137 |
+
|
| 138 |
+
result = self.mvdiffusion_pipeline(
|
| 139 |
+
input_image, None,
|
| 140 |
+
prompt_embeds=self.color_prompt_embedding,
|
| 141 |
+
guidance_scale=guidance_scale,
|
| 142 |
+
num_images_per_prompt=1,
|
| 143 |
+
num_inference_steps=num_steps,
|
| 144 |
+
generator=generator,
|
| 145 |
+
eta=1.0,
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
selected_views = result.images[:6]
|
| 149 |
+
|
| 150 |
+
# Save multi-view composite
|
| 151 |
+
multiview_image = Image.new("RGB", (self.image_size * 6, self.image_size))
|
| 152 |
+
for i, view in enumerate(selected_views):
|
| 153 |
+
multiview_image.paste(view, (self.image_size * i, 0))
|
| 154 |
+
|
| 155 |
+
multiview_path = output_dir / "multiview.png"
|
| 156 |
+
multiview_image.save(multiview_path)
|
| 157 |
+
|
| 158 |
+
# Prepare 3D reconstruction input
|
| 159 |
+
view_arrays = [np.array(view) for view in selected_views]
|
| 160 |
+
lrm_input = torch.from_numpy(np.stack(view_arrays, axis=0)).float()
|
| 161 |
+
lrm_input = lrm_input[None].to(self.device) / 255.0
|
| 162 |
+
lrm_input = rearrange(lrm_input, "b v h w c -> b v c h w")
|
| 163 |
+
|
| 164 |
+
# Prepare camera parameters
|
| 165 |
+
selected_cameras = [self.cameras_data[i] for i in self.camera_indices]
|
| 166 |
+
fxfycxcy_list = [[c["fx"], c["fy"], c["cx"], c["cy"]] for c in selected_cameras]
|
| 167 |
+
c2w_list = [np.linalg.inv(np.array(c["w2c"])) for c in selected_cameras]
|
| 168 |
+
|
| 169 |
+
fxfycxcy = torch.from_numpy(np.stack(fxfycxcy_list, axis=0).astype(np.float32))
|
| 170 |
+
c2w = torch.from_numpy(np.stack(c2w_list, axis=0).astype(np.float32))
|
| 171 |
+
fxfycxcy = fxfycxcy[None].to(self.device)
|
| 172 |
+
c2w = c2w[None].to(self.device)
|
| 173 |
+
|
| 174 |
+
batch_indices = torch.stack([
|
| 175 |
+
torch.zeros(lrm_input.size(1)).long(),
|
| 176 |
+
torch.arange(lrm_input.size(1)).long(),
|
| 177 |
+
], dim=-1)[None].to(self.device)
|
| 178 |
+
|
| 179 |
+
batch = edict({
|
| 180 |
+
"image": lrm_input,
|
| 181 |
+
"c2w": c2w,
|
| 182 |
+
"fxfycxcy": fxfycxcy,
|
| 183 |
+
"index": batch_indices,
|
| 184 |
+
})
|
| 185 |
+
|
| 186 |
+
# Run 3D reconstruction
|
| 187 |
+
with torch.autocast(enabled=True, device_type="cuda", dtype=torch.float16):
|
| 188 |
+
result = self.gs_lrm_model.forward(batch, create_visual=False, split_data=True)
|
| 189 |
+
|
| 190 |
+
comp_image = result.render[0].unsqueeze(0).detach()
|
| 191 |
+
gaussians = result.gaussians[0]
|
| 192 |
+
|
| 193 |
+
# Save filtered gaussians
|
| 194 |
+
filtered_gaussians = gaussians.apply_all_filters(
|
| 195 |
+
cam_origins=None,
|
| 196 |
+
opacity_thres=0.04,
|
| 197 |
+
scaling_thres=0.2,
|
| 198 |
+
floater_thres=0.75,
|
| 199 |
+
crop_bbx=[-0.91, 0.91, -0.91, 0.91, -1.0, 1.0],
|
| 200 |
+
nearfar_percent=(0.0001, 1.0),
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
ply_path = output_dir / "gaussians.ply"
|
| 204 |
+
filtered_gaussians.save_ply(str(ply_path))
|
| 205 |
+
|
| 206 |
+
# Save output image
|
| 207 |
+
comp_image = rearrange(comp_image, "x v c h w -> (x h) (v w) c")
|
| 208 |
+
comp_image = (comp_image.cpu().numpy() * 255.0).clip(0, 255).astype(np.uint8)
|
| 209 |
+
output_path = output_dir / "output.png"
|
| 210 |
+
Image.fromarray(comp_image).save(output_path)
|
| 211 |
+
|
| 212 |
+
# Generate turntable video
|
| 213 |
+
turntable_frames = render_turntable(gaussians, rendering_resolution=self.image_size,
|
| 214 |
+
num_views=180)
|
| 215 |
+
turntable_frames = rearrange(turntable_frames, "h (v w) c -> v h w c", v=180)
|
| 216 |
+
turntable_frames = np.ascontiguousarray(turntable_frames)
|
| 217 |
+
|
| 218 |
+
turntable_path = output_dir / "turntable.mp4"
|
| 219 |
+
imageseq2video(turntable_frames, str(turntable_path), fps=30)
|
| 220 |
+
|
| 221 |
+
return str(input_path), str(multiview_path), str(output_path), \
|
| 222 |
+
str(turntable_path), str(ply_path)
|
| 223 |
+
|
| 224 |
+
except Exception as e:
|
| 225 |
+
raise gr.Error(f"Generation failed: {str(e)}")
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
def main():
|
| 229 |
+
"""Run the FaceLift application."""
|
| 230 |
+
pipeline = FaceLiftPipeline()
|
| 231 |
+
|
| 232 |
+
# Load examples
|
| 233 |
+
examples = []
|
| 234 |
+
if pipeline.examples_dir.exists():
|
| 235 |
+
examples = [[str(f)] for f in sorted(pipeline.examples_dir.iterdir())
|
| 236 |
+
if f.suffix.lower() in {'.png', '.jpg', '.jpeg'}]
|
| 237 |
+
|
| 238 |
+
# Create interface
|
| 239 |
+
demo = gr.Interface(
|
| 240 |
+
fn=pipeline.generate_3d_head,
|
| 241 |
+
title="FaceLift: Single Image 3D Face Reconstruction",
|
| 242 |
+
description="""
|
| 243 |
+
Transform a single portrait image into a complete 3D head model.
|
| 244 |
+
|
| 245 |
+
**Tips:**
|
| 246 |
+
- Use high-quality portrait images with clear facial features
|
| 247 |
+
- If face detection fails, try disabling auto-cropping and manually crop to square
|
| 248 |
+
""",
|
| 249 |
+
inputs=[
|
| 250 |
+
gr.Image(type="filepath", label="Input Portrait Image"),
|
| 251 |
+
gr.Checkbox(value=True, label="Auto Cropping"),
|
| 252 |
+
gr.Slider(1.0, 10.0, 3.0, step=0.1, label="Guidance Scale"),
|
| 253 |
+
gr.Number(value=4, label="Random Seed"),
|
| 254 |
+
gr.Slider(10, 100, 50, step=5, label="Generation Steps"),
|
| 255 |
+
],
|
| 256 |
+
outputs=[
|
| 257 |
+
gr.Image(label="Processed Input"),
|
| 258 |
+
gr.Image(label="Multi-view Generation"),
|
| 259 |
+
gr.Image(label="3D Reconstruction"),
|
| 260 |
+
gr.PlayableVideo(label="Turntable Animation"),
|
| 261 |
+
gr.File(label="3D Model (.ply)"),
|
| 262 |
+
],
|
| 263 |
+
examples=examples,
|
| 264 |
+
allow_flagging="never",
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
demo.queue(max_size=10)
|
| 268 |
+
demo.launch(share=True, server_name="0.0.0.0", server_port=7860, show_error=True)
|
| 269 |
|
|
|
|
|
|
|
| 270 |
|
| 271 |
+
if __name__ == "__main__":
|
| 272 |
+
main()
|
configs/gslrm.yaml
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# =============================================================================
|
| 2 |
+
# General Configuration
|
| 3 |
+
# =============================================================================
|
| 4 |
+
profile: false
|
| 5 |
+
debug: false
|
| 6 |
+
|
| 7 |
+
# =============================================================================
|
| 8 |
+
# Model Configuration
|
| 9 |
+
# =============================================================================
|
| 10 |
+
model:
|
| 11 |
+
class_name: gslrm.model.gslrm.GSLRM
|
| 12 |
+
|
| 13 |
+
# Image processing settings
|
| 14 |
+
image_tokenizer:
|
| 15 |
+
image_size: 512
|
| 16 |
+
patch_size: 8
|
| 17 |
+
in_channels: 9 # 3 RGB + 3 direction + 3 Reference
|
| 18 |
+
|
| 19 |
+
# Transformer architecture
|
| 20 |
+
transformer:
|
| 21 |
+
d: 1024
|
| 22 |
+
d_head: 64
|
| 23 |
+
n_layer: 24
|
| 24 |
+
|
| 25 |
+
# Gaussian splatting configuration
|
| 26 |
+
gaussians:
|
| 27 |
+
n_gaussians: 2 # 12288
|
| 28 |
+
sh_degree: 0
|
| 29 |
+
|
| 30 |
+
upsampler:
|
| 31 |
+
upsample_factor: 1
|
| 32 |
+
|
| 33 |
+
# Model behavior flags
|
| 34 |
+
add_refsrc_marker: false
|
| 35 |
+
hard_pixelalign: true
|
| 36 |
+
use_custom_plucker: true
|
| 37 |
+
clip_xyz: true
|
| 38 |
+
|
| 39 |
+
# =============================================================================
|
| 40 |
+
# Training Configuration
|
| 41 |
+
# =============================================================================
|
| 42 |
+
training:
|
| 43 |
+
# Training runtime settings
|
| 44 |
+
runtime:
|
| 45 |
+
use_tf32: true
|
| 46 |
+
use_amp: true
|
| 47 |
+
amp_dtype: "bf16"
|
| 48 |
+
torch_compile: false
|
| 49 |
+
grad_accum_steps: 1
|
| 50 |
+
grad_clip_norm: 1.0
|
| 51 |
+
grad_checkpoint_every: 1
|
| 52 |
+
|
| 53 |
+
# Dataset configuration
|
| 54 |
+
dataset:
|
| 55 |
+
dataset_path: "data_sample/gslrm/data_gslrm_train.txt"
|
| 56 |
+
|
| 57 |
+
# View configuration
|
| 58 |
+
maximize_view_overlap: true
|
| 59 |
+
num_views: 8
|
| 60 |
+
num_input_views: 6 # In training, we set it as 4. In inference, we set it as 6.
|
| 61 |
+
target_has_input: true
|
| 62 |
+
|
| 63 |
+
# Data preprocessing
|
| 64 |
+
normalize_distance_to: 0.0
|
| 65 |
+
remove_alpha: false
|
| 66 |
+
background_color: "white"
|
| 67 |
+
|
| 68 |
+
# Data loader settings
|
| 69 |
+
dataloader:
|
| 70 |
+
batch_size_per_gpu: 2
|
| 71 |
+
num_workers: 4
|
| 72 |
+
num_threads: 32
|
| 73 |
+
prefetch_factor: 32
|
| 74 |
+
|
| 75 |
+
# Loss function weights
|
| 76 |
+
losses:
|
| 77 |
+
l2_loss_weight: 1.0
|
| 78 |
+
lpips_loss_weight: 0.0
|
| 79 |
+
perceptual_loss_weight: 0.5
|
| 80 |
+
ssim_loss_weight: 0.0
|
| 81 |
+
pixelalign_loss_weight: 0.0
|
| 82 |
+
masked_pixelalign_loss: true
|
| 83 |
+
pointsdist_loss_weight: 0.0
|
| 84 |
+
warmup_pointsdist: false
|
| 85 |
+
distill_loss_weight: 0.0
|
| 86 |
+
|
| 87 |
+
# Optimizer configuration (AdamW)
|
| 88 |
+
optimizer:
|
| 89 |
+
lr: 0.0001
|
| 90 |
+
beta1: 0.9
|
| 91 |
+
beta2: 0.95
|
| 92 |
+
weight_decay: 0.05
|
| 93 |
+
reset_lr: false
|
| 94 |
+
reset_weight_decay: false
|
| 95 |
+
reset_training_state: true
|
| 96 |
+
|
| 97 |
+
# Training schedule
|
| 98 |
+
schedule:
|
| 99 |
+
num_epochs: 100000 # dataset epochs
|
| 100 |
+
early_stop_after_epochs: 100000 # 40
|
| 101 |
+
max_fwdbwd_passes: 20000 # forward/backward pass steps
|
| 102 |
+
warmup: 500 # parameter update steps
|
| 103 |
+
l2_warmup_steps: 500
|
| 104 |
+
|
| 105 |
+
# Checkpointing
|
| 106 |
+
checkpointing:
|
| 107 |
+
resume_ckpt: "checkpoints/gslrm/stage_2"
|
| 108 |
+
checkpoint_every: 5000 # forward/backward pass steps
|
| 109 |
+
checkpoint_dir: "checkpoints/gslrm/stage_3"
|
| 110 |
+
|
| 111 |
+
# Logging and monitoring
|
| 112 |
+
logging:
|
| 113 |
+
print_every: 20 # forward/backward pass steps
|
| 114 |
+
vis_every: 250 # forward/backward pass steps
|
| 115 |
+
|
| 116 |
+
# Weights & Biases configuration
|
| 117 |
+
wandb:
|
| 118 |
+
project: "facelift_gslrm"
|
| 119 |
+
exp_name: "stage_3"
|
| 120 |
+
group: "facelift"
|
| 121 |
+
job_type: "train"
|
| 122 |
+
log_every: 50 # forward/backward pass steps
|
| 123 |
+
offline: false
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
# =============================================================================
|
| 127 |
+
# Inference Configuration
|
| 128 |
+
# =============================================================================
|
| 129 |
+
inference:
|
| 130 |
+
enabled: false
|
| 131 |
+
output_dir: "outputs/inference/gslrm/stage_3"
|
| 132 |
+
|
| 133 |
+
# =============================================================================
|
| 134 |
+
# Validation Configuration
|
| 135 |
+
# =============================================================================
|
| 136 |
+
validation:
|
| 137 |
+
enabled: true
|
| 138 |
+
val_every: 5000
|
| 139 |
+
output_dir: "outputs/validation/gslrm/stage_3"
|
| 140 |
+
dataset_path: "data_sample/gslrm/data_gslrm_val.txt"
|
gslrm/__init__.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (C) 2025, FaceLift Research Group
|
| 2 |
+
# https://github.com/weijielyu/FaceLift
|
| 3 |
+
#
|
| 4 |
+
# This software is free for non-commercial, research and evaluation use
|
| 5 |
+
# under the terms of the LICENSE.md file.
|
| 6 |
+
#
|
| 7 |
+
# For inquiries contact: wlyu3@ucmerced.edu
|
| 8 |
+
|
gslrm/model/__init__.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (C) 2025, FaceLift Research Group
|
| 2 |
+
# https://github.com/weijielyu/FaceLift
|
| 3 |
+
#
|
| 4 |
+
# This software is free for non-commercial, research and evaluation use
|
| 5 |
+
# under the terms of the LICENSE.md file.
|
| 6 |
+
#
|
| 7 |
+
# For inquiries contact: wlyu3@ucmerced.edu
|
| 8 |
+
|
gslrm/model/gaussians_renderer.py
ADDED
|
@@ -0,0 +1,1028 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (C) 2025, FaceLift Research Group
|
| 2 |
+
# https://github.com/weijielyu/FaceLift
|
| 3 |
+
#
|
| 4 |
+
# This software is free for non-commercial, research and evaluation use
|
| 5 |
+
# under the terms of the LICENSE.md file.
|
| 6 |
+
#
|
| 7 |
+
# For inquiries contact: wlyu3@ucmerced.edu
|
| 8 |
+
|
| 9 |
+
import math
|
| 10 |
+
import os
|
| 11 |
+
|
| 12 |
+
import cv2
|
| 13 |
+
import matplotlib
|
| 14 |
+
import numpy as np
|
| 15 |
+
import torch
|
| 16 |
+
from diff_gaussian_rasterization import (
|
| 17 |
+
GaussianRasterizationSettings,
|
| 18 |
+
GaussianRasterizer,
|
| 19 |
+
)
|
| 20 |
+
from einops import rearrange
|
| 21 |
+
from plyfile import PlyData, PlyElement
|
| 22 |
+
from torch import nn
|
| 23 |
+
|
| 24 |
+
from collections import OrderedDict
|
| 25 |
+
import videoio
|
| 26 |
+
|
| 27 |
+
@torch.no_grad()
|
| 28 |
+
def get_turntable_cameras(
|
| 29 |
+
hfov=50,
|
| 30 |
+
num_views=8,
|
| 31 |
+
w=384,
|
| 32 |
+
h=384,
|
| 33 |
+
radius=2.7,
|
| 34 |
+
elevation=20,
|
| 35 |
+
up_vector=np.array([0, 0, 1]),
|
| 36 |
+
):
|
| 37 |
+
fx = w / (2 * np.tan(np.deg2rad(hfov) / 2.0))
|
| 38 |
+
fy = fx
|
| 39 |
+
cx, cy = w / 2.0, h / 2.0
|
| 40 |
+
fxfycxcy = (
|
| 41 |
+
np.array([fx, fy, cx, cy]).reshape(1, 4).repeat(num_views, axis=0)
|
| 42 |
+
) # [num_views, 4]
|
| 43 |
+
# azimuths = np.linspace(0, 360, num_views, endpoint=False)
|
| 44 |
+
azimuths = np.linspace(270, 630, num_views, endpoint=False)
|
| 45 |
+
elevations = np.ones_like(azimuths) * elevation
|
| 46 |
+
c2ws = []
|
| 47 |
+
for elev, azim in zip(elevations, azimuths):
|
| 48 |
+
elev, azim = np.deg2rad(elev), np.deg2rad(azim)
|
| 49 |
+
z = radius * np.sin(elev)
|
| 50 |
+
base = radius * np.cos(elev)
|
| 51 |
+
x = base * np.cos(azim)
|
| 52 |
+
y = base * np.sin(azim)
|
| 53 |
+
cam_pos = np.array([x, y, z])
|
| 54 |
+
forward = -cam_pos / np.linalg.norm(cam_pos)
|
| 55 |
+
right = np.cross(forward, up_vector)
|
| 56 |
+
right = right / np.linalg.norm(right)
|
| 57 |
+
up = np.cross(right, forward)
|
| 58 |
+
up = up / np.linalg.norm(up)
|
| 59 |
+
R = np.stack((right, -up, forward), axis=1)
|
| 60 |
+
c2w = np.eye(4)
|
| 61 |
+
c2w[:3, :4] = np.concatenate((R, cam_pos[:, None]), axis=1)
|
| 62 |
+
c2ws.append(c2w)
|
| 63 |
+
c2ws = np.stack(c2ws, axis=0) # [num_views, 4, 4]
|
| 64 |
+
return w, h, num_views, fxfycxcy, c2ws
|
| 65 |
+
|
| 66 |
+
def imageseq2video(images, filename, fps=24):
|
| 67 |
+
# if images is uint8, convert to float32
|
| 68 |
+
if images.dtype == np.uint8:
|
| 69 |
+
images = images.astype(np.float32) / 255.0
|
| 70 |
+
|
| 71 |
+
videoio.videosave(filename, images, lossless=True, preset="veryfast", fps=fps)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
# copied from: utils.general_utils
|
| 75 |
+
def strip_lowerdiag(L):
|
| 76 |
+
uncertainty = torch.zeros((L.shape[0], 6), dtype=torch.float, device=L.device)
|
| 77 |
+
|
| 78 |
+
uncertainty[:, 0] = L[:, 0, 0]
|
| 79 |
+
uncertainty[:, 1] = L[:, 0, 1]
|
| 80 |
+
uncertainty[:, 2] = L[:, 0, 2]
|
| 81 |
+
uncertainty[:, 3] = L[:, 1, 1]
|
| 82 |
+
uncertainty[:, 4] = L[:, 1, 2]
|
| 83 |
+
uncertainty[:, 5] = L[:, 2, 2]
|
| 84 |
+
return uncertainty
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def strip_symmetric(sym):
|
| 88 |
+
return strip_lowerdiag(sym)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def build_rotation(r):
|
| 92 |
+
norm = torch.sqrt(
|
| 93 |
+
r[:, 0] * r[:, 0] + r[:, 1] * r[:, 1] + r[:, 2] * r[:, 2] + r[:, 3] * r[:, 3]
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
q = r / norm[:, None]
|
| 97 |
+
|
| 98 |
+
R = torch.zeros((q.size(0), 3, 3), device=r.device)
|
| 99 |
+
|
| 100 |
+
r = q[:, 0]
|
| 101 |
+
x = q[:, 1]
|
| 102 |
+
y = q[:, 2]
|
| 103 |
+
z = q[:, 3]
|
| 104 |
+
|
| 105 |
+
R[:, 0, 0] = 1 - 2 * (y * y + z * z)
|
| 106 |
+
R[:, 0, 1] = 2 * (x * y - r * z)
|
| 107 |
+
R[:, 0, 2] = 2 * (x * z + r * y)
|
| 108 |
+
R[:, 1, 0] = 2 * (x * y + r * z)
|
| 109 |
+
R[:, 1, 1] = 1 - 2 * (x * x + z * z)
|
| 110 |
+
R[:, 1, 2] = 2 * (y * z - r * x)
|
| 111 |
+
R[:, 2, 0] = 2 * (x * z - r * y)
|
| 112 |
+
R[:, 2, 1] = 2 * (y * z + r * x)
|
| 113 |
+
R[:, 2, 2] = 1 - 2 * (x * x + y * y)
|
| 114 |
+
return R
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def build_scaling_rotation(s, r):
|
| 118 |
+
L = torch.zeros((s.shape[0], 3, 3), dtype=torch.float, device=s.device)
|
| 119 |
+
R = build_rotation(r)
|
| 120 |
+
|
| 121 |
+
L[:, 0, 0] = s[:, 0]
|
| 122 |
+
L[:, 1, 1] = s[:, 1]
|
| 123 |
+
L[:, 2, 2] = s[:, 2]
|
| 124 |
+
|
| 125 |
+
L = R @ L
|
| 126 |
+
return L
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
# copied from: utils.sh_utils
|
| 130 |
+
C0 = 0.28209479177387814
|
| 131 |
+
C1 = 0.4886025119029199
|
| 132 |
+
C2 = [
|
| 133 |
+
1.0925484305920792,
|
| 134 |
+
-1.0925484305920792,
|
| 135 |
+
0.31539156525252005,
|
| 136 |
+
-1.0925484305920792,
|
| 137 |
+
0.5462742152960396,
|
| 138 |
+
]
|
| 139 |
+
C3 = [
|
| 140 |
+
-0.5900435899266435,
|
| 141 |
+
2.890611442640554,
|
| 142 |
+
-0.4570457994644658,
|
| 143 |
+
0.3731763325901154,
|
| 144 |
+
-0.4570457994644658,
|
| 145 |
+
1.445305721320277,
|
| 146 |
+
-0.5900435899266435,
|
| 147 |
+
]
|
| 148 |
+
C4 = [
|
| 149 |
+
2.5033429417967046,
|
| 150 |
+
-1.7701307697799304,
|
| 151 |
+
0.9461746957575601,
|
| 152 |
+
-0.6690465435572892,
|
| 153 |
+
0.10578554691520431,
|
| 154 |
+
-0.6690465435572892,
|
| 155 |
+
0.47308734787878004,
|
| 156 |
+
-1.7701307697799304,
|
| 157 |
+
0.6258357354491761,
|
| 158 |
+
]
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def eval_sh(deg, sh, dirs):
|
| 162 |
+
"""
|
| 163 |
+
Evaluate spherical harmonics at unit directions
|
| 164 |
+
using hardcoded SH polynomials.
|
| 165 |
+
Works with torch/np/jnp.
|
| 166 |
+
... Can be 0 or more batch dimensions.
|
| 167 |
+
Args:
|
| 168 |
+
deg: int SH deg. Currently, 0-3 supported
|
| 169 |
+
sh: jnp.ndarray SH coeffs [..., C, (deg + 1) ** 2]
|
| 170 |
+
dirs: jnp.ndarray unit directions [..., 3]
|
| 171 |
+
Returns:
|
| 172 |
+
[..., C]
|
| 173 |
+
"""
|
| 174 |
+
assert deg <= 4 and deg >= 0
|
| 175 |
+
coeff = (deg + 1) ** 2
|
| 176 |
+
assert sh.shape[-1] >= coeff
|
| 177 |
+
|
| 178 |
+
result = C0 * sh[..., 0]
|
| 179 |
+
if deg > 0:
|
| 180 |
+
x, y, z = dirs[..., 0:1], dirs[..., 1:2], dirs[..., 2:3]
|
| 181 |
+
result = (
|
| 182 |
+
result - C1 * y * sh[..., 1] + C1 * z * sh[..., 2] - C1 * x * sh[..., 3]
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
if deg > 1:
|
| 186 |
+
xx, yy, zz = x * x, y * y, z * z
|
| 187 |
+
xy, yz, xz = x * y, y * z, x * z
|
| 188 |
+
result = (
|
| 189 |
+
result
|
| 190 |
+
+ C2[0] * xy * sh[..., 4]
|
| 191 |
+
+ C2[1] * yz * sh[..., 5]
|
| 192 |
+
+ C2[2] * (2.0 * zz - xx - yy) * sh[..., 6]
|
| 193 |
+
+ C2[3] * xz * sh[..., 7]
|
| 194 |
+
+ C2[4] * (xx - yy) * sh[..., 8]
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
if deg > 2:
|
| 198 |
+
result = (
|
| 199 |
+
result
|
| 200 |
+
+ C3[0] * y * (3 * xx - yy) * sh[..., 9]
|
| 201 |
+
+ C3[1] * xy * z * sh[..., 10]
|
| 202 |
+
+ C3[2] * y * (4 * zz - xx - yy) * sh[..., 11]
|
| 203 |
+
+ C3[3] * z * (2 * zz - 3 * xx - 3 * yy) * sh[..., 12]
|
| 204 |
+
+ C3[4] * x * (4 * zz - xx - yy) * sh[..., 13]
|
| 205 |
+
+ C3[5] * z * (xx - yy) * sh[..., 14]
|
| 206 |
+
+ C3[6] * x * (xx - 3 * yy) * sh[..., 15]
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
if deg > 3:
|
| 210 |
+
result = (
|
| 211 |
+
result
|
| 212 |
+
+ C4[0] * xy * (xx - yy) * sh[..., 16]
|
| 213 |
+
+ C4[1] * yz * (3 * xx - yy) * sh[..., 17]
|
| 214 |
+
+ C4[2] * xy * (7 * zz - 1) * sh[..., 18]
|
| 215 |
+
+ C4[3] * yz * (7 * zz - 3) * sh[..., 19]
|
| 216 |
+
+ C4[4] * (zz * (35 * zz - 30) + 3) * sh[..., 20]
|
| 217 |
+
+ C4[5] * xz * (7 * zz - 3) * sh[..., 21]
|
| 218 |
+
+ C4[6] * (xx - yy) * (7 * zz - 1) * sh[..., 22]
|
| 219 |
+
+ C4[7] * xz * (xx - 3 * yy) * sh[..., 23]
|
| 220 |
+
+ C4[8]
|
| 221 |
+
* (xx * (xx - 3 * yy) - yy * (3 * xx - yy))
|
| 222 |
+
* sh[..., 24]
|
| 223 |
+
)
|
| 224 |
+
return result
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
def RGB2SH(rgb):
|
| 228 |
+
return (rgb - 0.5) / C0
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
def SH2RGB(sh):
|
| 232 |
+
return sh * C0 + 0.5
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def create_video(image_folder, output_video_file, framerate=30):
|
| 236 |
+
# Get all image file paths to a list.
|
| 237 |
+
images = [img for img in os.listdir(image_folder) if img.endswith(".png")]
|
| 238 |
+
images.sort()
|
| 239 |
+
|
| 240 |
+
# Read the first image to know the height and width
|
| 241 |
+
frame = cv2.imread(os.path.join(image_folder, images[0]))
|
| 242 |
+
height, width, layers = frame.shape
|
| 243 |
+
|
| 244 |
+
video = cv2.VideoWriter(
|
| 245 |
+
output_video_file, cv2.VideoWriter_fourcc(*"mp4v"), framerate, (width, height)
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
# iterate over each image and add it to the video sequence
|
| 249 |
+
for image in images:
|
| 250 |
+
video.write(cv2.imread(os.path.join(image_folder, image)))
|
| 251 |
+
|
| 252 |
+
cv2.destroyAllWindows()
|
| 253 |
+
video.release()
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
class Camera(nn.Module):
|
| 257 |
+
def __init__(self, C2W, fxfycxcy, h, w):
|
| 258 |
+
"""
|
| 259 |
+
C2W: 4x4 camera-to-world matrix; opencv convention
|
| 260 |
+
fxfycxcy: 4
|
| 261 |
+
"""
|
| 262 |
+
super().__init__()
|
| 263 |
+
self.C2W = C2W.clone().float()
|
| 264 |
+
self.W2C = self.C2W.inverse()
|
| 265 |
+
self.h = h
|
| 266 |
+
self.w = w
|
| 267 |
+
|
| 268 |
+
self.znear = 0.01
|
| 269 |
+
self.zfar = 100.0
|
| 270 |
+
|
| 271 |
+
fx, fy, cx, cy = fxfycxcy[0], fxfycxcy[1], fxfycxcy[2], fxfycxcy[3]
|
| 272 |
+
self.tanfovX = w / (2 * fx)
|
| 273 |
+
self.tanfovY = h / (2 * fy)
|
| 274 |
+
|
| 275 |
+
def getProjectionMatrix(W, H, fx, fy, cx, cy, znear, zfar):
|
| 276 |
+
P = torch.zeros(4, 4, device=fx.device)
|
| 277 |
+
P[0, 0] = 2 * fx / W
|
| 278 |
+
P[1, 1] = 2 * fy / H
|
| 279 |
+
P[0, 2] = 2 * (cx / W) - 1
|
| 280 |
+
P[1, 2] = 2 * (cy / H) - 1
|
| 281 |
+
P[2, 2] = -(zfar + znear) / (zfar - znear)
|
| 282 |
+
P[3, 2] = 1.0
|
| 283 |
+
P[2, 3] = -(2 * zfar * znear) / (zfar - znear)
|
| 284 |
+
return P
|
| 285 |
+
|
| 286 |
+
self.world_view_transform = self.W2C.transpose(0, 1)
|
| 287 |
+
self.projection_matrix = getProjectionMatrix(
|
| 288 |
+
self.w, self.h, fx, fy, cx, cy, self.znear, self.zfar
|
| 289 |
+
).transpose(0, 1)
|
| 290 |
+
self.full_proj_transform = (
|
| 291 |
+
self.world_view_transform.unsqueeze(0).bmm(
|
| 292 |
+
self.projection_matrix.unsqueeze(0)
|
| 293 |
+
)
|
| 294 |
+
).squeeze(0)
|
| 295 |
+
self.camera_center = self.C2W[:3, 3]
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
# modified from scene/gaussian_model.py
|
| 299 |
+
class GaussianModel:
|
| 300 |
+
def setup_functions(self):
|
| 301 |
+
def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation):
|
| 302 |
+
L = build_scaling_rotation(scaling_modifier * scaling, rotation)
|
| 303 |
+
actual_covariance = L @ L.transpose(1, 2)
|
| 304 |
+
symm = strip_symmetric(actual_covariance)
|
| 305 |
+
return symm
|
| 306 |
+
|
| 307 |
+
self.scaling_activation = torch.exp
|
| 308 |
+
self.inv_scaling_activation = torch.log
|
| 309 |
+
self.rotation_activation = torch.nn.functional.normalize
|
| 310 |
+
self.opacity_activation = torch.sigmoid
|
| 311 |
+
self.covariance_activation = build_covariance_from_scaling_rotation
|
| 312 |
+
|
| 313 |
+
def __init__(self, sh_degree: int, scaling_modifier=None):
|
| 314 |
+
self.sh_degree = sh_degree
|
| 315 |
+
self._xyz = torch.empty(0)
|
| 316 |
+
self._features_dc = torch.empty(0)
|
| 317 |
+
if self.sh_degree > 0:
|
| 318 |
+
self._features_rest = torch.empty(0)
|
| 319 |
+
else:
|
| 320 |
+
self._features_rest = None
|
| 321 |
+
self._scaling = torch.empty(0)
|
| 322 |
+
self._rotation = torch.empty(0)
|
| 323 |
+
self._opacity = torch.empty(0)
|
| 324 |
+
self.setup_functions()
|
| 325 |
+
|
| 326 |
+
self.scaling_modifier = scaling_modifier
|
| 327 |
+
|
| 328 |
+
def empty(self):
|
| 329 |
+
self.__init__(self.sh_degree, self.scaling_modifier)
|
| 330 |
+
|
| 331 |
+
def set_data(self, xyz, features, scaling, rotation, opacity):
|
| 332 |
+
"""
|
| 333 |
+
xyz : torch.tensor of shape (N, 3)
|
| 334 |
+
features : torch.tensor of shape (N, (self.sh_degree + 1) ** 2, 3)
|
| 335 |
+
scaling : torch.tensor of shape (N, 3)
|
| 336 |
+
rotation : torch.tensor of shape (N, 4)
|
| 337 |
+
opacity : torch.tensor of shape (N, 1)
|
| 338 |
+
"""
|
| 339 |
+
self._xyz = xyz
|
| 340 |
+
self._features_dc = features[:, :1, :].contiguous()
|
| 341 |
+
if self.sh_degree > 0:
|
| 342 |
+
self._features_rest = features[:, 1:, :].contiguous()
|
| 343 |
+
else:
|
| 344 |
+
self._features_rest = None
|
| 345 |
+
self._scaling = scaling
|
| 346 |
+
self._rotation = rotation
|
| 347 |
+
self._opacity = opacity
|
| 348 |
+
return self
|
| 349 |
+
|
| 350 |
+
def to(self, device):
|
| 351 |
+
self._xyz = self._xyz.to(device)
|
| 352 |
+
self._features_dc = self._features_dc.to(device)
|
| 353 |
+
if self.sh_degree > 0:
|
| 354 |
+
self._features_rest = self._features_rest.to(device)
|
| 355 |
+
self._scaling = self._scaling.to(device)
|
| 356 |
+
self._rotation = self._rotation.to(device)
|
| 357 |
+
self._opacity = self._opacity.to(device)
|
| 358 |
+
return self
|
| 359 |
+
|
| 360 |
+
def filter(self, valid_mask):
|
| 361 |
+
self._xyz = self._xyz[valid_mask]
|
| 362 |
+
self._features_dc = self._features_dc[valid_mask]
|
| 363 |
+
if self.sh_degree > 0:
|
| 364 |
+
self._features_rest = self._features_rest[valid_mask]
|
| 365 |
+
self._scaling = self._scaling[valid_mask]
|
| 366 |
+
self._rotation = self._rotation[valid_mask]
|
| 367 |
+
self._opacity = self._opacity[valid_mask]
|
| 368 |
+
return self
|
| 369 |
+
|
| 370 |
+
def crop(self, crop_bbx=[-1, 1, -1, 1, -1, 1]):
|
| 371 |
+
x_min, x_max, y_min, y_max, z_min, z_max = crop_bbx
|
| 372 |
+
xyz = self._xyz
|
| 373 |
+
invalid_mask = (
|
| 374 |
+
(xyz[:, 0] < x_min)
|
| 375 |
+
| (xyz[:, 0] > x_max)
|
| 376 |
+
| (xyz[:, 1] < y_min)
|
| 377 |
+
| (xyz[:, 1] > y_max)
|
| 378 |
+
| (xyz[:, 2] < z_min)
|
| 379 |
+
| (xyz[:, 2] > z_max)
|
| 380 |
+
)
|
| 381 |
+
valid_mask = ~invalid_mask
|
| 382 |
+
|
| 383 |
+
return self.filter(valid_mask)
|
| 384 |
+
|
| 385 |
+
def crop_by_xyz(self, floater_thres=0.75):
|
| 386 |
+
xyz = self._xyz
|
| 387 |
+
invalid_mask = (
|
| 388 |
+
(((xyz[:, 0] < -floater_thres) & (xyz[:, 1] < -floater_thres))
|
| 389 |
+
| ((xyz[:, 0] < -floater_thres) & (xyz[:, 1] > floater_thres))
|
| 390 |
+
| ((xyz[:, 0] > floater_thres) & (xyz[:, 1] < -floater_thres))
|
| 391 |
+
| ((xyz[:, 0] > floater_thres) & (xyz[:, 1] > floater_thres)))
|
| 392 |
+
& (xyz[:, 2] < -floater_thres)
|
| 393 |
+
)
|
| 394 |
+
valid_mask = ~invalid_mask
|
| 395 |
+
|
| 396 |
+
return self.filter(valid_mask)
|
| 397 |
+
|
| 398 |
+
def prune(self, opacity_thres=0.05):
|
| 399 |
+
opacity = self.get_opacity.squeeze(1)
|
| 400 |
+
valid_mask = opacity > opacity_thres
|
| 401 |
+
|
| 402 |
+
return self.filter(valid_mask)
|
| 403 |
+
|
| 404 |
+
def prune_by_scaling(self, scaling_thres=0.1):
|
| 405 |
+
scaling = self.get_scaling
|
| 406 |
+
valid_mask = scaling.max(dim=1).values < scaling_thres
|
| 407 |
+
position_mask = self._xyz[:, 2] > 0
|
| 408 |
+
|
| 409 |
+
valid_mask = valid_mask | position_mask
|
| 410 |
+
|
| 411 |
+
return self.filter(valid_mask)
|
| 412 |
+
|
| 413 |
+
def prune_by_nearfar(self, cam_origins, nearfar_percent=(0.01, 0.99)):
|
| 414 |
+
# cam_origins: [num_cams, 3]
|
| 415 |
+
# nearfar_percent: [near, far]
|
| 416 |
+
assert len(nearfar_percent) == 2
|
| 417 |
+
assert nearfar_percent[0] < nearfar_percent[1]
|
| 418 |
+
assert nearfar_percent[0] >= 0 and nearfar_percent[1] <= 1
|
| 419 |
+
|
| 420 |
+
device = self._xyz.device
|
| 421 |
+
# compute distance of all points to all cameras
|
| 422 |
+
# [num_points, num_cams]
|
| 423 |
+
dists = torch.cdist(self._xyz[None], cam_origins[None].to(device))[0]
|
| 424 |
+
# [2, num_cams]
|
| 425 |
+
dists_percentile = torch.quantile(
|
| 426 |
+
dists, torch.tensor(nearfar_percent).to(device), dim=0
|
| 427 |
+
)
|
| 428 |
+
# prune all points that are outside the percentile range
|
| 429 |
+
# [num_points, num_cams]
|
| 430 |
+
# goal: prune points that are too close or too far from any camera
|
| 431 |
+
reject_mask = (dists < dists_percentile[0:1, :]) | (
|
| 432 |
+
dists > dists_percentile[1:2, :]
|
| 433 |
+
)
|
| 434 |
+
reject_mask = reject_mask.any(dim=1)
|
| 435 |
+
valid_mask = ~reject_mask
|
| 436 |
+
|
| 437 |
+
return self.filter(valid_mask)
|
| 438 |
+
|
| 439 |
+
def apply_all_filters(
|
| 440 |
+
self,
|
| 441 |
+
opacity_thres=0.05,
|
| 442 |
+
scaling_thres=None,
|
| 443 |
+
floater_thres=None,
|
| 444 |
+
crop_bbx=[-1, 1, -1, 1, -1, 1],
|
| 445 |
+
cam_origins=None,
|
| 446 |
+
nearfar_percent=(0.005, 1.0),
|
| 447 |
+
):
|
| 448 |
+
self.prune(opacity_thres)
|
| 449 |
+
if scaling_thres is not None:
|
| 450 |
+
self.prune_by_scaling(scaling_thres)
|
| 451 |
+
if floater_thres is not None:
|
| 452 |
+
self.crop_by_xyz(floater_thres)
|
| 453 |
+
if crop_bbx is not None:
|
| 454 |
+
self.crop(crop_bbx)
|
| 455 |
+
if cam_origins is not None:
|
| 456 |
+
self.prune_by_nearfar(cam_origins, nearfar_percent)
|
| 457 |
+
return self
|
| 458 |
+
|
| 459 |
+
def shrink_bbx(self, drop_ratio=0.05):
|
| 460 |
+
xyz = self._xyz
|
| 461 |
+
xyz_min, xyz_max = torch.quantile(
|
| 462 |
+
xyz,
|
| 463 |
+
torch.tensor([drop_ratio, 1 - drop_ratio]).float().to(xyz.device),
|
| 464 |
+
dim=0,
|
| 465 |
+
) # [2, N]
|
| 466 |
+
xyz_min = xyz_min.detach().cpu().numpy()
|
| 467 |
+
xyz_max = xyz_max.detach().cpu().numpy()
|
| 468 |
+
crop_bbx = [
|
| 469 |
+
xyz_min[0],
|
| 470 |
+
xyz_max[0],
|
| 471 |
+
xyz_min[1],
|
| 472 |
+
xyz_max[1],
|
| 473 |
+
xyz_min[2],
|
| 474 |
+
xyz_max[2],
|
| 475 |
+
]
|
| 476 |
+
print(f"Shrinking bbx to {crop_bbx}")
|
| 477 |
+
return self.crop(crop_bbx)
|
| 478 |
+
|
| 479 |
+
def report_stats(self):
|
| 480 |
+
print(
|
| 481 |
+
f"xyz: {self._xyz.shape}, {self._xyz.min().item()}, {self._xyz.max().item()}"
|
| 482 |
+
)
|
| 483 |
+
print(
|
| 484 |
+
f"features_dc: {self._features_dc.shape}, {self._features_dc.min().item()}, {self._features_dc.max().item()}"
|
| 485 |
+
)
|
| 486 |
+
if self.sh_degree > 0:
|
| 487 |
+
print(
|
| 488 |
+
f"features_rest: {self._features_rest.shape}, {self._features_rest.min().item()}, {self._features_rest.max().item()}"
|
| 489 |
+
)
|
| 490 |
+
print(
|
| 491 |
+
f"scaling: {self._scaling.shape}, {self._scaling.min().item()}, {self._scaling.max().item()}"
|
| 492 |
+
)
|
| 493 |
+
print(
|
| 494 |
+
f"rotation: {self._rotation.shape}, {self._rotation.min().item()}, {self._rotation.max().item()}"
|
| 495 |
+
)
|
| 496 |
+
print(
|
| 497 |
+
f"opacity: {self._opacity.shape}, {self._opacity.min().item()}, {self._opacity.max().item()}"
|
| 498 |
+
)
|
| 499 |
+
|
| 500 |
+
print(
|
| 501 |
+
f"after activation, xyz: {self.get_xyz.shape}, {self.get_xyz.min().item()}, {self.get_xyz.max().item()}"
|
| 502 |
+
)
|
| 503 |
+
print(
|
| 504 |
+
f"after activation, features: {self.get_features.shape}, {self.get_features.min().item()}, {self.get_features.max().item()}"
|
| 505 |
+
)
|
| 506 |
+
print(
|
| 507 |
+
f"after activation, scaling: {self.get_scaling.shape}, {self.get_scaling.min().item()}, {self.get_scaling.max().item()}"
|
| 508 |
+
)
|
| 509 |
+
print(
|
| 510 |
+
f"after activation, rotation: {self.get_rotation.shape}, {self.get_rotation.min().item()}, {self.get_rotation.max().item()}"
|
| 511 |
+
)
|
| 512 |
+
print(
|
| 513 |
+
f"after activation, opacity: {self.get_opacity.shape}, {self.get_opacity.min().item()}, {self.get_opacity.max().item()}"
|
| 514 |
+
)
|
| 515 |
+
print(
|
| 516 |
+
f"after activation, covariance: {self.get_covariance().shape}, {self.get_covariance().min().item()}, {self.get_covariance().max().item()}"
|
| 517 |
+
)
|
| 518 |
+
|
| 519 |
+
@property
|
| 520 |
+
def get_scaling(self):
|
| 521 |
+
if self.scaling_modifier is not None:
|
| 522 |
+
return self.scaling_activation(self._scaling) * self.scaling_modifier
|
| 523 |
+
else:
|
| 524 |
+
return self.scaling_activation(self._scaling)
|
| 525 |
+
|
| 526 |
+
@property
|
| 527 |
+
def get_rotation(self):
|
| 528 |
+
return self.rotation_activation(self._rotation)
|
| 529 |
+
|
| 530 |
+
@property
|
| 531 |
+
def get_xyz(self):
|
| 532 |
+
return self._xyz
|
| 533 |
+
|
| 534 |
+
@property
|
| 535 |
+
def get_features(self):
|
| 536 |
+
if self.sh_degree > 0:
|
| 537 |
+
features_dc = self._features_dc
|
| 538 |
+
features_rest = self._features_rest
|
| 539 |
+
return torch.cat((features_dc, features_rest), dim=1)
|
| 540 |
+
else:
|
| 541 |
+
return self._features_dc
|
| 542 |
+
|
| 543 |
+
@property
|
| 544 |
+
def get_opacity(self):
|
| 545 |
+
return self.opacity_activation(self._opacity)
|
| 546 |
+
|
| 547 |
+
def get_covariance(self, scaling_modifier=1):
|
| 548 |
+
return self.covariance_activation(
|
| 549 |
+
self.get_scaling, scaling_modifier, self._rotation
|
| 550 |
+
)
|
| 551 |
+
|
| 552 |
+
def construct_dtypes(self, use_fp16=False, enable_gs_viewer=True):
|
| 553 |
+
if not use_fp16:
|
| 554 |
+
l = [
|
| 555 |
+
("x", "f4"),
|
| 556 |
+
("y", "f4"),
|
| 557 |
+
("z", "f4"),
|
| 558 |
+
("red", "u1"),
|
| 559 |
+
("green", "u1"),
|
| 560 |
+
("blue", "u1"),
|
| 561 |
+
]
|
| 562 |
+
# All channels except the 3 DC
|
| 563 |
+
for i in range(self._features_dc.shape[1] * self._features_dc.shape[2]):
|
| 564 |
+
l.append((f"f_dc_{i}", "f4"))
|
| 565 |
+
|
| 566 |
+
if enable_gs_viewer:
|
| 567 |
+
assert self.sh_degree <= 3, "GS viewer only supports SH up to degree 3"
|
| 568 |
+
sh_degree = 3
|
| 569 |
+
for i in range(((sh_degree + 1) ** 2 - 1) * 3):
|
| 570 |
+
l.append((f"f_rest_{i}", "f4"))
|
| 571 |
+
else:
|
| 572 |
+
if self.sh_degree > 0:
|
| 573 |
+
for i in range(
|
| 574 |
+
self._features_rest.shape[1] * self._features_rest.shape[2]
|
| 575 |
+
):
|
| 576 |
+
l.append((f"f_rest_{i}", "f4"))
|
| 577 |
+
|
| 578 |
+
l.append(("opacity", "f4"))
|
| 579 |
+
for i in range(self._scaling.shape[1]):
|
| 580 |
+
l.append((f"scale_{i}", "f4"))
|
| 581 |
+
for i in range(self._rotation.shape[1]):
|
| 582 |
+
l.append((f"rot_{i}", "f4"))
|
| 583 |
+
else:
|
| 584 |
+
l = [
|
| 585 |
+
("x", "f2"),
|
| 586 |
+
("y", "f2"),
|
| 587 |
+
("z", "f2"),
|
| 588 |
+
("red", "u1"),
|
| 589 |
+
("green", "u1"),
|
| 590 |
+
("blue", "u1"),
|
| 591 |
+
]
|
| 592 |
+
# All channels except the 3 DC
|
| 593 |
+
for i in range(self._features_dc.shape[1] * self._features_dc.shape[2]):
|
| 594 |
+
l.append((f"f_dc_{i}", "f2"))
|
| 595 |
+
|
| 596 |
+
if self.sh_degree > 0:
|
| 597 |
+
for i in range(
|
| 598 |
+
self._features_rest.shape[1] * self._features_rest.shape[2]
|
| 599 |
+
):
|
| 600 |
+
l.append((f"f_rest_{i}", "f2"))
|
| 601 |
+
l.append(("opacity", "f2"))
|
| 602 |
+
for i in range(self._scaling.shape[1]):
|
| 603 |
+
l.append((f"scale_{i}", "f2"))
|
| 604 |
+
for i in range(self._rotation.shape[1]):
|
| 605 |
+
l.append((f"rot_{i}", "f2"))
|
| 606 |
+
return l
|
| 607 |
+
|
| 608 |
+
def save_ply(
|
| 609 |
+
self,
|
| 610 |
+
path,
|
| 611 |
+
use_fp16=False,
|
| 612 |
+
enable_gs_viewer=True,
|
| 613 |
+
color_code=False,
|
| 614 |
+
filter_mask=None,
|
| 615 |
+
):
|
| 616 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
| 617 |
+
|
| 618 |
+
xyz = self._xyz.detach().cpu().numpy()
|
| 619 |
+
f_dc = (
|
| 620 |
+
self._features_dc.detach()
|
| 621 |
+
.transpose(1, 2)
|
| 622 |
+
.flatten(start_dim=1)
|
| 623 |
+
.contiguous()
|
| 624 |
+
.cpu()
|
| 625 |
+
.numpy()
|
| 626 |
+
)
|
| 627 |
+
if not color_code:
|
| 628 |
+
rgb = (SH2RGB(f_dc) * 255.0).clip(0.0, 255.0).astype(np.uint8)
|
| 629 |
+
else:
|
| 630 |
+
# use an color map to color code the index of points
|
| 631 |
+
index = np.linspace(0, 1, xyz.shape[0])
|
| 632 |
+
rgb = matplotlib.colormaps["viridis"](index)[..., :3]
|
| 633 |
+
rgb = (rgb * 255.0).clip(0.0, 255.0).astype(np.uint8)
|
| 634 |
+
|
| 635 |
+
opacities = self._opacity.detach().cpu().numpy()
|
| 636 |
+
if self.scaling_modifier is not None:
|
| 637 |
+
scale = self.inv_scaling_activation(self.get_scaling).detach().cpu().numpy()
|
| 638 |
+
else:
|
| 639 |
+
scale = self._scaling.detach().cpu().numpy()
|
| 640 |
+
rotation = self._rotation.detach().cpu().numpy()
|
| 641 |
+
|
| 642 |
+
dtype_full = self.construct_dtypes(use_fp16, enable_gs_viewer)
|
| 643 |
+
elements = np.empty(xyz.shape[0], dtype=dtype_full)
|
| 644 |
+
|
| 645 |
+
f_rest = None
|
| 646 |
+
if self.sh_degree > 0:
|
| 647 |
+
f_rest = (
|
| 648 |
+
self._features_rest.detach()
|
| 649 |
+
.transpose(1, 2)
|
| 650 |
+
.flatten(start_dim=1)
|
| 651 |
+
.contiguous()
|
| 652 |
+
.cpu()
|
| 653 |
+
.numpy()
|
| 654 |
+
) # (3, (self.sh_degree + 1) ** 2 - 1)
|
| 655 |
+
|
| 656 |
+
if enable_gs_viewer:
|
| 657 |
+
sh_degree = 3
|
| 658 |
+
if f_rest is None:
|
| 659 |
+
f_rest = np.zeros(
|
| 660 |
+
(xyz.shape[0], 3 * ((sh_degree + 1) ** 2 - 1)), dtype=np.float32
|
| 661 |
+
)
|
| 662 |
+
elif f_rest.shape[1] < 3 * ((sh_degree + 1) ** 2 - 1):
|
| 663 |
+
f_rest_pad = np.zeros(
|
| 664 |
+
(xyz.shape[0], 3 * ((sh_degree + 1) ** 2 - 1)), dtype=np.float32
|
| 665 |
+
)
|
| 666 |
+
f_rest_pad[:, : f_rest.shape[1]] = f_rest
|
| 667 |
+
f_rest = f_rest_pad
|
| 668 |
+
|
| 669 |
+
if f_rest is not None:
|
| 670 |
+
attributes = np.concatenate(
|
| 671 |
+
(xyz, rgb, f_dc, f_rest, opacities, scale, rotation), axis=1
|
| 672 |
+
)
|
| 673 |
+
else:
|
| 674 |
+
attributes = np.concatenate(
|
| 675 |
+
(xyz, rgb, f_dc, opacities, scale, rotation), axis=1
|
| 676 |
+
)
|
| 677 |
+
|
| 678 |
+
if filter_mask is not None:
|
| 679 |
+
attributes = attributes[filter_mask]
|
| 680 |
+
elements = elements[filter_mask]
|
| 681 |
+
|
| 682 |
+
elements[:] = list(map(tuple, attributes))
|
| 683 |
+
el = PlyElement.describe(elements, "vertex")
|
| 684 |
+
PlyData([el]).write(path)
|
| 685 |
+
|
| 686 |
+
def load_ply(self, path):
|
| 687 |
+
plydata = PlyData.read(path)
|
| 688 |
+
|
| 689 |
+
xyz = np.stack(
|
| 690 |
+
(
|
| 691 |
+
np.asarray(plydata.elements[0]["x"]),
|
| 692 |
+
np.asarray(plydata.elements[0]["y"]),
|
| 693 |
+
np.asarray(plydata.elements[0]["z"]),
|
| 694 |
+
),
|
| 695 |
+
axis=1,
|
| 696 |
+
)
|
| 697 |
+
opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis]
|
| 698 |
+
|
| 699 |
+
features_dc = np.zeros((xyz.shape[0], 3, 1))
|
| 700 |
+
features_dc[:, 0, 0] = np.asarray(plydata.elements[0]["f_dc_0"])
|
| 701 |
+
features_dc[:, 1, 0] = np.asarray(plydata.elements[0]["f_dc_1"])
|
| 702 |
+
features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"])
|
| 703 |
+
|
| 704 |
+
if self.sh_degree > 0:
|
| 705 |
+
extra_f_names = [
|
| 706 |
+
p.name
|
| 707 |
+
for p in plydata.elements[0].properties
|
| 708 |
+
if p.name.startswith("f_rest_")
|
| 709 |
+
]
|
| 710 |
+
extra_f_names = sorted(extra_f_names, key=lambda x: int(x.split("_")[-1]))
|
| 711 |
+
assert len(extra_f_names) == 3 * (self.sh_degree + 1) ** 2 - 3
|
| 712 |
+
features_extra = np.zeros((xyz.shape[0], len(extra_f_names)))
|
| 713 |
+
for idx, attr_name in enumerate(extra_f_names):
|
| 714 |
+
features_extra[:, idx] = np.asarray(plydata.elements[0][attr_name])
|
| 715 |
+
# Reshape (P,F*SH_coeffs) to (P, F, SH_coeffs except DC)
|
| 716 |
+
features_extra = features_extra.reshape(
|
| 717 |
+
(features_extra.shape[0], 3, (self.sh_degree + 1) ** 2 - 1)
|
| 718 |
+
)
|
| 719 |
+
|
| 720 |
+
scale_names = [
|
| 721 |
+
p.name
|
| 722 |
+
for p in plydata.elements[0].properties
|
| 723 |
+
if p.name.startswith("scale_")
|
| 724 |
+
]
|
| 725 |
+
scale_names = sorted(scale_names, key=lambda x: int(x.split("_")[-1]))
|
| 726 |
+
scales = np.zeros((xyz.shape[0], len(scale_names)))
|
| 727 |
+
for idx, attr_name in enumerate(scale_names):
|
| 728 |
+
scales[:, idx] = np.asarray(plydata.elements[0][attr_name])
|
| 729 |
+
|
| 730 |
+
rot_names = [
|
| 731 |
+
p.name for p in plydata.elements[0].properties if p.name.startswith("rot")
|
| 732 |
+
]
|
| 733 |
+
rot_names = sorted(rot_names, key=lambda x: int(x.split("_")[-1]))
|
| 734 |
+
rots = np.zeros((xyz.shape[0], len(rot_names)))
|
| 735 |
+
for idx, attr_name in enumerate(rot_names):
|
| 736 |
+
rots[:, idx] = np.asarray(plydata.elements[0][attr_name])
|
| 737 |
+
|
| 738 |
+
self._xyz = torch.from_numpy(xyz.astype(np.float32))
|
| 739 |
+
self._features_dc = (
|
| 740 |
+
torch.from_numpy(features_dc.astype(np.float32))
|
| 741 |
+
.transpose(1, 2)
|
| 742 |
+
.contiguous()
|
| 743 |
+
)
|
| 744 |
+
if self.sh_degree > 0:
|
| 745 |
+
self._features_rest = (
|
| 746 |
+
torch.from_numpy(features_extra.astype(np.float32))
|
| 747 |
+
.transpose(1, 2)
|
| 748 |
+
.contiguous()
|
| 749 |
+
)
|
| 750 |
+
self._opacity = torch.from_numpy(
|
| 751 |
+
np.copy(opacities).astype(np.float32)
|
| 752 |
+
).contiguous()
|
| 753 |
+
self._scaling = torch.from_numpy(scales.astype(np.float32)).contiguous()
|
| 754 |
+
self._rotation = torch.from_numpy(rots.astype(np.float32)).contiguous()
|
| 755 |
+
|
| 756 |
+
|
| 757 |
+
def render_opencv_cam(
|
| 758 |
+
pc: GaussianModel,
|
| 759 |
+
height: int,
|
| 760 |
+
width: int,
|
| 761 |
+
C2W: torch.Tensor,
|
| 762 |
+
fxfycxcy: torch.Tensor,
|
| 763 |
+
bg_color=(1.0, 1.0, 1.0),
|
| 764 |
+
scaling_modifier=1.0,
|
| 765 |
+
):
|
| 766 |
+
"""
|
| 767 |
+
Render the scene.
|
| 768 |
+
|
| 769 |
+
Background tensor (bg_color) must be on GPU!
|
| 770 |
+
"""
|
| 771 |
+
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
|
| 772 |
+
screenspace_points = torch.empty_like(
|
| 773 |
+
pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda"
|
| 774 |
+
)
|
| 775 |
+
# try:
|
| 776 |
+
# screenspace_points.retain_grad()
|
| 777 |
+
# except:
|
| 778 |
+
# pass
|
| 779 |
+
|
| 780 |
+
viewpoint_camera = Camera(C2W=C2W, fxfycxcy=fxfycxcy, h=height, w=width)
|
| 781 |
+
|
| 782 |
+
bg_color = torch.tensor(list(bg_color), dtype=torch.float32, device=C2W.device)
|
| 783 |
+
|
| 784 |
+
# Set up rasterization configuration
|
| 785 |
+
raster_settings = GaussianRasterizationSettings(
|
| 786 |
+
image_height=int(viewpoint_camera.h),
|
| 787 |
+
image_width=int(viewpoint_camera.w),
|
| 788 |
+
tanfovx=viewpoint_camera.tanfovX,
|
| 789 |
+
tanfovy=viewpoint_camera.tanfovY,
|
| 790 |
+
bg=bg_color,
|
| 791 |
+
scale_modifier=scaling_modifier,
|
| 792 |
+
viewmatrix=viewpoint_camera.world_view_transform,
|
| 793 |
+
projmatrix=viewpoint_camera.full_proj_transform,
|
| 794 |
+
sh_degree=pc.sh_degree,
|
| 795 |
+
campos=viewpoint_camera.camera_center,
|
| 796 |
+
prefiltered=False,
|
| 797 |
+
debug=False,
|
| 798 |
+
)
|
| 799 |
+
|
| 800 |
+
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
|
| 801 |
+
|
| 802 |
+
means3D = pc.get_xyz
|
| 803 |
+
means2D = screenspace_points
|
| 804 |
+
opacity = pc.get_opacity
|
| 805 |
+
scales = pc.get_scaling
|
| 806 |
+
rotations = pc.get_rotation
|
| 807 |
+
shs = pc.get_features
|
| 808 |
+
|
| 809 |
+
# Rasterize visible Gaussians to image, obtain their radii (on screen).
|
| 810 |
+
rendered_image, radii, _, _ = rasterizer(
|
| 811 |
+
means3D=means3D,
|
| 812 |
+
means2D=means2D,
|
| 813 |
+
shs=shs,
|
| 814 |
+
colors_precomp=None,
|
| 815 |
+
opacities=opacity,
|
| 816 |
+
scales=scales,
|
| 817 |
+
rotations=rotations,
|
| 818 |
+
cov3D_precomp=None,
|
| 819 |
+
)
|
| 820 |
+
|
| 821 |
+
# Those Gaussians that were frustum culled or had a radius of 0 were not visible.
|
| 822 |
+
# They will be excluded from value updates used in the splitting criteria.
|
| 823 |
+
return {
|
| 824 |
+
"render": rendered_image,
|
| 825 |
+
"viewspace_points": screenspace_points,
|
| 826 |
+
"visibility_filter": radii > 0,
|
| 827 |
+
"radii": radii,
|
| 828 |
+
}
|
| 829 |
+
|
| 830 |
+
|
| 831 |
+
class DeferredGaussianRender(torch.autograd.Function):
|
| 832 |
+
@staticmethod
|
| 833 |
+
def forward(
|
| 834 |
+
ctx,
|
| 835 |
+
xyz,
|
| 836 |
+
features,
|
| 837 |
+
scaling,
|
| 838 |
+
rotation,
|
| 839 |
+
opacity,
|
| 840 |
+
height,
|
| 841 |
+
width,
|
| 842 |
+
C2W,
|
| 843 |
+
fxfycxcy,
|
| 844 |
+
scaling_modifier=None,
|
| 845 |
+
):
|
| 846 |
+
"""
|
| 847 |
+
xyz: [b, n_gaussians, 3]
|
| 848 |
+
features: [b, n_gaussians, (sh_degree+1)^2, 3]
|
| 849 |
+
scaling: [b, n_gaussians, 3]
|
| 850 |
+
rotation: [b, n_gaussians, 4]
|
| 851 |
+
opacity: [b, n_gaussians, 1]
|
| 852 |
+
|
| 853 |
+
height: int
|
| 854 |
+
width: int
|
| 855 |
+
C2W: [b, v, 4, 4]
|
| 856 |
+
fxfycxcy: [b, v, 4]
|
| 857 |
+
|
| 858 |
+
output: [b, v, 3, height, width]
|
| 859 |
+
"""
|
| 860 |
+
ctx.scaling_modifier = scaling_modifier
|
| 861 |
+
|
| 862 |
+
# Infer sh_degree from features
|
| 863 |
+
sh_degree = int(math.sqrt(features.shape[-2])) - 1
|
| 864 |
+
|
| 865 |
+
# Create a temp class to hold the data and for rendering
|
| 866 |
+
gaussians_model = GaussianModel(sh_degree, scaling_modifier)
|
| 867 |
+
|
| 868 |
+
with torch.no_grad():
|
| 869 |
+
b, v = C2W.size(0), C2W.size(1)
|
| 870 |
+
renders = []
|
| 871 |
+
for i in range(b):
|
| 872 |
+
pc = gaussians_model.set_data(
|
| 873 |
+
xyz[i], features[i], scaling[i], rotation[i], opacity[i]
|
| 874 |
+
)
|
| 875 |
+
for j in range(v):
|
| 876 |
+
renders.append(
|
| 877 |
+
render_opencv_cam(pc, height, width, C2W[i, j], fxfycxcy[i, j])[
|
| 878 |
+
"render"
|
| 879 |
+
]
|
| 880 |
+
)
|
| 881 |
+
renders = torch.stack(renders, dim=0)
|
| 882 |
+
renders = renders.reshape(b, v, 3, height, width)
|
| 883 |
+
|
| 884 |
+
renders = renders.requires_grad_()
|
| 885 |
+
|
| 886 |
+
# Save_for_backward only supports tensors
|
| 887 |
+
ctx.save_for_backward(xyz, features, scaling, rotation, opacity, C2W, fxfycxcy)
|
| 888 |
+
ctx.rendering_size = (height, width)
|
| 889 |
+
ctx.sh_degree = sh_degree
|
| 890 |
+
|
| 891 |
+
# Release the temp class; do not save it.
|
| 892 |
+
del gaussians_model
|
| 893 |
+
|
| 894 |
+
return renders
|
| 895 |
+
|
| 896 |
+
@staticmethod
|
| 897 |
+
def backward(ctx, grad_output):
|
| 898 |
+
# Restore params
|
| 899 |
+
xyz, features, scaling, rotation, opacity, C2W, fxfycxcy = ctx.saved_tensors
|
| 900 |
+
height, width = ctx.rendering_size
|
| 901 |
+
sh_degree = ctx.sh_degree
|
| 902 |
+
|
| 903 |
+
# **The order of this dict should not be changed**
|
| 904 |
+
input_dict = OrderedDict(
|
| 905 |
+
[
|
| 906 |
+
("xyz", xyz),
|
| 907 |
+
("features", features),
|
| 908 |
+
("scaling", scaling),
|
| 909 |
+
("rotation", rotation),
|
| 910 |
+
("opacity", opacity),
|
| 911 |
+
]
|
| 912 |
+
)
|
| 913 |
+
input_dict = {k: v.detach().requires_grad_() for k, v in input_dict.items()}
|
| 914 |
+
|
| 915 |
+
# Create a temp class to hold the data and for rendering
|
| 916 |
+
gaussians_model = GaussianModel(sh_degree, ctx.scaling_modifier)
|
| 917 |
+
|
| 918 |
+
with torch.enable_grad():
|
| 919 |
+
b, v = C2W.size(0), C2W.size(1)
|
| 920 |
+
for i in range(b):
|
| 921 |
+
for j in range(v):
|
| 922 |
+
# The backward will remove the diff graph, thus each time we need a copy
|
| 923 |
+
pc = gaussians_model.set_data(
|
| 924 |
+
**{k: v[i] for k, v in input_dict.items()}
|
| 925 |
+
)
|
| 926 |
+
|
| 927 |
+
# Forward
|
| 928 |
+
render = render_opencv_cam(
|
| 929 |
+
pc, height, width, C2W[i, j], fxfycxcy[i, j]
|
| 930 |
+
)["render"]
|
| 931 |
+
|
| 932 |
+
# Backward, suppose that only values in input_dict will get gradients.
|
| 933 |
+
render.backward(grad_output[i, j])
|
| 934 |
+
|
| 935 |
+
del gaussians_model
|
| 936 |
+
|
| 937 |
+
return *[var.grad for var in input_dict.values()], None, None, None, None, None
|
| 938 |
+
|
| 939 |
+
|
| 940 |
+
# Function for the class
|
| 941 |
+
deferred_gaussian_render = DeferredGaussianRender.apply
|
| 942 |
+
|
| 943 |
+
@torch.no_grad()
|
| 944 |
+
@torch.cuda.amp.custom_fwd(cast_inputs=torch.float32)
|
| 945 |
+
def render_turntable(pc: GaussianModel, rendering_resolution=384, num_views=8):
|
| 946 |
+
w, h, v, fxfycxcy, c2w = get_turntable_cameras(
|
| 947 |
+
h=rendering_resolution, w=rendering_resolution, num_views=num_views,
|
| 948 |
+
elevation=0, # For MAX SNEAK
|
| 949 |
+
)
|
| 950 |
+
|
| 951 |
+
device = pc._xyz.device
|
| 952 |
+
fxfycxcy = torch.from_numpy(fxfycxcy).float().to(device) # [v, 4]
|
| 953 |
+
c2w = torch.from_numpy(c2w).float().to(device) # [v, 4, 4]
|
| 954 |
+
|
| 955 |
+
renderings = torch.zeros(v, 3, h, w, dtype=torch.float32, device=device)
|
| 956 |
+
for j in range(v):
|
| 957 |
+
renderings[j] = render_opencv_cam(pc, h, w, c2w[j], fxfycxcy[j])["render"]
|
| 958 |
+
torch.cuda.empty_cache() # free up memory on GPU
|
| 959 |
+
renderings = renderings.detach().cpu().numpy()
|
| 960 |
+
renderings = (renderings * 255).clip(0, 255).astype(np.uint8)
|
| 961 |
+
renderings = rearrange(renderings, "v c h w -> h (v w) c")
|
| 962 |
+
return renderings
|
| 963 |
+
|
| 964 |
+
|
| 965 |
+
if __name__ == "__main__":
|
| 966 |
+
import json
|
| 967 |
+
|
| 968 |
+
from PIL import Image
|
| 969 |
+
from tqdm import tqdm
|
| 970 |
+
|
| 971 |
+
out_dir = "/mnt/localssd/debug-3dgs"
|
| 972 |
+
os.makedirs(out_dir, exist_ok=True)
|
| 973 |
+
|
| 974 |
+
os.system(
|
| 975 |
+
f"wget https://phidias.s3.us-west-2.amazonaws.com/kaiz/neural-capture/eval-3dgs-lowres/AWS_test_set/results/1.fashion_boots_rubber_boots__short__Feb_21__2023_at_5_19_25_PM_yf/point_cloud/iteration_30000_fg/point_cloud.ply -O {out_dir}/point_cloud.ply"
|
| 976 |
+
)
|
| 977 |
+
os.system(
|
| 978 |
+
f"wget https://neural-capture.s3.us-west-2.amazonaws.com/data/AWS_test_set/preprocessed/1.fashion_boots_rubber_boots__short__Feb_21__2023_at_5_19_25_PM_yf/opencv_cameras_traj_norm.json -O {out_dir}/opencv_cameras_traj_norm.json"
|
| 979 |
+
)
|
| 980 |
+
|
| 981 |
+
device = "cuda:0"
|
| 982 |
+
|
| 983 |
+
pc = GaussianModel(sh_degree=3)
|
| 984 |
+
pc.load_ply(f"{out_dir}/point_cloud.ply")
|
| 985 |
+
pc = pc.to(device)
|
| 986 |
+
|
| 987 |
+
# pc.save_ply(f"{out_dir}/point_cloud_shrink.ply")
|
| 988 |
+
# pc.load_ply(f"{out_dir}/point_cloud_shrink.ply")
|
| 989 |
+
# pc = pc.to(device)
|
| 990 |
+
|
| 991 |
+
# pc.prune(opacity_thres=0.05)
|
| 992 |
+
# pc.save_ply(f"{out_dir}/point_cloud_shrink_prune.ply")
|
| 993 |
+
# pc = pc.to(device)
|
| 994 |
+
|
| 995 |
+
# pc.shrink_bbx(drop_ratio=0.01)
|
| 996 |
+
# pc.save_ply(f"{out_dir}/point_cloud_shrink_prune.ply")
|
| 997 |
+
# pc = pc.to(device)
|
| 998 |
+
|
| 999 |
+
pc.report_stats()
|
| 1000 |
+
|
| 1001 |
+
with open(f"{out_dir}/opencv_cameras_traj_norm.json", "r") as f:
|
| 1002 |
+
cam_traj = json.load(f)
|
| 1003 |
+
|
| 1004 |
+
for i, cam in tqdm(enumerate(cam_traj["frames"]), desc="Rendering progress"):
|
| 1005 |
+
w2c = np.array(cam["w2c"])
|
| 1006 |
+
c2w = np.linalg.inv(w2c)
|
| 1007 |
+
c2w = torch.from_numpy(c2w.astype(np.float32)).to(device)
|
| 1008 |
+
|
| 1009 |
+
fx = cam["fx"]
|
| 1010 |
+
fy = cam["fy"]
|
| 1011 |
+
cx = cam["cx"]
|
| 1012 |
+
cy = cam["cy"]
|
| 1013 |
+
cx = cx - 5
|
| 1014 |
+
cy = cy + 4
|
| 1015 |
+
fxfycxcy = torch.tensor([fx, fy, cx, cy], dtype=torch.float32, device=device)
|
| 1016 |
+
|
| 1017 |
+
h = cam["h"]
|
| 1018 |
+
w = cam["w"]
|
| 1019 |
+
|
| 1020 |
+
im = render_opencv_cam(pc, h, w, c2w, fxfycxcy, bg_color=[0.0, 0.0, 0.0])[
|
| 1021 |
+
"render"
|
| 1022 |
+
]
|
| 1023 |
+
im = im.detach().cpu().numpy().transpose(1, 2, 0)
|
| 1024 |
+
im = (im * 255).astype(np.uint8)
|
| 1025 |
+
Image.fromarray(im).save(f"{out_dir}/render_{i:08d}.png")
|
| 1026 |
+
|
| 1027 |
+
create_video(out_dir, f"{out_dir}/render.mp4", framerate=30)
|
| 1028 |
+
print(f"Saved {out_dir}/render.mp4")
|
gslrm/model/gslrm.py
ADDED
|
@@ -0,0 +1,1647 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (C) 2025, FaceLift Research Group
|
| 2 |
+
# https://github.com/weijielyu/FaceLift
|
| 3 |
+
#
|
| 4 |
+
# This software is free for non-commercial, research and evaluation use
|
| 5 |
+
# under the terms of the LICENSE.md file.
|
| 6 |
+
#
|
| 7 |
+
# For inquiries contact: wlyu3@ucmerced.edu
|
| 8 |
+
|
| 9 |
+
"""
|
| 10 |
+
GSLRM (Gaussian Splatting Large Reconstruction Model)
|
| 11 |
+
|
| 12 |
+
This module implements a transformer-based model for generating 3D Gaussian splats
|
| 13 |
+
from multi-view images. The model uses a combination of image tokenization,
|
| 14 |
+
transformer processing, and Gaussian splatting for novel view synthesis.
|
| 15 |
+
|
| 16 |
+
Classes:
|
| 17 |
+
Renderer: Handles Gaussian splatting rendering operations
|
| 18 |
+
GaussiansUpsampler: Converts transformer tokens to Gaussian parameters
|
| 19 |
+
LossComputer: Computes various loss functions for training
|
| 20 |
+
TransformTarget: Handles target image transformations (cropping, etc.)
|
| 21 |
+
GSLRM: Main model class that orchestrates the entire pipeline
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
import copy
|
| 25 |
+
import os
|
| 26 |
+
import time
|
| 27 |
+
from typing import Dict, List, Optional, Tuple, Union
|
| 28 |
+
|
| 29 |
+
import cv2
|
| 30 |
+
import lpips
|
| 31 |
+
import numpy as np
|
| 32 |
+
import torch
|
| 33 |
+
import torch.nn as nn
|
| 34 |
+
import torch.nn.functional as F
|
| 35 |
+
from easydict import EasyDict as edict
|
| 36 |
+
from einops import rearrange
|
| 37 |
+
from einops.layers.torch import Rearrange
|
| 38 |
+
from PIL import Image
|
| 39 |
+
|
| 40 |
+
# Local imports
|
| 41 |
+
from .utils_losses import PerceptualLoss, SsimLoss
|
| 42 |
+
from .gaussians_renderer import (
|
| 43 |
+
GaussianModel,
|
| 44 |
+
RGB2SH,
|
| 45 |
+
deferred_gaussian_render,
|
| 46 |
+
imageseq2video,
|
| 47 |
+
render_opencv_cam,
|
| 48 |
+
render_turntable,
|
| 49 |
+
)
|
| 50 |
+
from .transform_data import SplitData, TransformInput, TransformTarget
|
| 51 |
+
from .utils_transformer import (
|
| 52 |
+
TransformerBlock,
|
| 53 |
+
_init_weights,
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
class Renderer(nn.Module):
|
| 57 |
+
"""
|
| 58 |
+
Handles Gaussian splatting rendering operations.
|
| 59 |
+
|
| 60 |
+
Supports both deferred rendering (for training with gradients) and
|
| 61 |
+
standard rendering (for inference).
|
| 62 |
+
"""
|
| 63 |
+
|
| 64 |
+
def __init__(self, config: edict):
|
| 65 |
+
super().__init__()
|
| 66 |
+
self.config = config
|
| 67 |
+
|
| 68 |
+
# Initialize Gaussian model with scaling modifier
|
| 69 |
+
self.scaling_modifier = config.model.gaussians.get("scaling_modifier", None)
|
| 70 |
+
self.gaussians_model = GaussianModel(
|
| 71 |
+
config.model.gaussians.sh_degree,
|
| 72 |
+
self.scaling_modifier
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
print(f"Renderer initialized with scaling_modifier: {self.scaling_modifier}")
|
| 76 |
+
|
| 77 |
+
@torch.cuda.amp.custom_fwd(cast_inputs=torch.float32)
|
| 78 |
+
def forward(
|
| 79 |
+
self,
|
| 80 |
+
xyz: torch.Tensor, # [b, n_gaussians, 3]
|
| 81 |
+
features: torch.Tensor, # [b, n_gaussians, (sh_degree+1)^2, 3]
|
| 82 |
+
scaling: torch.Tensor, # [b, n_gaussians, 3]
|
| 83 |
+
rotation: torch.Tensor, # [b, n_gaussians, 4]
|
| 84 |
+
opacity: torch.Tensor, # [b, n_gaussians, 1]
|
| 85 |
+
height: int,
|
| 86 |
+
width: int,
|
| 87 |
+
C2W: torch.Tensor, # [b, v, 4, 4]
|
| 88 |
+
fxfycxcy: torch.Tensor, # [b, v, 4]
|
| 89 |
+
deferred: bool = True,
|
| 90 |
+
) -> torch.Tensor: # [b, v, 3, height, width]
|
| 91 |
+
"""
|
| 92 |
+
Render Gaussian splats to images.
|
| 93 |
+
|
| 94 |
+
Args:
|
| 95 |
+
xyz: Gaussian positions
|
| 96 |
+
features: Gaussian spherical harmonic features
|
| 97 |
+
scaling: Gaussian scaling parameters
|
| 98 |
+
rotation: Gaussian rotation quaternions
|
| 99 |
+
opacity: Gaussian opacity values
|
| 100 |
+
height: Output image height
|
| 101 |
+
width: Output image width
|
| 102 |
+
C2W: Camera-to-world transformation matrices
|
| 103 |
+
fxfycxcy: Camera intrinsics (fx, fy, cx, cy)
|
| 104 |
+
deferred: Whether to use deferred rendering (maintains gradients)
|
| 105 |
+
|
| 106 |
+
Returns:
|
| 107 |
+
Rendered images
|
| 108 |
+
"""
|
| 109 |
+
if deferred:
|
| 110 |
+
return deferred_gaussian_render(
|
| 111 |
+
xyz, features, scaling, rotation, opacity,
|
| 112 |
+
height, width, C2W, fxfycxcy, self.scaling_modifier
|
| 113 |
+
)
|
| 114 |
+
else:
|
| 115 |
+
return self._render_sequential(
|
| 116 |
+
xyz, features, scaling, rotation, opacity,
|
| 117 |
+
height, width, C2W, fxfycxcy
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
def _render_sequential(
|
| 121 |
+
self, xyz, features, scaling, rotation, opacity,
|
| 122 |
+
height, width, C2W, fxfycxcy
|
| 123 |
+
) -> torch.Tensor:
|
| 124 |
+
"""Sequential rendering without gradient support (used for inference)."""
|
| 125 |
+
b, v = C2W.size(0), C2W.size(1)
|
| 126 |
+
renderings = torch.zeros(
|
| 127 |
+
b, v, 3, height, width, dtype=torch.float32, device=xyz.device
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
for i in range(b):
|
| 131 |
+
pc = self.gaussians_model.set_data(
|
| 132 |
+
xyz[i], features[i], scaling[i], rotation[i], opacity[i]
|
| 133 |
+
)
|
| 134 |
+
for j in range(v):
|
| 135 |
+
renderings[i, j] = render_opencv_cam(
|
| 136 |
+
pc, height, width, C2W[i, j], fxfycxcy[i, j]
|
| 137 |
+
)["render"]
|
| 138 |
+
|
| 139 |
+
return renderings
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
class GaussiansUpsampler(nn.Module):
|
| 143 |
+
"""
|
| 144 |
+
Converts transformer output tokens to Gaussian splatting parameters.
|
| 145 |
+
|
| 146 |
+
Takes high-dimensional transformer features and projects them to the
|
| 147 |
+
concatenated Gaussian parameter space (xyz + features + scaling + rotation + opacity).
|
| 148 |
+
"""
|
| 149 |
+
|
| 150 |
+
def __init__(self, config: edict):
|
| 151 |
+
super().__init__()
|
| 152 |
+
self.config = config
|
| 153 |
+
|
| 154 |
+
# Layer normalization before final projection
|
| 155 |
+
self.layernorm = nn.LayerNorm(config.model.transformer.d, bias=False)
|
| 156 |
+
|
| 157 |
+
# Calculate output dimension for Gaussian parameters
|
| 158 |
+
sh_dim = (config.model.gaussians.sh_degree + 1) ** 2 * 3
|
| 159 |
+
gaussian_param_dim = 3 + sh_dim + 3 + 4 + 1 # xyz + features + scaling + rotation + opacity
|
| 160 |
+
|
| 161 |
+
# Check upsampling factor (currently only supports 1x)
|
| 162 |
+
upsample_factor = config.model.gaussians.upsampler.upsample_factor
|
| 163 |
+
if upsample_factor > 1:
|
| 164 |
+
raise NotImplementedError("GaussiansUpsampler only supports upsample_factor=1")
|
| 165 |
+
|
| 166 |
+
# Linear projection to Gaussian parameters
|
| 167 |
+
self.linear = nn.Linear(
|
| 168 |
+
config.model.transformer.d,
|
| 169 |
+
gaussian_param_dim,
|
| 170 |
+
bias=False,
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
def forward(
|
| 174 |
+
self,
|
| 175 |
+
gaussians: torch.Tensor, # [b, n_gaussians, d]
|
| 176 |
+
images: torch.Tensor # [b, l, d] (unused but kept for interface compatibility)
|
| 177 |
+
) -> torch.Tensor: # [b, n_gaussians, gaussian_param_dim]
|
| 178 |
+
"""
|
| 179 |
+
Convert transformer tokens to Gaussian parameters.
|
| 180 |
+
|
| 181 |
+
Args:
|
| 182 |
+
gaussians: Transformer output tokens for Gaussians
|
| 183 |
+
images: Image tokens (unused but kept for compatibility)
|
| 184 |
+
|
| 185 |
+
Returns:
|
| 186 |
+
Raw Gaussian parameters (before conversion to final format)
|
| 187 |
+
"""
|
| 188 |
+
upsample_factor = self.config.model.gaussians.upsampler.upsample_factor
|
| 189 |
+
if upsample_factor > 1:
|
| 190 |
+
raise NotImplementedError("GaussiansUpsampler only supports upsample_factor=1")
|
| 191 |
+
|
| 192 |
+
return self.linear(self.layernorm(gaussians))
|
| 193 |
+
|
| 194 |
+
def to_gs(self, gaussians: torch.Tensor) -> Tuple[torch.Tensor, ...]:
|
| 195 |
+
"""
|
| 196 |
+
Convert raw Gaussian parameters to final format.
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
gaussians: Raw Gaussian parameters [b, n_gaussians, param_dim]
|
| 200 |
+
|
| 201 |
+
Returns:
|
| 202 |
+
Tuple of (xyz, features, scaling, rotation, opacity)
|
| 203 |
+
"""
|
| 204 |
+
sh_dim = (self.config.model.gaussians.sh_degree + 1) ** 2 * 3
|
| 205 |
+
|
| 206 |
+
# Split concatenated parameters
|
| 207 |
+
xyz, features, scaling, rotation, opacity = gaussians.split(
|
| 208 |
+
[3, sh_dim, 3, 4, 1], dim=2
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
# Reshape features to proper spherical harmonics format
|
| 212 |
+
features = features.reshape(
|
| 213 |
+
features.size(0),
|
| 214 |
+
features.size(1),
|
| 215 |
+
(self.config.model.gaussians.sh_degree + 1) ** 2,
|
| 216 |
+
3,
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
# Apply activation functions with specific biases
|
| 220 |
+
# Scaling: exp(x - 2.3) clamped to prevent too large values
|
| 221 |
+
scaling = (scaling - 2.3).clamp(max=-1.20)
|
| 222 |
+
|
| 223 |
+
# Opacity: sigmoid(x - 2.0) to get values in [0, 1]
|
| 224 |
+
opacity = opacity - 2.0
|
| 225 |
+
|
| 226 |
+
return xyz, features, scaling, rotation, opacity
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
class LossComputer(nn.Module):
|
| 230 |
+
"""
|
| 231 |
+
Computes various loss functions for training the GSLRM model.
|
| 232 |
+
|
| 233 |
+
Supports multiple loss types:
|
| 234 |
+
- L2 (MSE) loss
|
| 235 |
+
- LPIPS perceptual loss
|
| 236 |
+
- Custom perceptual loss
|
| 237 |
+
- SSIM loss
|
| 238 |
+
- Pixel alignment loss
|
| 239 |
+
- Point distance regularization loss
|
| 240 |
+
"""
|
| 241 |
+
|
| 242 |
+
def __init__(self, config: edict):
|
| 243 |
+
super().__init__()
|
| 244 |
+
self.config = config
|
| 245 |
+
|
| 246 |
+
# Initialize loss modules based on config
|
| 247 |
+
self._init_loss_modules()
|
| 248 |
+
|
| 249 |
+
def _init_loss_modules(self):
|
| 250 |
+
"""Initialize the various loss computation modules."""
|
| 251 |
+
# LPIPS loss
|
| 252 |
+
if self.config.training.losses.lpips_loss_weight > 0.0:
|
| 253 |
+
self.lpips_loss_module = lpips.LPIPS(net="vgg")
|
| 254 |
+
self.lpips_loss_module.eval()
|
| 255 |
+
# Freeze LPIPS parameters
|
| 256 |
+
for param in self.lpips_loss_module.parameters():
|
| 257 |
+
param.requires_grad = False
|
| 258 |
+
|
| 259 |
+
# Perceptual loss
|
| 260 |
+
if self.config.training.losses.perceptual_loss_weight > 0.0:
|
| 261 |
+
self.perceptual_loss_module = PerceptualLoss()
|
| 262 |
+
self.perceptual_loss_module.eval()
|
| 263 |
+
# Freeze perceptual loss parameters
|
| 264 |
+
for param in self.perceptual_loss_module.parameters():
|
| 265 |
+
param.requires_grad = False
|
| 266 |
+
|
| 267 |
+
# SSIM loss
|
| 268 |
+
if self.config.training.losses.ssim_loss_weight > 0.0:
|
| 269 |
+
self.ssim_loss_module = SsimLoss()
|
| 270 |
+
self.ssim_loss_module.eval()
|
| 271 |
+
# Freeze SSIM parameters
|
| 272 |
+
for param in self.ssim_loss_module.parameters():
|
| 273 |
+
param.requires_grad = False
|
| 274 |
+
|
| 275 |
+
def forward(
|
| 276 |
+
self,
|
| 277 |
+
rendering: torch.Tensor, # [b, v, 3, h, w]
|
| 278 |
+
target: torch.Tensor, # [b, v, 3, h, w]
|
| 279 |
+
img_aligned_xyz: torch.Tensor, # [b, v, 3, h, w]
|
| 280 |
+
input: edict,
|
| 281 |
+
result_softpa: Optional[edict] = None,
|
| 282 |
+
create_visual: bool = False,
|
| 283 |
+
) -> edict:
|
| 284 |
+
"""
|
| 285 |
+
Compute all losses between rendered and target images.
|
| 286 |
+
|
| 287 |
+
Args:
|
| 288 |
+
rendering: Rendered images in range [0, 1]
|
| 289 |
+
target: Target images in range [0, 1]
|
| 290 |
+
img_aligned_xyz: Image-aligned 3D positions
|
| 291 |
+
input: Input data containing ray information
|
| 292 |
+
result_softpa: Additional results (unused)
|
| 293 |
+
create_visual: Whether to create visualization images
|
| 294 |
+
|
| 295 |
+
Returns:
|
| 296 |
+
Dictionary containing all loss values and metrics
|
| 297 |
+
"""
|
| 298 |
+
b, v, _, h, w = rendering.size()
|
| 299 |
+
rendering_flat = rendering.reshape(b * v, -1, h, w)
|
| 300 |
+
target_flat = target.reshape(b * v, -1, h, w)
|
| 301 |
+
|
| 302 |
+
# Handle alpha channel if present
|
| 303 |
+
mask = None
|
| 304 |
+
if target_flat.size(1) == 4:
|
| 305 |
+
target_flat, mask = target_flat.split([3, 1], dim=1)
|
| 306 |
+
|
| 307 |
+
# Compute individual losses
|
| 308 |
+
losses = self._compute_all_losses(
|
| 309 |
+
rendering_flat, target_flat, img_aligned_xyz, input, mask, b, v, h, w
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
# Compute total weighted loss
|
| 313 |
+
total_loss = self._compute_total_loss(losses)
|
| 314 |
+
|
| 315 |
+
# Create visualization if requested
|
| 316 |
+
visual = self._create_visual(rendering_flat, target_flat, v) if create_visual else None
|
| 317 |
+
|
| 318 |
+
# Compile loss metrics
|
| 319 |
+
return self._compile_loss_metrics(losses, total_loss, visual)
|
| 320 |
+
|
| 321 |
+
def _compute_all_losses(self, rendering, target, img_aligned_xyz, input, mask, b, v, h, w):
|
| 322 |
+
"""Compute all individual loss components."""
|
| 323 |
+
losses = {}
|
| 324 |
+
|
| 325 |
+
# L2 (MSE) loss
|
| 326 |
+
losses['l2'] = self._compute_l2_loss(rendering, target)
|
| 327 |
+
losses['psnr'] = -10.0 * torch.log10(losses['l2'])
|
| 328 |
+
|
| 329 |
+
# LPIPS loss
|
| 330 |
+
losses['lpips'] = self._compute_lpips_loss(rendering, target)
|
| 331 |
+
|
| 332 |
+
# Perceptual loss
|
| 333 |
+
losses['perceptual'] = self._compute_perceptual_loss(rendering, target)
|
| 334 |
+
|
| 335 |
+
# SSIM loss
|
| 336 |
+
losses['ssim'] = self._compute_ssim_loss(rendering, target)
|
| 337 |
+
|
| 338 |
+
# Pixel alignment loss
|
| 339 |
+
losses['pixelalign'] = self._compute_pixelalign_loss(
|
| 340 |
+
img_aligned_xyz, input, mask, b, v, h, w
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
# Point distance loss
|
| 344 |
+
losses['pointsdist'] = self._compute_pointsdist_loss(
|
| 345 |
+
img_aligned_xyz, input, b, v, h, w
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
return losses
|
| 349 |
+
|
| 350 |
+
def _compute_l2_loss(self, rendering, target):
|
| 351 |
+
"""Compute L2 (MSE) loss."""
|
| 352 |
+
if self.config.training.losses.l2_loss_weight > 0.0:
|
| 353 |
+
return F.mse_loss(rendering, target)
|
| 354 |
+
return torch.tensor(1e-8, device=rendering.device)
|
| 355 |
+
|
| 356 |
+
def _compute_lpips_loss(self, rendering, target):
|
| 357 |
+
"""Compute LPIPS perceptual loss."""
|
| 358 |
+
if self.config.training.losses.lpips_loss_weight > 0.0:
|
| 359 |
+
# LPIPS expects inputs in range [-1, 1]
|
| 360 |
+
return self.lpips_loss_module(
|
| 361 |
+
rendering * 2.0 - 1.0, target * 2.0 - 1.0
|
| 362 |
+
).mean()
|
| 363 |
+
return torch.tensor(0.0, device=rendering.device)
|
| 364 |
+
|
| 365 |
+
def _compute_perceptual_loss(self, rendering, target):
|
| 366 |
+
"""Compute custom perceptual loss."""
|
| 367 |
+
if self.config.training.losses.perceptual_loss_weight > 0.0:
|
| 368 |
+
return self.perceptual_loss_module(rendering, target)
|
| 369 |
+
return torch.tensor(0.0, device=rendering.device)
|
| 370 |
+
|
| 371 |
+
def _compute_ssim_loss(self, rendering, target):
|
| 372 |
+
"""Compute SSIM loss."""
|
| 373 |
+
if self.config.training.losses.ssim_loss_weight > 0.0:
|
| 374 |
+
return self.ssim_loss_module(rendering, target)
|
| 375 |
+
return torch.tensor(0.0, device=rendering.device)
|
| 376 |
+
|
| 377 |
+
def _compute_pixelalign_loss(self, img_aligned_xyz, input, mask, b, v, h, w):
|
| 378 |
+
"""Compute pixel alignment loss."""
|
| 379 |
+
if self.config.training.losses.pixelalign_loss_weight > 0.0:
|
| 380 |
+
# Compute orthogonal component to ray direction
|
| 381 |
+
xyz_vec = img_aligned_xyz - input.ray_o
|
| 382 |
+
ortho_vec = (
|
| 383 |
+
xyz_vec
|
| 384 |
+
- torch.sum(xyz_vec.detach() * input.ray_d, dim=2, keepdim=True)
|
| 385 |
+
* input.ray_d
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
# Apply mask if enabled
|
| 389 |
+
if self.config.training.losses.get("masked_pixelalign_loss", False):
|
| 390 |
+
assert mask is not None, "mask is None but masked_pixelalign_loss is enabled"
|
| 391 |
+
mask_reshaped = mask.view(b, v, 1, h, w)
|
| 392 |
+
ortho_vec = ortho_vec * mask_reshaped
|
| 393 |
+
|
| 394 |
+
return torch.mean(ortho_vec.norm(dim=2, p=2))
|
| 395 |
+
|
| 396 |
+
return torch.tensor(0.0, device=img_aligned_xyz.device)
|
| 397 |
+
|
| 398 |
+
def _compute_pointsdist_loss(self, img_aligned_xyz, input, b, v, h, w):
|
| 399 |
+
"""Compute point distance regularization loss."""
|
| 400 |
+
if self.config.training.losses.pointsdist_loss_weight > 0.0:
|
| 401 |
+
# Target mean distance (distance from origin to ray origin)
|
| 402 |
+
target_mean_dist = torch.norm(input.ray_o, dim=2, p=2, keepdim=True)
|
| 403 |
+
target_std_dist = 0.5
|
| 404 |
+
|
| 405 |
+
# Predicted distance
|
| 406 |
+
pred_dist = (img_aligned_xyz - input.ray_o).norm(dim=2, p=2, keepdim=True)
|
| 407 |
+
|
| 408 |
+
# Normalize to target distribution
|
| 409 |
+
pred_dist_detach = pred_dist.detach()
|
| 410 |
+
pred_mean = pred_dist_detach.mean(dim=(2, 3, 4), keepdim=True)
|
| 411 |
+
pred_std = pred_dist_detach.std(dim=(2, 3, 4), keepdim=True)
|
| 412 |
+
|
| 413 |
+
target_dist = (pred_dist_detach - pred_mean) / (pred_std + 1e-8) * target_std_dist + target_mean_dist
|
| 414 |
+
|
| 415 |
+
return torch.mean((pred_dist - target_dist) ** 2)
|
| 416 |
+
|
| 417 |
+
return torch.tensor(0.0, device=img_aligned_xyz.device)
|
| 418 |
+
|
| 419 |
+
def _compute_total_loss(self, losses):
|
| 420 |
+
"""Compute weighted sum of all losses."""
|
| 421 |
+
weights = self.config.training.losses
|
| 422 |
+
return (
|
| 423 |
+
weights.l2_loss_weight * losses['l2']
|
| 424 |
+
+ weights.lpips_loss_weight * losses['lpips']
|
| 425 |
+
+ weights.perceptual_loss_weight * losses['perceptual']
|
| 426 |
+
+ weights.ssim_loss_weight * losses['ssim']
|
| 427 |
+
+ weights.pixelalign_loss_weight * losses['pixelalign']
|
| 428 |
+
+ weights.pointsdist_loss_weight * losses['pointsdist']
|
| 429 |
+
)
|
| 430 |
+
|
| 431 |
+
def _create_visual(self, rendering, target, v):
|
| 432 |
+
"""Create visualization by concatenating target and rendering."""
|
| 433 |
+
visual = torch.cat((target, rendering), dim=3).detach().cpu() # [b*v, c, h, w*2]
|
| 434 |
+
visual = rearrange(visual, "(b v) c h (m w) -> (b h) (v m w) c", v=v, m=2)
|
| 435 |
+
return (visual.numpy() * 255.0).clip(0.0, 255.0).astype(np.uint8)
|
| 436 |
+
|
| 437 |
+
def _compile_loss_metrics(self, losses, total_loss, visual):
|
| 438 |
+
"""Compile all loss metrics into a dictionary."""
|
| 439 |
+
l2_loss = losses['l2']
|
| 440 |
+
|
| 441 |
+
return edict(
|
| 442 |
+
loss=total_loss,
|
| 443 |
+
l2_loss=l2_loss,
|
| 444 |
+
psnr=losses['psnr'],
|
| 445 |
+
lpips_loss=losses['lpips'],
|
| 446 |
+
perceptual_loss=losses['perceptual'],
|
| 447 |
+
ssim_loss=losses['ssim'],
|
| 448 |
+
pixelalign_loss=losses['pixelalign'],
|
| 449 |
+
pointsdist_loss=losses['pointsdist'],
|
| 450 |
+
visual=visual,
|
| 451 |
+
# Normalized losses for logging
|
| 452 |
+
norm_perceptual_loss=losses['perceptual'] / l2_loss,
|
| 453 |
+
norm_lpips_loss=losses['lpips'] / l2_loss,
|
| 454 |
+
norm_ssim_loss=losses['ssim'] / l2_loss,
|
| 455 |
+
norm_pixelalign_loss=losses['pixelalign'] / l2_loss,
|
| 456 |
+
norm_pointsdist_loss=losses['pointsdist'] / l2_loss,
|
| 457 |
+
)
|
| 458 |
+
|
| 459 |
+
|
| 460 |
+
class GSLRM(nn.Module):
|
| 461 |
+
"""
|
| 462 |
+
Gaussian Splatting Large Reconstruction Model.
|
| 463 |
+
|
| 464 |
+
A transformer-based model that generates 3D Gaussian splats from multi-view images.
|
| 465 |
+
The model processes input images through tokenization, transformer layers, and
|
| 466 |
+
generates Gaussian parameters for novel view synthesis.
|
| 467 |
+
|
| 468 |
+
Architecture:
|
| 469 |
+
1. Image tokenization with patch-based encoding
|
| 470 |
+
2. Transformer processing with Gaussian positional embeddings
|
| 471 |
+
3. Gaussian parameter generation and upsampling
|
| 472 |
+
4. Rendering and loss computation
|
| 473 |
+
"""
|
| 474 |
+
|
| 475 |
+
def __init__(self, config: edict):
|
| 476 |
+
super().__init__()
|
| 477 |
+
self.config = config
|
| 478 |
+
|
| 479 |
+
# Initialize data processing modules
|
| 480 |
+
self._init_data_processors(config)
|
| 481 |
+
|
| 482 |
+
# Initialize core model components
|
| 483 |
+
self._init_tokenizer(config)
|
| 484 |
+
self._init_positional_embeddings(config)
|
| 485 |
+
self._init_transformer(config)
|
| 486 |
+
self._init_gaussian_modules(config)
|
| 487 |
+
self._init_rendering_modules(config)
|
| 488 |
+
|
| 489 |
+
# Initialize training state management
|
| 490 |
+
self._init_training_state(config)
|
| 491 |
+
|
| 492 |
+
def _init_data_processors(self, config: edict) -> None:
|
| 493 |
+
"""Initialize data splitting and transformation modules."""
|
| 494 |
+
self.data_splitter = SplitData(config)
|
| 495 |
+
self.input_transformer = TransformInput(config)
|
| 496 |
+
self.target_transformer = TransformTarget(config)
|
| 497 |
+
|
| 498 |
+
def _init_tokenizer(self, config: edict) -> None:
|
| 499 |
+
"""Initialize image tokenization pipeline."""
|
| 500 |
+
patch_size = config.model.image_tokenizer.patch_size
|
| 501 |
+
input_channels = config.model.image_tokenizer.in_channels
|
| 502 |
+
hidden_dim = config.model.transformer.d
|
| 503 |
+
|
| 504 |
+
self.patch_embedder = nn.Sequential(
|
| 505 |
+
Rearrange(
|
| 506 |
+
"batch views channels (height patch_h) (width patch_w) -> (batch views) (height width) (patch_h patch_w channels)",
|
| 507 |
+
patch_h=patch_size,
|
| 508 |
+
patch_w=patch_size,
|
| 509 |
+
),
|
| 510 |
+
nn.Linear(
|
| 511 |
+
input_channels * (patch_size ** 2),
|
| 512 |
+
hidden_dim,
|
| 513 |
+
bias=False,
|
| 514 |
+
),
|
| 515 |
+
)
|
| 516 |
+
self.patch_embedder.apply(_init_weights)
|
| 517 |
+
|
| 518 |
+
def _init_positional_embeddings(self, config: edict) -> None:
|
| 519 |
+
"""Initialize positional embeddings for reference/source markers and Gaussians."""
|
| 520 |
+
hidden_dim = config.model.transformer.d
|
| 521 |
+
|
| 522 |
+
# Optional reference/source view markers
|
| 523 |
+
self.view_type_embeddings = None
|
| 524 |
+
if config.model.get("add_refsrc_marker", False):
|
| 525 |
+
self.view_type_embeddings = nn.Parameter(
|
| 526 |
+
torch.randn(2, hidden_dim) # [reference_marker, source_marker]
|
| 527 |
+
)
|
| 528 |
+
nn.init.trunc_normal_(self.view_type_embeddings, std=0.02)
|
| 529 |
+
|
| 530 |
+
# Gaussian positional embeddings
|
| 531 |
+
num_gaussians = config.model.gaussians.n_gaussians
|
| 532 |
+
self.gaussian_position_embeddings = nn.Parameter(
|
| 533 |
+
torch.randn(num_gaussians, hidden_dim)
|
| 534 |
+
)
|
| 535 |
+
nn.init.trunc_normal_(self.gaussian_position_embeddings, std=0.02)
|
| 536 |
+
|
| 537 |
+
def _init_transformer(self, config: edict) -> None:
|
| 538 |
+
"""Initialize transformer architecture."""
|
| 539 |
+
hidden_dim = config.model.transformer.d
|
| 540 |
+
head_dim = config.model.transformer.d_head
|
| 541 |
+
num_layers = config.model.transformer.n_layer
|
| 542 |
+
|
| 543 |
+
self.input_layer_norm = nn.LayerNorm(hidden_dim, bias=False)
|
| 544 |
+
self.transformer_layers = nn.ModuleList([
|
| 545 |
+
TransformerBlock(hidden_dim, head_dim)
|
| 546 |
+
for _ in range(num_layers)
|
| 547 |
+
])
|
| 548 |
+
self.transformer_layers.apply(_init_weights)
|
| 549 |
+
|
| 550 |
+
def _init_gaussian_modules(self, config: edict) -> None:
|
| 551 |
+
"""Initialize Gaussian parameter generation modules."""
|
| 552 |
+
hidden_dim = config.model.transformer.d
|
| 553 |
+
patch_size = config.model.image_tokenizer.patch_size
|
| 554 |
+
sh_degree = config.model.gaussians.sh_degree
|
| 555 |
+
|
| 556 |
+
# Calculate output dimension for pixel-aligned Gaussians
|
| 557 |
+
# Components: xyz(3) + sh_features((sh_degree+1)^2*3) + scaling(3) + rotation(4) + opacity(1)
|
| 558 |
+
gaussian_param_dim = 3 + (sh_degree + 1) ** 2 * 3 + 3 + 4 + 1
|
| 559 |
+
|
| 560 |
+
# Gaussian upsampler for transformer tokens
|
| 561 |
+
self.gaussian_upsampler = GaussiansUpsampler(config)
|
| 562 |
+
self.gaussian_upsampler.apply(_init_weights)
|
| 563 |
+
|
| 564 |
+
# Pixel-aligned Gaussian decoder
|
| 565 |
+
self.pixel_gaussian_decoder = nn.Sequential(
|
| 566 |
+
nn.LayerNorm(hidden_dim, bias=False),
|
| 567 |
+
nn.Linear(
|
| 568 |
+
hidden_dim,
|
| 569 |
+
(patch_size ** 2) * gaussian_param_dim,
|
| 570 |
+
bias=False,
|
| 571 |
+
),
|
| 572 |
+
)
|
| 573 |
+
self.pixel_gaussian_decoder.apply(_init_weights)
|
| 574 |
+
|
| 575 |
+
def _init_rendering_modules(self, config: edict) -> None:
|
| 576 |
+
"""Initialize rendering and loss computation modules."""
|
| 577 |
+
self.gaussian_renderer = Renderer(config)
|
| 578 |
+
self.loss_calculator = LossComputer(config)
|
| 579 |
+
|
| 580 |
+
def _init_training_state(self, config: edict) -> None:
|
| 581 |
+
"""Initialize training state management variables."""
|
| 582 |
+
self.training_step = None
|
| 583 |
+
self.training_start_step = None
|
| 584 |
+
self.training_max_step = None
|
| 585 |
+
self.original_config = copy.deepcopy(config)
|
| 586 |
+
|
| 587 |
+
def set_training_step(self, current_step: int, start_step: int, max_step: int) -> None:
|
| 588 |
+
"""
|
| 589 |
+
Update training step and dynamically adjust configuration based on training phase.
|
| 590 |
+
|
| 591 |
+
Args:
|
| 592 |
+
current_step: Current training step
|
| 593 |
+
start_step: Starting step of training
|
| 594 |
+
max_step: Maximum training steps
|
| 595 |
+
"""
|
| 596 |
+
self.training_step = current_step
|
| 597 |
+
self.training_start_step = start_step
|
| 598 |
+
self.training_max_step = max_step
|
| 599 |
+
|
| 600 |
+
# Determine if config modification is needed based on warmup settings
|
| 601 |
+
needs_config_modification = self._should_modify_config_for_warmup(current_step)
|
| 602 |
+
|
| 603 |
+
if needs_config_modification:
|
| 604 |
+
# Always use original config as base for modifications
|
| 605 |
+
self.config = copy.deepcopy(self.original_config)
|
| 606 |
+
self._apply_warmup_modifications(current_step)
|
| 607 |
+
else:
|
| 608 |
+
# Restore original configuration
|
| 609 |
+
self.config = self.original_config
|
| 610 |
+
|
| 611 |
+
# Update loss calculator with current config
|
| 612 |
+
self.loss_calculator.config = self.config
|
| 613 |
+
|
| 614 |
+
def _should_modify_config_for_warmup(self, current_step: int) -> bool:
|
| 615 |
+
"""Check if configuration should be modified for warmup phases."""
|
| 616 |
+
pointsdist_warmup = (
|
| 617 |
+
self.config.training.losses.get("warmup_pointsdist", False)
|
| 618 |
+
and current_step < 1000
|
| 619 |
+
)
|
| 620 |
+
l2_warmup = (
|
| 621 |
+
self.config.training.schedule.get("l2_warmup_steps", 0) > 0
|
| 622 |
+
and current_step < self.config.training.schedule.l2_warmup_steps
|
| 623 |
+
)
|
| 624 |
+
return pointsdist_warmup or l2_warmup
|
| 625 |
+
|
| 626 |
+
def _apply_warmup_modifications(self, current_step: int) -> None:
|
| 627 |
+
"""Apply configuration modifications for warmup phases."""
|
| 628 |
+
# Point distance warmup phase
|
| 629 |
+
if (self.config.training.losses.get("warmup_pointsdist", False)
|
| 630 |
+
and current_step < 1000):
|
| 631 |
+
self.config.training.losses.l2_loss_weight = 0.0
|
| 632 |
+
self.config.training.losses.perceptual_loss_weight = 0.0
|
| 633 |
+
self.config.training.losses.pointsdist_loss_weight = 0.1
|
| 634 |
+
self.config.model.clip_xyz = False # Disable xyz clipping during warmup
|
| 635 |
+
|
| 636 |
+
# L2 loss warmup phase
|
| 637 |
+
if (self.config.training.schedule.get("l2_warmup_steps", 0) > 0
|
| 638 |
+
and current_step < self.config.training.schedule.l2_warmup_steps):
|
| 639 |
+
self.config.training.losses.perceptual_loss_weight = 0.0
|
| 640 |
+
self.config.training.losses.lpips_loss_weight = 0.0
|
| 641 |
+
|
| 642 |
+
def set_current_step(self, current_step: int, start_step: int, max_step: int) -> None:
|
| 643 |
+
"""Backward compatibility wrapper for set_training_step."""
|
| 644 |
+
self.set_training_step(current_step, start_step, max_step)
|
| 645 |
+
|
| 646 |
+
def train(self, mode: bool = True) -> None:
|
| 647 |
+
"""
|
| 648 |
+
Override train method to keep frozen modules in eval mode.
|
| 649 |
+
|
| 650 |
+
Args:
|
| 651 |
+
mode: Whether to set training mode (True) or evaluation mode (False)
|
| 652 |
+
"""
|
| 653 |
+
super().train(mode)
|
| 654 |
+
# Keep loss calculator in eval mode to prevent training of frozen components
|
| 655 |
+
if self.loss_calculator is not None:
|
| 656 |
+
self.loss_calculator.eval()
|
| 657 |
+
|
| 658 |
+
def get_parameter_overview(self) -> edict:
|
| 659 |
+
"""
|
| 660 |
+
Get overview of trainable parameters in each module.
|
| 661 |
+
|
| 662 |
+
Returns:
|
| 663 |
+
Dictionary containing parameter counts for each major component
|
| 664 |
+
"""
|
| 665 |
+
def count_trainable_params(module: nn.Module) -> int:
|
| 666 |
+
return sum(p.numel() for p in module.parameters() if p.requires_grad)
|
| 667 |
+
|
| 668 |
+
return edict(
|
| 669 |
+
patch_embedder=count_trainable_params(self.patch_embedder),
|
| 670 |
+
gaussian_position_embeddings=self.gaussian_position_embeddings.data.numel(),
|
| 671 |
+
transformer_total=(
|
| 672 |
+
count_trainable_params(self.transformer_layers) +
|
| 673 |
+
count_trainable_params(self.input_layer_norm)
|
| 674 |
+
),
|
| 675 |
+
gaussian_upsampler=count_trainable_params(self.gaussian_upsampler),
|
| 676 |
+
pixel_gaussian_decoder=count_trainable_params(self.pixel_gaussian_decoder),
|
| 677 |
+
)
|
| 678 |
+
|
| 679 |
+
def get_overview(self) -> edict:
|
| 680 |
+
"""Backward compatibility wrapper for get_parameter_overview."""
|
| 681 |
+
return self.get_parameter_overview()
|
| 682 |
+
|
| 683 |
+
def _create_transformer_layer_runner(self, start_layer: int, end_layer: int):
|
| 684 |
+
"""
|
| 685 |
+
Create a function to run a subset of transformer layers.
|
| 686 |
+
|
| 687 |
+
Args:
|
| 688 |
+
start_layer: Starting layer index
|
| 689 |
+
end_layer: Ending layer index (exclusive)
|
| 690 |
+
|
| 691 |
+
Returns:
|
| 692 |
+
Function that processes tokens through specified layers
|
| 693 |
+
"""
|
| 694 |
+
def run_transformer_layers(token_sequence: torch.Tensor) -> torch.Tensor:
|
| 695 |
+
for layer_idx in range(start_layer, min(end_layer, len(self.transformer_layers))):
|
| 696 |
+
token_sequence = self.transformer_layers[layer_idx](token_sequence)
|
| 697 |
+
return token_sequence
|
| 698 |
+
return run_transformer_layers
|
| 699 |
+
|
| 700 |
+
def _create_posed_images_with_plucker(self, input_data: edict) -> torch.Tensor:
|
| 701 |
+
"""
|
| 702 |
+
Create posed images by concatenating RGB with Plucker coordinates.
|
| 703 |
+
|
| 704 |
+
Args:
|
| 705 |
+
input_data: Input data containing images and ray information
|
| 706 |
+
|
| 707 |
+
Returns:
|
| 708 |
+
Posed images with Plucker coordinates [batch, views, channels, height, width]
|
| 709 |
+
"""
|
| 710 |
+
# Normalize RGB to [-1, 1] range
|
| 711 |
+
normalized_rgb = input_data.image[:, :, :3, :, :] * 2.0 - 1.0
|
| 712 |
+
|
| 713 |
+
if self.config.model.get("use_custom_plucker", False):
|
| 714 |
+
# Custom Plucker: RGB + ray_direction + nearest_points
|
| 715 |
+
ray_origin_dot_direction = torch.sum(
|
| 716 |
+
-input_data.ray_o * input_data.ray_d, dim=2, keepdim=True
|
| 717 |
+
)
|
| 718 |
+
nearest_points = input_data.ray_o + ray_origin_dot_direction * input_data.ray_d
|
| 719 |
+
|
| 720 |
+
return torch.cat([
|
| 721 |
+
normalized_rgb,
|
| 722 |
+
input_data.ray_d,
|
| 723 |
+
nearest_points,
|
| 724 |
+
], dim=2)
|
| 725 |
+
|
| 726 |
+
elif self.config.model.get("use_aug_plucker", False):
|
| 727 |
+
# Augmented Plucker: RGB + cross_product + ray_direction + nearest_points
|
| 728 |
+
ray_cross_product = torch.cross(input_data.ray_o, input_data.ray_d, dim=2)
|
| 729 |
+
ray_origin_dot_direction = torch.sum(
|
| 730 |
+
-input_data.ray_o * input_data.ray_d, dim=2, keepdim=True
|
| 731 |
+
)
|
| 732 |
+
nearest_points = input_data.ray_o + ray_origin_dot_direction * input_data.ray_d
|
| 733 |
+
|
| 734 |
+
return torch.cat([
|
| 735 |
+
normalized_rgb,
|
| 736 |
+
ray_cross_product,
|
| 737 |
+
input_data.ray_d,
|
| 738 |
+
nearest_points,
|
| 739 |
+
], dim=2)
|
| 740 |
+
|
| 741 |
+
else:
|
| 742 |
+
# Standard Plucker: RGB + cross_product + ray_direction
|
| 743 |
+
ray_cross_product = torch.cross(input_data.ray_o, input_data.ray_d, dim=2)
|
| 744 |
+
|
| 745 |
+
return torch.cat([
|
| 746 |
+
normalized_rgb,
|
| 747 |
+
ray_cross_product,
|
| 748 |
+
input_data.ray_d,
|
| 749 |
+
], dim=2)
|
| 750 |
+
|
| 751 |
+
def _add_view_type_embeddings(
|
| 752 |
+
self,
|
| 753 |
+
image_tokens: torch.Tensor,
|
| 754 |
+
batch_size: int,
|
| 755 |
+
num_views: int,
|
| 756 |
+
num_patches: int,
|
| 757 |
+
hidden_dim: int
|
| 758 |
+
) -> torch.Tensor:
|
| 759 |
+
"""Add view type embeddings to distinguish reference vs source views."""
|
| 760 |
+
image_tokens = image_tokens.reshape(batch_size, num_views, num_patches, hidden_dim)
|
| 761 |
+
|
| 762 |
+
# Create view type markers: first view is reference, rest are source
|
| 763 |
+
view_markers = [self.view_type_embeddings[0]] + [
|
| 764 |
+
self.view_type_embeddings[1] for _ in range(1, num_views)
|
| 765 |
+
]
|
| 766 |
+
view_markers = torch.stack(view_markers, dim=0)[None, :, None, :] # [1, views, 1, hidden_dim]
|
| 767 |
+
|
| 768 |
+
# Add markers to image tokens
|
| 769 |
+
image_tokens = image_tokens + view_markers
|
| 770 |
+
return image_tokens.reshape(batch_size, num_views * num_patches, hidden_dim)
|
| 771 |
+
|
| 772 |
+
def _process_through_transformer(
|
| 773 |
+
self,
|
| 774 |
+
gaussian_tokens: torch.Tensor,
|
| 775 |
+
image_tokens: torch.Tensor
|
| 776 |
+
) -> torch.Tensor:
|
| 777 |
+
"""Process combined tokens through transformer with gradient checkpointing."""
|
| 778 |
+
# Combine Gaussian and image tokens
|
| 779 |
+
combined_tokens = torch.cat((gaussian_tokens, image_tokens), dim=1)
|
| 780 |
+
combined_tokens = self.input_layer_norm(combined_tokens)
|
| 781 |
+
|
| 782 |
+
# Process through transformer layers with gradient checkpointing
|
| 783 |
+
checkpoint_interval = self.config.training.runtime.grad_checkpoint_every
|
| 784 |
+
num_layers = len(self.transformer_layers)
|
| 785 |
+
|
| 786 |
+
for start_idx in range(0, num_layers, checkpoint_interval):
|
| 787 |
+
end_idx = start_idx + checkpoint_interval
|
| 788 |
+
layer_runner = self._create_transformer_layer_runner(start_idx, end_idx)
|
| 789 |
+
|
| 790 |
+
combined_tokens = torch.utils.checkpoint.checkpoint(
|
| 791 |
+
layer_runner,
|
| 792 |
+
combined_tokens,
|
| 793 |
+
use_reentrant=False,
|
| 794 |
+
)
|
| 795 |
+
|
| 796 |
+
return combined_tokens
|
| 797 |
+
|
| 798 |
+
def _apply_hard_pixel_alignment(
|
| 799 |
+
self,
|
| 800 |
+
pixel_aligned_xyz: torch.Tensor,
|
| 801 |
+
input_data: edict
|
| 802 |
+
) -> torch.Tensor:
|
| 803 |
+
"""Apply hard pixel alignment to ensure Gaussians align with ray directions."""
|
| 804 |
+
depth_bias = self.config.model.get("depth_preact_bias", 0.0)
|
| 805 |
+
|
| 806 |
+
# Apply sigmoid activation to depth values
|
| 807 |
+
depth_values = torch.sigmoid(
|
| 808 |
+
pixel_aligned_xyz.mean(dim=2, keepdim=True) + depth_bias
|
| 809 |
+
)
|
| 810 |
+
|
| 811 |
+
# Apply different depth computation strategies
|
| 812 |
+
if (self.config.model.get("use_aug_plucker", False) or
|
| 813 |
+
self.config.model.get("use_custom_plucker", False)):
|
| 814 |
+
# For Plucker coordinates: use dot product offset
|
| 815 |
+
ray_origin_dot_direction = torch.sum(
|
| 816 |
+
-input_data.ray_o * input_data.ray_d, dim=2, keepdim=True
|
| 817 |
+
)
|
| 818 |
+
depth_values = (2.0 * depth_values - 1.0) * 1.8 + ray_origin_dot_direction
|
| 819 |
+
|
| 820 |
+
elif (self.config.model.get("depth_min", -1.0) > 0.0 and
|
| 821 |
+
self.config.model.get("depth_max", -1.0) > 0.0):
|
| 822 |
+
# Use explicit depth range
|
| 823 |
+
depth_min = self.config.model.depth_min
|
| 824 |
+
depth_max = self.config.model.depth_max
|
| 825 |
+
depth_values = depth_values * (depth_max - depth_min) + depth_min
|
| 826 |
+
|
| 827 |
+
elif self.config.model.get("depth_reference_origin", False):
|
| 828 |
+
# Reference from ray origin norm
|
| 829 |
+
ray_origin_norm = input_data.ray_o.norm(dim=2, p=2, keepdim=True)
|
| 830 |
+
depth_values = (2.0 * depth_values - 1.0) * 1.8 + ray_origin_norm
|
| 831 |
+
|
| 832 |
+
else:
|
| 833 |
+
# Default depth computation
|
| 834 |
+
depth_values = (2.0 * depth_values - 1.0) * 1.5 + 2.7
|
| 835 |
+
|
| 836 |
+
# Compute final 3D positions along rays
|
| 837 |
+
aligned_positions = input_data.ray_o + depth_values * input_data.ray_d
|
| 838 |
+
|
| 839 |
+
# Apply coordinate clipping if enabled (only during training)
|
| 840 |
+
if (self.config.model.get("clip_xyz", False) and
|
| 841 |
+
not self.config.inference):
|
| 842 |
+
aligned_positions = aligned_positions.clamp(-1.0, 1.0)
|
| 843 |
+
|
| 844 |
+
return aligned_positions
|
| 845 |
+
|
| 846 |
+
@staticmethod
|
| 847 |
+
def translate_legacy_state_dict(state_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
| 848 |
+
"""
|
| 849 |
+
Translate legacy model parameter names to new parameter names.
|
| 850 |
+
|
| 851 |
+
This function allows loading models saved with the old variable names
|
| 852 |
+
by mapping them to the new, cleaner variable names.
|
| 853 |
+
|
| 854 |
+
Args:
|
| 855 |
+
state_dict: Dictionary containing model parameters with old names
|
| 856 |
+
|
| 857 |
+
Returns:
|
| 858 |
+
Dictionary with parameters mapped to new names
|
| 859 |
+
"""
|
| 860 |
+
# Define the mapping from old names to new names
|
| 861 |
+
name_mapping = {
|
| 862 |
+
# Data processors
|
| 863 |
+
'split_data.': 'data_splitter.',
|
| 864 |
+
'transform_input.': 'input_transformer.',
|
| 865 |
+
'transform_target.': 'target_transformer.',
|
| 866 |
+
|
| 867 |
+
# Tokenizer
|
| 868 |
+
'image_tokenizer.': 'patch_embedder.',
|
| 869 |
+
|
| 870 |
+
# Positional embeddings
|
| 871 |
+
'refsrc_marker': 'view_type_embeddings',
|
| 872 |
+
'gaussians_pos_embedding': 'gaussian_position_embeddings',
|
| 873 |
+
|
| 874 |
+
# Transformer
|
| 875 |
+
'transformer_input_layernorm.': 'input_layer_norm.',
|
| 876 |
+
'transformer.': 'transformer_layers.',
|
| 877 |
+
|
| 878 |
+
# Gaussian modules
|
| 879 |
+
'upsampler.': 'gaussian_upsampler.',
|
| 880 |
+
'image_token_decoder.': 'pixel_gaussian_decoder.',
|
| 881 |
+
|
| 882 |
+
# Rendering modules
|
| 883 |
+
'renderer.': 'gaussian_renderer.',
|
| 884 |
+
'loss_computer.': 'loss_calculator.',
|
| 885 |
+
}
|
| 886 |
+
|
| 887 |
+
# Create new state dict with translated names
|
| 888 |
+
new_state_dict = {}
|
| 889 |
+
|
| 890 |
+
for old_key, value in state_dict.items():
|
| 891 |
+
new_key = old_key
|
| 892 |
+
|
| 893 |
+
# Apply name mappings
|
| 894 |
+
for old_pattern, new_pattern in name_mapping.items():
|
| 895 |
+
if old_key.startswith(old_pattern):
|
| 896 |
+
new_key = old_key.replace(old_pattern, new_pattern, 1)
|
| 897 |
+
break
|
| 898 |
+
|
| 899 |
+
# Fix specific key naming issues
|
| 900 |
+
# Change loss_computer.perceptual_loss_module.Net to loss_computer.perceptual_loss_module.net
|
| 901 |
+
if "loss_computer.perceptual_loss_module.Net" in new_key:
|
| 902 |
+
old_net_key = new_key
|
| 903 |
+
new_key = new_key.replace("loss_computer.perceptual_loss_module.Net", "loss_computer.perceptual_loss_module.net")
|
| 904 |
+
print(f"Renamed checkpoint key: {old_net_key} -> {new_key}")
|
| 905 |
+
# Also handle the new naming convention
|
| 906 |
+
elif "loss_calculator.perceptual_loss_module.Net" in new_key:
|
| 907 |
+
old_net_key = new_key
|
| 908 |
+
new_key = new_key.replace("loss_calculator.perceptual_loss_module.Net", "loss_calculator.perceptual_loss_module.net")
|
| 909 |
+
print(f"Renamed checkpoint key: {old_net_key} -> {new_key}")
|
| 910 |
+
|
| 911 |
+
new_state_dict[new_key] = value
|
| 912 |
+
|
| 913 |
+
return new_state_dict
|
| 914 |
+
|
| 915 |
+
def load_state_dict(self, state_dict: Dict[str, torch.Tensor], strict: bool = True):
|
| 916 |
+
"""
|
| 917 |
+
Load model state dict with automatic legacy name translation.
|
| 918 |
+
|
| 919 |
+
Args:
|
| 920 |
+
state_dict: Model state dictionary (potentially with old parameter names)
|
| 921 |
+
strict: Whether to strictly enforce parameter name matching
|
| 922 |
+
"""
|
| 923 |
+
# Check if this is a legacy state dict by looking for old parameter names
|
| 924 |
+
legacy_indicators = [
|
| 925 |
+
'image_tokenizer.',
|
| 926 |
+
'refsrc_marker',
|
| 927 |
+
'gaussians_pos_embedding',
|
| 928 |
+
'transformer_input_layernorm.',
|
| 929 |
+
'upsampler.',
|
| 930 |
+
'image_token_decoder.',
|
| 931 |
+
'renderer.',
|
| 932 |
+
'loss_computer.'
|
| 933 |
+
]
|
| 934 |
+
|
| 935 |
+
is_legacy = any(
|
| 936 |
+
any(key.startswith(indicator) for key in state_dict.keys())
|
| 937 |
+
for indicator in legacy_indicators
|
| 938 |
+
)
|
| 939 |
+
|
| 940 |
+
if is_legacy:
|
| 941 |
+
print("Detected legacy model format. Translating parameter names...")
|
| 942 |
+
state_dict = self.translate_legacy_state_dict(state_dict)
|
| 943 |
+
print("Parameter name translation completed.")
|
| 944 |
+
|
| 945 |
+
# Load the (potentially translated) state dict
|
| 946 |
+
return super().load_state_dict(state_dict, strict=strict)
|
| 947 |
+
|
| 948 |
+
@classmethod
|
| 949 |
+
def load_from_checkpoint(
|
| 950 |
+
cls,
|
| 951 |
+
checkpoint_path: str,
|
| 952 |
+
config: edict,
|
| 953 |
+
map_location: Optional[str] = None
|
| 954 |
+
) -> 'GSLRM':
|
| 955 |
+
"""
|
| 956 |
+
Load model from checkpoint with automatic legacy name translation.
|
| 957 |
+
|
| 958 |
+
Args:
|
| 959 |
+
checkpoint_path: Path to the checkpoint file
|
| 960 |
+
config: Model configuration
|
| 961 |
+
map_location: Device to map tensors to (e.g., 'cpu', 'cuda:0')
|
| 962 |
+
|
| 963 |
+
Returns:
|
| 964 |
+
Loaded GSLRM model
|
| 965 |
+
"""
|
| 966 |
+
# Create model instance
|
| 967 |
+
model = cls(config)
|
| 968 |
+
|
| 969 |
+
# Load checkpoint
|
| 970 |
+
checkpoint = torch.load(checkpoint_path, map_location=map_location)
|
| 971 |
+
|
| 972 |
+
# Extract state dict (handle different checkpoint formats)
|
| 973 |
+
if isinstance(checkpoint, dict):
|
| 974 |
+
if 'model_state_dict' in checkpoint:
|
| 975 |
+
state_dict = checkpoint['model_state_dict']
|
| 976 |
+
elif 'state_dict' in checkpoint:
|
| 977 |
+
state_dict = checkpoint['state_dict']
|
| 978 |
+
else:
|
| 979 |
+
state_dict = checkpoint
|
| 980 |
+
else:
|
| 981 |
+
state_dict = checkpoint
|
| 982 |
+
|
| 983 |
+
# Load state dict with automatic translation
|
| 984 |
+
model.load_state_dict(state_dict)
|
| 985 |
+
|
| 986 |
+
print(f"Successfully loaded model from {checkpoint_path}")
|
| 987 |
+
return model
|
| 988 |
+
|
| 989 |
+
def _create_gaussian_models_and_stats(
|
| 990 |
+
self,
|
| 991 |
+
xyz: torch.Tensor,
|
| 992 |
+
features: torch.Tensor,
|
| 993 |
+
scaling: torch.Tensor,
|
| 994 |
+
rotation: torch.Tensor,
|
| 995 |
+
opacity: torch.Tensor,
|
| 996 |
+
num_pixel_aligned: int,
|
| 997 |
+
num_views: int,
|
| 998 |
+
height: int,
|
| 999 |
+
width: int,
|
| 1000 |
+
patch_size: int
|
| 1001 |
+
) -> Tuple[List, torch.Tensor, List[float]]:
|
| 1002 |
+
"""
|
| 1003 |
+
Create Gaussian models for each batch item and compute usage statistics.
|
| 1004 |
+
|
| 1005 |
+
Returns:
|
| 1006 |
+
Tuple of (gaussian_models, pixel_aligned_positions, usage_statistics)
|
| 1007 |
+
"""
|
| 1008 |
+
gaussian_models = []
|
| 1009 |
+
pixel_aligned_positions_list = []
|
| 1010 |
+
usage_statistics = []
|
| 1011 |
+
|
| 1012 |
+
batch_size = xyz.size(0)
|
| 1013 |
+
opacity_threshold = 0.05
|
| 1014 |
+
|
| 1015 |
+
for batch_idx in range(batch_size):
|
| 1016 |
+
# Create fresh Gaussian model for this batch item
|
| 1017 |
+
self.gaussian_renderer.gaussians_model.empty()
|
| 1018 |
+
gaussian_model = copy.deepcopy(self.gaussian_renderer.gaussians_model)
|
| 1019 |
+
|
| 1020 |
+
# Set Gaussian data
|
| 1021 |
+
gaussian_model = gaussian_model.set_data(
|
| 1022 |
+
xyz[batch_idx].detach().float(),
|
| 1023 |
+
features[batch_idx].detach().float(),
|
| 1024 |
+
scaling[batch_idx].detach().float(),
|
| 1025 |
+
rotation[batch_idx].detach().float(),
|
| 1026 |
+
opacity[batch_idx].detach().float(),
|
| 1027 |
+
)
|
| 1028 |
+
gaussian_models.append(gaussian_model)
|
| 1029 |
+
|
| 1030 |
+
# Compute usage statistics (fraction of Gaussians above opacity threshold)
|
| 1031 |
+
opacity_mask = gaussian_model.get_opacity > opacity_threshold
|
| 1032 |
+
usage_ratio = opacity_mask.sum() / opacity_mask.numel()
|
| 1033 |
+
if torch.is_tensor(usage_ratio):
|
| 1034 |
+
usage_ratio = usage_ratio.item()
|
| 1035 |
+
usage_statistics.append(usage_ratio)
|
| 1036 |
+
|
| 1037 |
+
# Extract pixel-aligned positions and reshape
|
| 1038 |
+
pixel_xyz = gaussian_model.get_xyz[-num_pixel_aligned:, :]
|
| 1039 |
+
pixel_xyz_reshaped = rearrange(
|
| 1040 |
+
pixel_xyz,
|
| 1041 |
+
"(views height width patch_h patch_w) coords -> views coords (height patch_h) (width patch_w)",
|
| 1042 |
+
views=num_views,
|
| 1043 |
+
height=height // patch_size,
|
| 1044 |
+
width=width // patch_size,
|
| 1045 |
+
patch_h=patch_size,
|
| 1046 |
+
patch_w=patch_size,
|
| 1047 |
+
)
|
| 1048 |
+
pixel_aligned_positions_list.append(pixel_xyz_reshaped)
|
| 1049 |
+
|
| 1050 |
+
# Stack pixel-aligned positions
|
| 1051 |
+
pixel_aligned_positions = torch.stack(pixel_aligned_positions_list, dim=0)
|
| 1052 |
+
|
| 1053 |
+
return gaussian_models, pixel_aligned_positions, usage_statistics
|
| 1054 |
+
|
| 1055 |
+
def forward(
|
| 1056 |
+
self,
|
| 1057 |
+
batch_data: edict,
|
| 1058 |
+
create_visual: bool = False,
|
| 1059 |
+
split_data: bool = True
|
| 1060 |
+
) -> edict:
|
| 1061 |
+
"""
|
| 1062 |
+
Forward pass of the GSLRM model.
|
| 1063 |
+
|
| 1064 |
+
Args:
|
| 1065 |
+
batch_data: Input batch containing:
|
| 1066 |
+
- image: Multi-view images [batch, views, channels, height, width]
|
| 1067 |
+
- fxfycxcy: Camera intrinsics [batch, views, 4]
|
| 1068 |
+
- c2w: Camera-to-world matrices [batch, views, 4, 4]
|
| 1069 |
+
create_visual: Whether to create visualization outputs
|
| 1070 |
+
split_data: Whether to split input/target data
|
| 1071 |
+
|
| 1072 |
+
Returns:
|
| 1073 |
+
Dictionary containing model outputs including Gaussians, renders, and losses
|
| 1074 |
+
"""
|
| 1075 |
+
with torch.no_grad():
|
| 1076 |
+
target_data = None
|
| 1077 |
+
if split_data:
|
| 1078 |
+
batch_data, target_data = self.data_splitter(
|
| 1079 |
+
batch_data, self.config.training.dataset.target_has_input
|
| 1080 |
+
)
|
| 1081 |
+
target_data = self.target_transformer(target_data)
|
| 1082 |
+
|
| 1083 |
+
input_data = self.input_transformer(batch_data)
|
| 1084 |
+
|
| 1085 |
+
# Prepare posed images with Plucker coordinates [batch, views, channels, height, width]
|
| 1086 |
+
posed_images = self._create_posed_images_with_plucker(input_data)
|
| 1087 |
+
|
| 1088 |
+
# Process images through tokenization and transformer
|
| 1089 |
+
batch_size, num_views, channels, height, width = posed_images.size()
|
| 1090 |
+
|
| 1091 |
+
# Tokenize images into patches
|
| 1092 |
+
image_patch_tokens = self.patch_embedder(posed_images) # [batch*views, num_patches, hidden_dim]
|
| 1093 |
+
_, num_patches, hidden_dim = image_patch_tokens.size()
|
| 1094 |
+
image_patch_tokens = image_patch_tokens.reshape(
|
| 1095 |
+
batch_size, num_views * num_patches, hidden_dim
|
| 1096 |
+
) # [batch, views*patches, hidden_dim]
|
| 1097 |
+
|
| 1098 |
+
# Add view type embeddings if enabled (reference vs source views)
|
| 1099 |
+
if self.view_type_embeddings is not None:
|
| 1100 |
+
image_patch_tokens = self._add_view_type_embeddings(
|
| 1101 |
+
image_patch_tokens, batch_size, num_views, num_patches, hidden_dim
|
| 1102 |
+
)
|
| 1103 |
+
|
| 1104 |
+
# Prepare Gaussian tokens with positional embeddings
|
| 1105 |
+
gaussian_tokens = self.gaussian_position_embeddings.expand(batch_size, -1, -1)
|
| 1106 |
+
|
| 1107 |
+
# Process through transformer with gradient checkpointing
|
| 1108 |
+
combined_tokens = self._process_through_transformer(
|
| 1109 |
+
gaussian_tokens, image_patch_tokens
|
| 1110 |
+
)
|
| 1111 |
+
|
| 1112 |
+
# Split back into Gaussian and image tokens
|
| 1113 |
+
num_gaussians = self.config.model.gaussians.n_gaussians
|
| 1114 |
+
gaussian_tokens, image_patch_tokens = combined_tokens.split(
|
| 1115 |
+
[num_gaussians, num_views * num_patches], dim=1
|
| 1116 |
+
)
|
| 1117 |
+
|
| 1118 |
+
# Generate Gaussian parameters from transformer outputs
|
| 1119 |
+
gaussian_params = self.gaussian_upsampler(gaussian_tokens, image_patch_tokens)
|
| 1120 |
+
|
| 1121 |
+
# Generate pixel-aligned Gaussians from image tokens
|
| 1122 |
+
pixel_aligned_gaussian_params = self.pixel_gaussian_decoder(image_patch_tokens)
|
| 1123 |
+
|
| 1124 |
+
# Calculate Gaussian parameter dimensions
|
| 1125 |
+
sh_degree = self.config.model.gaussians.sh_degree
|
| 1126 |
+
gaussian_param_dim = 3 + (sh_degree + 1) ** 2 * 3 + 3 + 4 + 1
|
| 1127 |
+
|
| 1128 |
+
pixel_aligned_gaussian_params = pixel_aligned_gaussian_params.reshape(
|
| 1129 |
+
batch_size, -1, gaussian_param_dim
|
| 1130 |
+
) # [batch, views*pixels, gaussian_params]
|
| 1131 |
+
num_pixel_aligned_gaussians = pixel_aligned_gaussian_params.size(1)
|
| 1132 |
+
|
| 1133 |
+
# Combine all Gaussian parameters
|
| 1134 |
+
all_gaussian_params = torch.cat((gaussian_params, pixel_aligned_gaussian_params), dim=1)
|
| 1135 |
+
|
| 1136 |
+
# Convert to final Gaussian format
|
| 1137 |
+
xyz, features, scaling, rotation, opacity = self.gaussian_upsampler.to_gs(all_gaussian_params)
|
| 1138 |
+
|
| 1139 |
+
# Extract pixel-aligned Gaussian positions for processing
|
| 1140 |
+
pixel_aligned_xyz = xyz[:, -num_pixel_aligned_gaussians:, :]
|
| 1141 |
+
patch_size = self.config.model.image_tokenizer.patch_size
|
| 1142 |
+
|
| 1143 |
+
pixel_aligned_xyz = rearrange(
|
| 1144 |
+
pixel_aligned_xyz,
|
| 1145 |
+
"batch (views height width patch_h patch_w) coords -> batch views coords (height patch_h) (width patch_w)",
|
| 1146 |
+
views=num_views,
|
| 1147 |
+
height=height // patch_size,
|
| 1148 |
+
width=width // patch_size,
|
| 1149 |
+
patch_h=patch_size,
|
| 1150 |
+
patch_w=patch_size,
|
| 1151 |
+
)
|
| 1152 |
+
|
| 1153 |
+
# Apply hard pixel alignment if enabled
|
| 1154 |
+
if self.config.model.hard_pixelalign:
|
| 1155 |
+
pixel_aligned_xyz = self._apply_hard_pixel_alignment(
|
| 1156 |
+
pixel_aligned_xyz, input_data
|
| 1157 |
+
)
|
| 1158 |
+
|
| 1159 |
+
# Reshape back to flat format and update xyz
|
| 1160 |
+
pixel_aligned_xyz_flat = rearrange(
|
| 1161 |
+
pixel_aligned_xyz,
|
| 1162 |
+
"batch views coords (height patch_h) (width patch_w) -> batch (views height width patch_h patch_w) coords",
|
| 1163 |
+
patch_h=patch_size,
|
| 1164 |
+
patch_w=patch_size,
|
| 1165 |
+
)
|
| 1166 |
+
|
| 1167 |
+
# Replace pixel-aligned Gaussians in the full xyz tensor
|
| 1168 |
+
xyz = torch.cat(
|
| 1169 |
+
(xyz[:, :-num_pixel_aligned_gaussians, :], pixel_aligned_xyz_flat),
|
| 1170 |
+
dim=1
|
| 1171 |
+
)
|
| 1172 |
+
|
| 1173 |
+
# Create Gaussian splatting result structure
|
| 1174 |
+
gaussian_splat_result = edict(
|
| 1175 |
+
xyz=xyz,
|
| 1176 |
+
features=features,
|
| 1177 |
+
scaling=scaling,
|
| 1178 |
+
rotation=rotation,
|
| 1179 |
+
opacity=opacity,
|
| 1180 |
+
)
|
| 1181 |
+
|
| 1182 |
+
# Perform rendering and loss computation if target data is available
|
| 1183 |
+
loss_metrics = None
|
| 1184 |
+
rendered_images = None
|
| 1185 |
+
|
| 1186 |
+
if target_data is not None:
|
| 1187 |
+
target_height, target_width = target_data.image.size(3), target_data.image.size(4)
|
| 1188 |
+
|
| 1189 |
+
# Render images using Gaussian splatting
|
| 1190 |
+
rendered_images = self.gaussian_renderer(
|
| 1191 |
+
xyz, features, scaling, rotation, opacity,
|
| 1192 |
+
target_height, target_width,
|
| 1193 |
+
C2W=target_data.c2w,
|
| 1194 |
+
fxfycxcy=target_data.fxfycxcy,
|
| 1195 |
+
)
|
| 1196 |
+
|
| 1197 |
+
# Compute losses if rendered and target have matching dimensions
|
| 1198 |
+
if rendered_images.shape[1] == target_data.image.shape[1]:
|
| 1199 |
+
loss_metrics = self.loss_calculator(
|
| 1200 |
+
rendered_images,
|
| 1201 |
+
target_data.image,
|
| 1202 |
+
pixel_aligned_xyz,
|
| 1203 |
+
input_data,
|
| 1204 |
+
create_visual=create_visual,
|
| 1205 |
+
result_softpa=gaussian_splat_result,
|
| 1206 |
+
)
|
| 1207 |
+
|
| 1208 |
+
# Create Gaussian models for each batch item and compute usage statistics
|
| 1209 |
+
gaussian_models, pixel_aligned_positions, usage_statistics = self._create_gaussian_models_and_stats(
|
| 1210 |
+
xyz, features, scaling, rotation, opacity,
|
| 1211 |
+
num_pixel_aligned_gaussians, num_views, height, width, patch_size
|
| 1212 |
+
)
|
| 1213 |
+
|
| 1214 |
+
# Add usage statistics to loss metrics for logging
|
| 1215 |
+
if loss_metrics is not None:
|
| 1216 |
+
loss_metrics.gaussians_usage = torch.tensor(
|
| 1217 |
+
np.mean(np.array(usage_statistics))
|
| 1218 |
+
).float()
|
| 1219 |
+
|
| 1220 |
+
# Compile final results
|
| 1221 |
+
return edict(
|
| 1222 |
+
input=input_data,
|
| 1223 |
+
target=target_data,
|
| 1224 |
+
gaussians=gaussian_models,
|
| 1225 |
+
pixelalign_xyz=pixel_aligned_positions,
|
| 1226 |
+
img_tokens=image_patch_tokens,
|
| 1227 |
+
loss_metrics=loss_metrics,
|
| 1228 |
+
render=rendered_images,
|
| 1229 |
+
)
|
| 1230 |
+
|
| 1231 |
+
@torch.no_grad()
|
| 1232 |
+
def save_visualization_outputs(
|
| 1233 |
+
self,
|
| 1234 |
+
output_directory: str,
|
| 1235 |
+
model_results: edict,
|
| 1236 |
+
batch_data: edict,
|
| 1237 |
+
save_all_items: bool = False
|
| 1238 |
+
) -> None:
|
| 1239 |
+
"""
|
| 1240 |
+
Save visualization outputs including rendered images and Gaussian models.
|
| 1241 |
+
|
| 1242 |
+
Args:
|
| 1243 |
+
output_directory: Directory to save outputs
|
| 1244 |
+
model_results: Results from model forward pass
|
| 1245 |
+
batch_data: Original batch data
|
| 1246 |
+
save_all_items: Whether to save all batch items or just the first
|
| 1247 |
+
"""
|
| 1248 |
+
os.makedirs(output_directory, exist_ok=True)
|
| 1249 |
+
|
| 1250 |
+
input_data, target_data = model_results.input, model_results.target
|
| 1251 |
+
|
| 1252 |
+
# Save supervision visualization if available
|
| 1253 |
+
if (model_results.loss_metrics is not None and
|
| 1254 |
+
model_results.loss_metrics.visual is not None):
|
| 1255 |
+
|
| 1256 |
+
batch_uids = [
|
| 1257 |
+
target_data.index[b, 0, -1].item()
|
| 1258 |
+
for b in range(target_data.index.size(0))
|
| 1259 |
+
]
|
| 1260 |
+
|
| 1261 |
+
uid_range = f"{batch_uids[0]:08}_{batch_uids[-1]:08}"
|
| 1262 |
+
|
| 1263 |
+
# Save supervision comparison image
|
| 1264 |
+
Image.fromarray(model_results.loss_metrics.visual).save(
|
| 1265 |
+
os.path.join(output_directory, f"supervision_{uid_range}.jpg")
|
| 1266 |
+
)
|
| 1267 |
+
|
| 1268 |
+
# Save UIDs for reference
|
| 1269 |
+
with open(os.path.join(output_directory, "uids.txt"), "w") as f:
|
| 1270 |
+
uid_string = "_".join([f"{uid:08}" for uid in batch_uids])
|
| 1271 |
+
f.write(uid_string)
|
| 1272 |
+
|
| 1273 |
+
# Save input images
|
| 1274 |
+
input_visualization = rearrange(
|
| 1275 |
+
input_data.image, "batch views channels height width -> (batch height) (views width) channels"
|
| 1276 |
+
)
|
| 1277 |
+
input_visualization = (
|
| 1278 |
+
(input_visualization.cpu().numpy() * 255.0).clip(0.0, 255.0).astype(np.uint8)
|
| 1279 |
+
)
|
| 1280 |
+
Image.fromarray(input_visualization[..., :3]).save(
|
| 1281 |
+
os.path.join(output_directory, f"input_{uid_range}.jpg")
|
| 1282 |
+
)
|
| 1283 |
+
|
| 1284 |
+
# Process each batch item individually
|
| 1285 |
+
batch_size = input_data.image.size(0)
|
| 1286 |
+
for batch_idx in range(batch_size):
|
| 1287 |
+
item_uid = input_data.index[batch_idx, 0, -1].item()
|
| 1288 |
+
|
| 1289 |
+
# Render turntable visualization
|
| 1290 |
+
turntable_image = render_turntable(model_results.gaussians[batch_idx])
|
| 1291 |
+
Image.fromarray(turntable_image).save(
|
| 1292 |
+
os.path.join(output_directory, f"turntable_{item_uid}.jpg")
|
| 1293 |
+
)
|
| 1294 |
+
|
| 1295 |
+
# Save individual input images during inference
|
| 1296 |
+
if self.config.inference:
|
| 1297 |
+
individual_input = rearrange(
|
| 1298 |
+
input_data.image[batch_idx], "views channels height width -> height (views width) channels"
|
| 1299 |
+
)
|
| 1300 |
+
individual_input = (
|
| 1301 |
+
(individual_input.cpu().numpy() * 255.0).clip(0.0, 255.0).astype(np.uint8)
|
| 1302 |
+
)
|
| 1303 |
+
Image.fromarray(individual_input[..., :3]).save(
|
| 1304 |
+
os.path.join(output_directory, f"input_{item_uid}.jpg")
|
| 1305 |
+
)
|
| 1306 |
+
|
| 1307 |
+
# Extract image dimensions and create opacity/depth visualizations
|
| 1308 |
+
_, num_views, _, img_height, img_width = input_data.image.size()
|
| 1309 |
+
patch_size = self.config.model.image_tokenizer.patch_size
|
| 1310 |
+
|
| 1311 |
+
# Get opacity values for pixel-aligned Gaussians
|
| 1312 |
+
gaussian_opacity = model_results.gaussians[batch_idx].get_opacity
|
| 1313 |
+
pixel_opacity = gaussian_opacity[-num_views * img_height * img_width:]
|
| 1314 |
+
|
| 1315 |
+
# Reshape opacity to image format
|
| 1316 |
+
opacity_visualization = rearrange(
|
| 1317 |
+
pixel_opacity,
|
| 1318 |
+
"(views height width patch_h patch_w) channels -> (height patch_h) (views width patch_w) channels",
|
| 1319 |
+
views=num_views,
|
| 1320 |
+
height=img_height // patch_size,
|
| 1321 |
+
width=img_width // patch_size,
|
| 1322 |
+
patch_h=patch_size,
|
| 1323 |
+
patch_w=patch_size,
|
| 1324 |
+
).squeeze(-1).cpu().numpy()
|
| 1325 |
+
opacity_visualization = (opacity_visualization * 255.0).clip(0.0, 255.0).astype(np.uint8)
|
| 1326 |
+
|
| 1327 |
+
# Get 3D positions and compute depth visualization
|
| 1328 |
+
gaussian_positions = model_results.gaussians[batch_idx].get_xyz
|
| 1329 |
+
pixel_positions = gaussian_positions[-num_views * img_height * img_width:]
|
| 1330 |
+
|
| 1331 |
+
# Reshape positions to image format
|
| 1332 |
+
pixel_positions_reshaped = rearrange(
|
| 1333 |
+
pixel_positions,
|
| 1334 |
+
"(views height width patch_h patch_w) coords -> views coords (height patch_h) (width patch_w)",
|
| 1335 |
+
views=num_views,
|
| 1336 |
+
height=img_height // patch_size,
|
| 1337 |
+
width=img_width // patch_size,
|
| 1338 |
+
patch_h=patch_size,
|
| 1339 |
+
patch_w=patch_size,
|
| 1340 |
+
)
|
| 1341 |
+
|
| 1342 |
+
# Compute distances from ray origins
|
| 1343 |
+
ray_distances = (pixel_positions_reshaped - input_data.ray_o[batch_idx]).norm(dim=1, p=2)
|
| 1344 |
+
distance_visualization = rearrange(ray_distances, "views height width -> height (views width)")
|
| 1345 |
+
distance_visualization = distance_visualization.cpu().numpy()
|
| 1346 |
+
|
| 1347 |
+
# Normalize distances for visualization
|
| 1348 |
+
dist_min, dist_max = distance_visualization.min(), distance_visualization.max()
|
| 1349 |
+
distance_visualization = (distance_visualization - dist_min) / (dist_max - dist_min)
|
| 1350 |
+
distance_visualization = (distance_visualization * 255.0).clip(0.0, 255.0).astype(np.uint8)
|
| 1351 |
+
|
| 1352 |
+
# Combine opacity and depth visualizations
|
| 1353 |
+
combined_visualization = np.concatenate([opacity_visualization, distance_visualization], axis=0)
|
| 1354 |
+
Image.fromarray(combined_visualization).save(
|
| 1355 |
+
os.path.join(output_directory, f"aligned_gs_opacity_depth_{item_uid}.jpg")
|
| 1356 |
+
)
|
| 1357 |
+
|
| 1358 |
+
# Save unfiltered Gaussian model for small images during early training
|
| 1359 |
+
if (self.config.model.image_tokenizer.image_size <= 256 and
|
| 1360 |
+
self.training_step is not None and self.training_step <= 5000):
|
| 1361 |
+
model_results.gaussians[batch_idx].save_ply(
|
| 1362 |
+
os.path.join(output_directory, f"gaussians_{item_uid}_unfiltered.ply")
|
| 1363 |
+
)
|
| 1364 |
+
|
| 1365 |
+
# Save filtered Gaussian model
|
| 1366 |
+
camera_origins = None # Could use input_data.ray_o[batch_idx, :, :, 0, 0] if needed
|
| 1367 |
+
default_crop_box = [-0.91, 0.91, -0.91, 0.91, -0.91, 0.91]
|
| 1368 |
+
|
| 1369 |
+
model_results.gaussians[batch_idx].apply_all_filters(
|
| 1370 |
+
opacity_thres=0.02,
|
| 1371 |
+
crop_bbx=default_crop_box,
|
| 1372 |
+
cam_origins=camera_origins,
|
| 1373 |
+
nearfar_percent=(0.0001, 1.0),
|
| 1374 |
+
).save_ply(os.path.join(output_directory, f"gaussians_{item_uid}.ply"))
|
| 1375 |
+
|
| 1376 |
+
print(f"Saved visualization for UID: {item_uid}")
|
| 1377 |
+
|
| 1378 |
+
# Break after first item unless saving all
|
| 1379 |
+
if not save_all_items:
|
| 1380 |
+
break
|
| 1381 |
+
|
| 1382 |
+
@torch.no_grad()
|
| 1383 |
+
def save_visuals(self, out_dir: str, result: edict, batch: edict, save_all: bool = False) -> None:
|
| 1384 |
+
"""Backward compatibility wrapper for save_visualization_outputs."""
|
| 1385 |
+
self.save_visualization_outputs(out_dir, result, batch, save_all)
|
| 1386 |
+
|
| 1387 |
+
@torch.no_grad()
|
| 1388 |
+
def save_evaluation_results(
|
| 1389 |
+
self,
|
| 1390 |
+
output_directory: str,
|
| 1391 |
+
model_results: edict,
|
| 1392 |
+
batch_data: edict,
|
| 1393 |
+
dataset
|
| 1394 |
+
) -> None:
|
| 1395 |
+
"""Save comprehensive evaluation results including metrics, visualizations, and 3D models."""
|
| 1396 |
+
from .utils_metrics import compute_psnr, compute_lpips, compute_ssim
|
| 1397 |
+
|
| 1398 |
+
os.makedirs(output_directory, exist_ok=True)
|
| 1399 |
+
input_data, target_data = model_results.input, model_results.target
|
| 1400 |
+
|
| 1401 |
+
for batch_idx in range(input_data.image.size(0)):
|
| 1402 |
+
item_uid = input_data.index[batch_idx, 0, -1].item()
|
| 1403 |
+
item_output_dir = os.path.join(output_directory, f"{item_uid:08d}")
|
| 1404 |
+
os.makedirs(item_output_dir, exist_ok=True)
|
| 1405 |
+
|
| 1406 |
+
# Save input image
|
| 1407 |
+
input_image = rearrange(
|
| 1408 |
+
input_data.image[batch_idx], "views channels height width -> height (views width) channels"
|
| 1409 |
+
)
|
| 1410 |
+
input_image = (input_image.cpu().numpy() * 255.0).clip(0.0, 255.0).astype(np.uint8)
|
| 1411 |
+
Image.fromarray(input_image[..., :3]).save(os.path.join(item_output_dir, "input.png"))
|
| 1412 |
+
|
| 1413 |
+
# Save ground truth vs prediction comparison
|
| 1414 |
+
comparison_image = torch.stack((target_data.image[batch_idx], model_results.render[batch_idx]), dim=0)
|
| 1415 |
+
num_views = comparison_image.size(1)
|
| 1416 |
+
if num_views > 10:
|
| 1417 |
+
comparison_image = comparison_image[:, ::num_views // 10, :, :, :]
|
| 1418 |
+
comparison_image = rearrange(
|
| 1419 |
+
comparison_image, "comparison_type views channels height width -> (comparison_type height) (views width) channels"
|
| 1420 |
+
)
|
| 1421 |
+
comparison_image = (comparison_image.cpu().numpy() * 255.0).clip(0.0, 255.0).astype(np.uint8)
|
| 1422 |
+
Image.fromarray(comparison_image).save(os.path.join(item_output_dir, "gt_vs_pred.png"))
|
| 1423 |
+
|
| 1424 |
+
# Compute and save metrics
|
| 1425 |
+
per_view_psnr = compute_psnr(target_data.image[batch_idx], model_results.render[batch_idx])
|
| 1426 |
+
per_view_lpips = compute_lpips(target_data.image[batch_idx], model_results.render[batch_idx])
|
| 1427 |
+
per_view_ssim = compute_ssim(target_data.image[batch_idx], model_results.render[batch_idx])
|
| 1428 |
+
|
| 1429 |
+
# Save per-view metrics
|
| 1430 |
+
view_ids = target_data.index[batch_idx, :, 0].cpu().numpy()
|
| 1431 |
+
with open(os.path.join(item_output_dir, "perview_metrics.txt"), "w") as f:
|
| 1432 |
+
for i in range(per_view_psnr.size(0)):
|
| 1433 |
+
f.write(
|
| 1434 |
+
f"view {view_ids[i]:0>6}, psnr: {per_view_psnr[i].item():.4f}, "
|
| 1435 |
+
f"lpips: {per_view_lpips[i].item():.4f}, ssim: {per_view_ssim[i].item():.4f}\n"
|
| 1436 |
+
)
|
| 1437 |
+
|
| 1438 |
+
# Save average metrics
|
| 1439 |
+
avg_psnr = per_view_psnr.mean().item()
|
| 1440 |
+
avg_lpips = per_view_lpips.mean().item()
|
| 1441 |
+
avg_ssim = per_view_ssim.mean().item()
|
| 1442 |
+
|
| 1443 |
+
with open(os.path.join(item_output_dir, "metrics.txt"), "w") as f:
|
| 1444 |
+
f.write(f"psnr: {avg_psnr:.4f}\nlpips: {avg_lpips:.4f}\nssim: {avg_ssim:.4f}\n")
|
| 1445 |
+
|
| 1446 |
+
print(f"UID {item_uid}: PSNR={avg_psnr:.4f}, LPIPS={avg_lpips:.4f}, SSIM={avg_ssim:.4f}")
|
| 1447 |
+
|
| 1448 |
+
# Save Gaussian model
|
| 1449 |
+
crop_box = None
|
| 1450 |
+
if self.config.model.get("clip_xyz", False):
|
| 1451 |
+
if self.config.model.get("half_bbx_size", None) is not None:
|
| 1452 |
+
half_size = self.config.model.half_bbx_size
|
| 1453 |
+
crop_box = [-half_size, half_size, -half_size, half_size, -half_size, half_size]
|
| 1454 |
+
else:
|
| 1455 |
+
crop_box = [-0.91, 0.91, -0.91, 0.91, -0.91, 0.91]
|
| 1456 |
+
|
| 1457 |
+
model_results.gaussians[batch_idx].apply_all_filters(
|
| 1458 |
+
opacity_thres=0.02, crop_bbx=crop_box, cam_origins=None, nearfar_percent=(0.0001, 1.0)
|
| 1459 |
+
).save_ply(os.path.join(item_output_dir, "gaussians.ply"))
|
| 1460 |
+
|
| 1461 |
+
# Create turntable visualization
|
| 1462 |
+
num_turntable_views = 150
|
| 1463 |
+
render_resolution = input_image.shape[0]
|
| 1464 |
+
|
| 1465 |
+
turntable_frames = render_turntable(
|
| 1466 |
+
model_results.gaussians[batch_idx], rendering_resolution=render_resolution, num_views=num_turntable_views
|
| 1467 |
+
)
|
| 1468 |
+
turntable_frames = rearrange(
|
| 1469 |
+
turntable_frames, "height (views width) channels -> views height width channels", views=num_turntable_views
|
| 1470 |
+
)
|
| 1471 |
+
turntable_frames = np.ascontiguousarray(turntable_frames)
|
| 1472 |
+
|
| 1473 |
+
# Save basic turntable video
|
| 1474 |
+
imageseq2video(turntable_frames, os.path.join(item_output_dir, "turntable.mp4"), fps=30)
|
| 1475 |
+
|
| 1476 |
+
# Save description and preview if available
|
| 1477 |
+
try:
|
| 1478 |
+
description = dataset.get_description(item_uid)["prompt"]
|
| 1479 |
+
if len(description) > 0:
|
| 1480 |
+
with open(os.path.join(item_output_dir, "description.txt"), "w") as f:
|
| 1481 |
+
f.write(description)
|
| 1482 |
+
|
| 1483 |
+
# Create preview image (subsample to 10 views)
|
| 1484 |
+
preview_frames = turntable_frames[::num_turntable_views // 10]
|
| 1485 |
+
preview_image = rearrange(preview_frames, "views height width channels -> height (views width) channels")
|
| 1486 |
+
Image.fromarray(preview_image).save(os.path.join(item_output_dir, "turntable_preview.png"))
|
| 1487 |
+
except (AttributeError, KeyError):
|
| 1488 |
+
pass
|
| 1489 |
+
|
| 1490 |
+
# Create turntable with input overlay
|
| 1491 |
+
border_width = 2
|
| 1492 |
+
target_width = render_resolution
|
| 1493 |
+
target_height = int(input_image.shape[0] / input_image.shape[1] * target_width)
|
| 1494 |
+
|
| 1495 |
+
resized_input = cv2.resize(
|
| 1496 |
+
input_image, (target_width - border_width * 2, target_height - border_width * 2), interpolation=cv2.INTER_AREA
|
| 1497 |
+
)
|
| 1498 |
+
bordered_input = np.pad(
|
| 1499 |
+
resized_input, ((border_width, border_width), (border_width, border_width), (0, 0)),
|
| 1500 |
+
mode="constant", constant_values=200
|
| 1501 |
+
)
|
| 1502 |
+
|
| 1503 |
+
input_sequence = np.tile(bordered_input[None], (turntable_frames.shape[0], 1, 1, 1))
|
| 1504 |
+
combined_frames = np.concatenate((turntable_frames, input_sequence), axis=1)
|
| 1505 |
+
|
| 1506 |
+
imageseq2video(combined_frames, os.path.join(item_output_dir, "turntable_with_input.mp4"), fps=30)
|
| 1507 |
+
|
| 1508 |
+
@torch.no_grad()
|
| 1509 |
+
def save_evaluations(self, out_dir: str, result: edict, batch: edict, dataset) -> None:
|
| 1510 |
+
"""Backward compatibility wrapper for save_evaluation_results."""
|
| 1511 |
+
self.save_evaluation_results(out_dir, result, batch, dataset)
|
| 1512 |
+
|
| 1513 |
+
@torch.no_grad()
|
| 1514 |
+
def save_validation_results(
|
| 1515 |
+
self,
|
| 1516 |
+
output_directory: str,
|
| 1517 |
+
model_results: edict,
|
| 1518 |
+
batch_data: edict,
|
| 1519 |
+
dataset,
|
| 1520 |
+
save_visualizations: bool = False
|
| 1521 |
+
) -> Dict[str, float]:
|
| 1522 |
+
"""Save validation results and compute aggregated metrics."""
|
| 1523 |
+
from .utils_metrics import compute_psnr, compute_lpips, compute_ssim
|
| 1524 |
+
|
| 1525 |
+
os.makedirs(output_directory, exist_ok=True)
|
| 1526 |
+
input_data, target_data = model_results.input, model_results.target
|
| 1527 |
+
validation_metrics = {"psnr": [], "lpips": [], "ssim": []}
|
| 1528 |
+
|
| 1529 |
+
for batch_idx in range(input_data.image.size(0)):
|
| 1530 |
+
item_uid = input_data.index[batch_idx, 0, -1].item()
|
| 1531 |
+
should_save_visuals = (batch_idx == 0) and save_visualizations
|
| 1532 |
+
|
| 1533 |
+
# Compute metrics (RGB only)
|
| 1534 |
+
target_image = target_data.image[batch_idx][:, :3, ...]
|
| 1535 |
+
per_view_psnr = compute_psnr(target_image, model_results.render[batch_idx])
|
| 1536 |
+
per_view_lpips = compute_lpips(target_image, model_results.render[batch_idx])
|
| 1537 |
+
per_view_ssim = compute_ssim(target_image, model_results.render[batch_idx])
|
| 1538 |
+
|
| 1539 |
+
avg_psnr = per_view_psnr.mean().item()
|
| 1540 |
+
avg_lpips = per_view_lpips.mean().item()
|
| 1541 |
+
avg_ssim = per_view_ssim.mean().item()
|
| 1542 |
+
|
| 1543 |
+
validation_metrics["psnr"].append(avg_psnr)
|
| 1544 |
+
validation_metrics["lpips"].append(avg_lpips)
|
| 1545 |
+
validation_metrics["ssim"].append(avg_ssim)
|
| 1546 |
+
|
| 1547 |
+
# Save visualizations only for first item if requested
|
| 1548 |
+
if should_save_visuals:
|
| 1549 |
+
item_output_dir = os.path.join(output_directory, f"{item_uid:08d}")
|
| 1550 |
+
os.makedirs(item_output_dir, exist_ok=True)
|
| 1551 |
+
|
| 1552 |
+
# Save input image
|
| 1553 |
+
input_image = rearrange(
|
| 1554 |
+
input_data.image[batch_idx][:, :3, ...], "views channels height width -> height (views width) channels"
|
| 1555 |
+
)
|
| 1556 |
+
input_image = (input_image.cpu().numpy() * 255.0).clip(0.0, 255.0).astype(np.uint8)
|
| 1557 |
+
Image.fromarray(input_image).save(os.path.join(item_output_dir, "input.png"))
|
| 1558 |
+
|
| 1559 |
+
# Save ground truth vs prediction comparison
|
| 1560 |
+
comparison_image = torch.stack((target_image, model_results.render[batch_idx]), dim=0)
|
| 1561 |
+
num_views = comparison_image.size(1)
|
| 1562 |
+
if num_views > 10:
|
| 1563 |
+
comparison_image = comparison_image[:, ::num_views // 10, :, :, :]
|
| 1564 |
+
comparison_image = rearrange(
|
| 1565 |
+
comparison_image, "comparison_type views channels height width -> (comparison_type height) (views width) channels"
|
| 1566 |
+
)
|
| 1567 |
+
comparison_image = (comparison_image.cpu().numpy() * 255.0).clip(0.0, 255.0).astype(np.uint8)
|
| 1568 |
+
Image.fromarray(comparison_image).save(os.path.join(item_output_dir, "gt_vs_pred.png"))
|
| 1569 |
+
|
| 1570 |
+
# Save per-view metrics
|
| 1571 |
+
view_ids = target_data.index[batch_idx, :, 0].cpu().numpy()
|
| 1572 |
+
with open(os.path.join(item_output_dir, "perview_metrics.txt"), "w") as f:
|
| 1573 |
+
for i in range(per_view_psnr.size(0)):
|
| 1574 |
+
f.write(
|
| 1575 |
+
f"view {view_ids[i]:0>6}, psnr: {per_view_psnr[i].item():.4f}, "
|
| 1576 |
+
f"lpips: {per_view_lpips[i].item():.4f}, ssim: {per_view_ssim[i].item():.4f}\n"
|
| 1577 |
+
)
|
| 1578 |
+
|
| 1579 |
+
# Save averaged metrics
|
| 1580 |
+
with open(os.path.join(item_output_dir, "metrics.txt"), "w") as f:
|
| 1581 |
+
f.write(f"psnr: {avg_psnr:.4f}\nlpips: {avg_lpips:.4f}\nssim: {avg_ssim:.4f}\n")
|
| 1582 |
+
|
| 1583 |
+
print(f"Validation UID {item_uid}: PSNR={avg_psnr:.4f}, LPIPS={avg_lpips:.4f}, SSIM={avg_ssim:.4f}")
|
| 1584 |
+
|
| 1585 |
+
# Save Gaussian model
|
| 1586 |
+
crop_box = None
|
| 1587 |
+
if self.config.model.get("clip_xyz", False):
|
| 1588 |
+
if self.config.model.get("half_bbx_size", None) is not None:
|
| 1589 |
+
half_size = self.config.model.half_bbx_size
|
| 1590 |
+
crop_box = [-half_size, half_size, -half_size, half_size, -half_size, half_size]
|
| 1591 |
+
else:
|
| 1592 |
+
crop_box = [-0.91, 0.91, -0.91, 0.91, -0.91, 0.91]
|
| 1593 |
+
|
| 1594 |
+
model_results.gaussians[batch_idx].apply_all_filters(
|
| 1595 |
+
opacity_thres=0.02, crop_bbx=crop_box, cam_origins=None, nearfar_percent=(0.0001, 1.0)
|
| 1596 |
+
).save_ply(os.path.join(item_output_dir, "gaussians.ply"))
|
| 1597 |
+
|
| 1598 |
+
# Create turntable visualization
|
| 1599 |
+
num_turntable_views = 150
|
| 1600 |
+
render_resolution = input_image.shape[0]
|
| 1601 |
+
|
| 1602 |
+
turntable_frames = render_turntable(
|
| 1603 |
+
model_results.gaussians[batch_idx], rendering_resolution=render_resolution, num_views=num_turntable_views
|
| 1604 |
+
)
|
| 1605 |
+
turntable_frames = rearrange(
|
| 1606 |
+
turntable_frames, "height (views width) channels -> views height width channels", views=num_turntable_views
|
| 1607 |
+
)
|
| 1608 |
+
turntable_frames = np.ascontiguousarray(turntable_frames)
|
| 1609 |
+
|
| 1610 |
+
imageseq2video(turntable_frames, os.path.join(item_output_dir, "turntable.mp4"), fps=30)
|
| 1611 |
+
|
| 1612 |
+
# Create turntable with input overlay
|
| 1613 |
+
border_width = 2
|
| 1614 |
+
target_width = render_resolution
|
| 1615 |
+
target_height = int(input_image.shape[0] / input_image.shape[1] * target_width)
|
| 1616 |
+
|
| 1617 |
+
resized_input = cv2.resize(
|
| 1618 |
+
input_image, (target_width - border_width * 2, target_height - border_width * 2), interpolation=cv2.INTER_AREA
|
| 1619 |
+
)
|
| 1620 |
+
bordered_input = np.pad(
|
| 1621 |
+
resized_input, ((border_width, border_width), (border_width, border_width), (0, 0)),
|
| 1622 |
+
mode="constant", constant_values=200
|
| 1623 |
+
)
|
| 1624 |
+
|
| 1625 |
+
input_sequence = np.tile(bordered_input[None], (turntable_frames.shape[0], 1, 1, 1))
|
| 1626 |
+
combined_frames = np.concatenate((turntable_frames, input_sequence), axis=1)
|
| 1627 |
+
|
| 1628 |
+
imageseq2video(combined_frames, os.path.join(item_output_dir, "turntable_with_input.mp4"), fps=30)
|
| 1629 |
+
|
| 1630 |
+
# Return averaged metrics
|
| 1631 |
+
return {
|
| 1632 |
+
"psnr": torch.tensor(validation_metrics["psnr"]).mean().item(),
|
| 1633 |
+
"lpips": torch.tensor(validation_metrics["lpips"]).mean().item(),
|
| 1634 |
+
"ssim": torch.tensor(validation_metrics["ssim"]).mean().item(),
|
| 1635 |
+
}
|
| 1636 |
+
|
| 1637 |
+
@torch.no_grad()
|
| 1638 |
+
def save_validations(
|
| 1639 |
+
self,
|
| 1640 |
+
out_dir: str,
|
| 1641 |
+
result: edict,
|
| 1642 |
+
batch: edict,
|
| 1643 |
+
dataset,
|
| 1644 |
+
save_img: bool = False
|
| 1645 |
+
) -> Dict[str, float]:
|
| 1646 |
+
"""Backward compatibility wrapper for save_validation_results."""
|
| 1647 |
+
return self.save_validation_results(out_dir, result, batch, dataset, save_img)
|
gslrm/model/transform_data.py
ADDED
|
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (C) 2025, FaceLift Research Group
|
| 2 |
+
# https://github.com/weijielyu/FaceLift
|
| 3 |
+
#
|
| 4 |
+
# This software is free for non-commercial, research and evaluation use
|
| 5 |
+
# under the terms of the LICENSE.md file.
|
| 6 |
+
#
|
| 7 |
+
# For inquiries contact: wlyu3@ucmerced.edu
|
| 8 |
+
|
| 9 |
+
"""
|
| 10 |
+
Data transformation utilities for GSLRM model.
|
| 11 |
+
|
| 12 |
+
This module contains classes and utilities for transforming input and target data
|
| 13 |
+
for training and inference in the GSLRM (Gaussian Splatting Latent Radiance Model).
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
import itertools
|
| 17 |
+
import random
|
| 18 |
+
from typing import Dict, Optional, Tuple, Union
|
| 19 |
+
|
| 20 |
+
import numpy as np
|
| 21 |
+
import torch
|
| 22 |
+
import torch.nn as nn
|
| 23 |
+
import torch.nn.functional as F
|
| 24 |
+
from easydict import EasyDict as edict
|
| 25 |
+
|
| 26 |
+
# =============================================================================
|
| 27 |
+
# Utility Functions
|
| 28 |
+
# =============================================================================
|
| 29 |
+
|
| 30 |
+
def compute_camera_rays(
|
| 31 |
+
fxfycxcy: torch.Tensor,
|
| 32 |
+
c2w: torch.Tensor,
|
| 33 |
+
h: int,
|
| 34 |
+
w: int,
|
| 35 |
+
device: torch.device
|
| 36 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 37 |
+
"""
|
| 38 |
+
Compute camera rays for given intrinsics and extrinsics.
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
fxfycxcy: Camera intrinsics [b*v, 4]
|
| 42 |
+
c2w: Camera-to-world matrices [b*v, 4, 4]
|
| 43 |
+
h: Image height
|
| 44 |
+
w: Image width
|
| 45 |
+
device: Target device
|
| 46 |
+
|
| 47 |
+
Returns:
|
| 48 |
+
Tuple of (ray_origins, ray_directions, ray_directions_camera)
|
| 49 |
+
"""
|
| 50 |
+
y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij")
|
| 51 |
+
y, x = y.to(device), x.to(device)
|
| 52 |
+
|
| 53 |
+
b_v = fxfycxcy.size(0)
|
| 54 |
+
x = x[None, :, :].expand(b_v, -1, -1).reshape(b_v, -1)
|
| 55 |
+
y = y[None, :, :].expand(b_v, -1, -1).reshape(b_v, -1)
|
| 56 |
+
|
| 57 |
+
# Convert to normalized camera coordinates
|
| 58 |
+
x = (x + 0.5 - fxfycxcy[:, 2:3]) / fxfycxcy[:, 0:1]
|
| 59 |
+
y = (y + 0.5 - fxfycxcy[:, 3:4]) / fxfycxcy[:, 1:2]
|
| 60 |
+
z = torch.ones_like(x)
|
| 61 |
+
|
| 62 |
+
ray_d_cam = torch.stack([x, y, z], dim=2) # [b*v, h*w, 3]
|
| 63 |
+
ray_d_cam = ray_d_cam / torch.norm(ray_d_cam, dim=2, keepdim=True)
|
| 64 |
+
|
| 65 |
+
# Transform to world coordinates
|
| 66 |
+
ray_d = torch.bmm(ray_d_cam, c2w[:, :3, :3].transpose(1, 2))
|
| 67 |
+
ray_d = ray_d / torch.norm(ray_d, dim=2, keepdim=True)
|
| 68 |
+
ray_o = c2w[:, :3, 3][:, None, :].expand_as(ray_d)
|
| 69 |
+
|
| 70 |
+
return ray_o, ray_d, ray_d_cam
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def sample_patch_rays(
|
| 74 |
+
image: torch.Tensor,
|
| 75 |
+
fxfycxcy: torch.Tensor,
|
| 76 |
+
c2w: torch.Tensor,
|
| 77 |
+
patch_size: int,
|
| 78 |
+
h: int,
|
| 79 |
+
w: int
|
| 80 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 81 |
+
"""
|
| 82 |
+
Sample rays at patch centers for efficient processing.
|
| 83 |
+
|
| 84 |
+
Args:
|
| 85 |
+
image: Input images [b*v, c, h, w]
|
| 86 |
+
fxfycxcy: Camera intrinsics [b*v, 4]
|
| 87 |
+
c2w: Camera-to-world matrices [b*v, 4, 4]
|
| 88 |
+
patch_size: Size of patches
|
| 89 |
+
h: Image height
|
| 90 |
+
w: Image width
|
| 91 |
+
|
| 92 |
+
Returns:
|
| 93 |
+
Tuple of (colors, ray_origins, ray_directions, xy_norm, projection_matrices)
|
| 94 |
+
"""
|
| 95 |
+
b_v, c = image.shape[:2]
|
| 96 |
+
device = image.device
|
| 97 |
+
|
| 98 |
+
start_patch_center = patch_size / 2.0
|
| 99 |
+
y, x = torch.meshgrid(
|
| 100 |
+
torch.arange(h // patch_size) * patch_size + start_patch_center,
|
| 101 |
+
torch.arange(w // patch_size) * patch_size + start_patch_center,
|
| 102 |
+
indexing="ij",
|
| 103 |
+
)
|
| 104 |
+
y, x = y.to(device), x.to(device)
|
| 105 |
+
|
| 106 |
+
x_flat = x[None, :, :].expand(b_v, -1, -1).reshape(b_v, -1)
|
| 107 |
+
y_flat = y[None, :, :].expand(b_v, -1, -1).reshape(b_v, -1)
|
| 108 |
+
|
| 109 |
+
# Sample colors at patch centers
|
| 110 |
+
ray_color = F.grid_sample(
|
| 111 |
+
image,
|
| 112 |
+
torch.stack([x_flat / w * 2.0 - 1.0, y_flat / h * 2.0 - 1.0], dim=2).reshape(
|
| 113 |
+
b_v, -1, 1, 2
|
| 114 |
+
),
|
| 115 |
+
align_corners=False,
|
| 116 |
+
).squeeze(-1).permute(0, 2, 1).contiguous()
|
| 117 |
+
|
| 118 |
+
# Compute normalized coordinates
|
| 119 |
+
ray_xy_norm = torch.stack([x_flat / w, y_flat / h], dim=2)
|
| 120 |
+
|
| 121 |
+
# Compute projection matrices
|
| 122 |
+
K_norm = torch.eye(3, device=device).unsqueeze(0).repeat(b_v, 1, 1)
|
| 123 |
+
K_norm[:, 0, 0] = fxfycxcy[:, 0] / w
|
| 124 |
+
K_norm[:, 1, 1] = fxfycxcy[:, 1] / h
|
| 125 |
+
K_norm[:, 0, 2] = fxfycxcy[:, 2] / w
|
| 126 |
+
K_norm[:, 1, 2] = fxfycxcy[:, 3] / h
|
| 127 |
+
|
| 128 |
+
w2c = torch.inverse(c2w)
|
| 129 |
+
proj_mat = torch.bmm(K_norm, w2c[:, :3, :4])
|
| 130 |
+
proj_mat = proj_mat.reshape(b_v, 12)
|
| 131 |
+
proj_mat = proj_mat / (proj_mat.norm(dim=1, keepdim=True) + 1e-6)
|
| 132 |
+
proj_mat = proj_mat.reshape(b_v, 3, 4)
|
| 133 |
+
proj_mat = proj_mat * proj_mat[:, 0:1, 0:1].sign()
|
| 134 |
+
|
| 135 |
+
# Compute ray directions
|
| 136 |
+
x_norm = (x_flat - fxfycxcy[:, 2:3]) / fxfycxcy[:, 0:1]
|
| 137 |
+
y_norm = (y_flat - fxfycxcy[:, 3:4]) / fxfycxcy[:, 1:2]
|
| 138 |
+
z_norm = torch.ones_like(x_norm)
|
| 139 |
+
|
| 140 |
+
ray_d = torch.stack([x_norm, y_norm, z_norm], dim=2)
|
| 141 |
+
ray_d = torch.bmm(ray_d, c2w[:, :3, :3].transpose(1, 2))
|
| 142 |
+
ray_d = ray_d / torch.norm(ray_d, dim=2, keepdim=True)
|
| 143 |
+
ray_o = c2w[:, :3, 3][:, None, :].expand_as(ray_d)
|
| 144 |
+
|
| 145 |
+
return ray_color, ray_o, ray_d, ray_xy_norm, proj_mat
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
# =============================================================================
|
| 149 |
+
# Main Classes
|
| 150 |
+
# =============================================================================
|
| 151 |
+
|
| 152 |
+
class SplitData(nn.Module):
|
| 153 |
+
"""
|
| 154 |
+
Split data batch into input and target views for training.
|
| 155 |
+
"""
|
| 156 |
+
|
| 157 |
+
def __init__(self, config):
|
| 158 |
+
super().__init__()
|
| 159 |
+
self.config = config
|
| 160 |
+
|
| 161 |
+
@torch.no_grad()
|
| 162 |
+
def forward(self, data_batch: Dict[str, torch.Tensor], target_has_input: bool = True) -> Tuple[edict, edict]:
|
| 163 |
+
"""
|
| 164 |
+
Split data into input and target views.
|
| 165 |
+
|
| 166 |
+
Args:
|
| 167 |
+
data_batch: Dictionary containing batch data
|
| 168 |
+
target_has_input: Whether target views can overlap with input views
|
| 169 |
+
|
| 170 |
+
Returns:
|
| 171 |
+
Tuple of (input_data, target_data)
|
| 172 |
+
"""
|
| 173 |
+
input_data, target_data = {}, {}
|
| 174 |
+
index = None
|
| 175 |
+
|
| 176 |
+
for key, value in data_batch.items():
|
| 177 |
+
# Always use first N views as input
|
| 178 |
+
input_data[key] = value[:, :self.config.training.dataset.num_input_views, ...]
|
| 179 |
+
|
| 180 |
+
# Calculate num_target_views from num_views (not explicitly in config)
|
| 181 |
+
num_target_views = self.config.training.dataset.num_views
|
| 182 |
+
|
| 183 |
+
if num_target_views >= value.size(1):
|
| 184 |
+
target_data[key] = value
|
| 185 |
+
else:
|
| 186 |
+
if index is None:
|
| 187 |
+
index = self._generate_target_indices(
|
| 188 |
+
value, target_has_input
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
target_data[key] = self._gather_target_data(value, index)
|
| 192 |
+
|
| 193 |
+
return edict(input_data), edict(target_data)
|
| 194 |
+
|
| 195 |
+
def _generate_target_indices(self, value: torch.Tensor, target_has_input: bool) -> torch.Tensor:
|
| 196 |
+
"""Generate indices for target view selection."""
|
| 197 |
+
b, v = value.shape[:2]
|
| 198 |
+
|
| 199 |
+
# Get config values
|
| 200 |
+
num_input_views = self.config.training.dataset.num_input_views
|
| 201 |
+
num_views = self.config.training.dataset.num_views
|
| 202 |
+
num_target_views = num_views # Use all views as targets
|
| 203 |
+
|
| 204 |
+
if target_has_input:
|
| 205 |
+
# Random sampling from all views
|
| 206 |
+
index = np.array([
|
| 207 |
+
random.sample(range(v), num_target_views)
|
| 208 |
+
for _ in range(b)
|
| 209 |
+
])
|
| 210 |
+
else:
|
| 211 |
+
# Use last N views to avoid overlap with input views
|
| 212 |
+
assert (
|
| 213 |
+
num_input_views + num_target_views <= num_views
|
| 214 |
+
), "num_input_views + num_target_views must <= num_views to avoid duplicate views"
|
| 215 |
+
|
| 216 |
+
index = np.array([
|
| 217 |
+
[num_views - 1 - j for j in range(num_target_views)]
|
| 218 |
+
for _ in range(b)
|
| 219 |
+
])
|
| 220 |
+
|
| 221 |
+
return torch.from_numpy(index).long().to(value.device)
|
| 222 |
+
|
| 223 |
+
def _gather_target_data(self, value: torch.Tensor, index: torch.Tensor) -> torch.Tensor:
|
| 224 |
+
"""Gather target data using provided indices."""
|
| 225 |
+
value_index = index
|
| 226 |
+
if value.dim() > 2:
|
| 227 |
+
dummy_dims = [1] * (value.dim() - 2)
|
| 228 |
+
value_index = index.reshape(index.size(0), index.size(1), *dummy_dims)
|
| 229 |
+
|
| 230 |
+
try:
|
| 231 |
+
return torch.gather(
|
| 232 |
+
value,
|
| 233 |
+
dim=1,
|
| 234 |
+
index=value_index.expand(-1, -1, *value.size()[2:]),
|
| 235 |
+
)
|
| 236 |
+
except Exception as e:
|
| 237 |
+
print(f"Error gathering data for key with value shape: {value.size()}")
|
| 238 |
+
print(f"Index shape: {value_index.size()}")
|
| 239 |
+
raise e
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
class TransformInput(nn.Module):
|
| 243 |
+
"""
|
| 244 |
+
Transform input data for feeding into the transformer network.
|
| 245 |
+
"""
|
| 246 |
+
|
| 247 |
+
def __init__(self, config):
|
| 248 |
+
super().__init__()
|
| 249 |
+
self.config = config
|
| 250 |
+
|
| 251 |
+
@torch.no_grad()
|
| 252 |
+
def forward(self, data_batch: edict, patch_size: Optional[int] = None) -> edict:
|
| 253 |
+
"""
|
| 254 |
+
Transform input images to rays and other representations.
|
| 255 |
+
|
| 256 |
+
Args:
|
| 257 |
+
data_batch: Input data batch
|
| 258 |
+
patch_size: Optional patch size for patch-based processing
|
| 259 |
+
|
| 260 |
+
Returns:
|
| 261 |
+
Transformed input data
|
| 262 |
+
"""
|
| 263 |
+
self._validate_input(data_batch)
|
| 264 |
+
|
| 265 |
+
image, fxfycxcy, c2w, index = (
|
| 266 |
+
data_batch.image, data_batch.fxfycxcy,
|
| 267 |
+
data_batch.c2w, data_batch.index
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
b, v, c, h, w = image.size()
|
| 271 |
+
|
| 272 |
+
# Reshape for processing
|
| 273 |
+
image_flat = image.reshape(b * v, c, h * w)
|
| 274 |
+
fxfycxcy_flat = fxfycxcy.reshape(b * v, 4)
|
| 275 |
+
c2w_flat = c2w.reshape(b * v, 4, 4)
|
| 276 |
+
|
| 277 |
+
# Compute normalized coordinates for full image
|
| 278 |
+
xy_norm = self._compute_normalized_coordinates(b, v, h, w, image.device)
|
| 279 |
+
|
| 280 |
+
# Compute camera rays
|
| 281 |
+
ray_o, ray_d, ray_d_cam = compute_camera_rays(
|
| 282 |
+
fxfycxcy_flat, c2w_flat, h, w, image.device
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
# Process patches if patch_size is provided
|
| 286 |
+
patch_data = self._process_patches(
|
| 287 |
+
image_flat, fxfycxcy_flat, c2w_flat, patch_size, h, w, b, v, c
|
| 288 |
+
) if patch_size is not None else (None, None, None, None, None)
|
| 289 |
+
|
| 290 |
+
# Reshape outputs
|
| 291 |
+
ray_o = ray_o.reshape(b, v, h, w, 3).permute(0, 1, 4, 2, 3)
|
| 292 |
+
ray_d = ray_d.reshape(b, v, h, w, 3).permute(0, 1, 4, 2, 3)
|
| 293 |
+
ray_d_cam = ray_d_cam.reshape(b, v, h, w, 3).permute(0, 1, 4, 2, 3)
|
| 294 |
+
|
| 295 |
+
return edict(
|
| 296 |
+
image=image,
|
| 297 |
+
ray_o=ray_o,
|
| 298 |
+
ray_d=ray_d,
|
| 299 |
+
ray_d_cam=ray_d_cam,
|
| 300 |
+
fxfycxcy=fxfycxcy,
|
| 301 |
+
c2w=c2w,
|
| 302 |
+
index=index,
|
| 303 |
+
xy_norm=xy_norm,
|
| 304 |
+
ray_color_patch=patch_data[0],
|
| 305 |
+
ray_o_patch=patch_data[1],
|
| 306 |
+
ray_d_patch=patch_data[2],
|
| 307 |
+
ray_xy_norm_patch=patch_data[3],
|
| 308 |
+
proj_mat=patch_data[4],
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
def _validate_input(self, data_batch: edict) -> None:
|
| 312 |
+
"""Validate input data dimensions."""
|
| 313 |
+
assert data_batch.image.dim() == 5, f"image dim should be 5, got {data_batch.image.dim()}"
|
| 314 |
+
assert data_batch.fxfycxcy.dim() == 3, f"fxfycxcy dim should be 3, got {data_batch.fxfycxcy.dim()}"
|
| 315 |
+
assert data_batch.c2w.dim() == 4, f"c2w dim should be 4, got {data_batch.c2w.dim()}"
|
| 316 |
+
|
| 317 |
+
def _compute_normalized_coordinates(self, b: int, v: int, h: int, w: int, device: torch.device) -> torch.Tensor:
|
| 318 |
+
"""Compute normalized coordinates for the full image."""
|
| 319 |
+
y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij")
|
| 320 |
+
y, x = y.to(device), x.to(device)
|
| 321 |
+
|
| 322 |
+
y_norm = (y + 0.5) / h * 2 - 1
|
| 323 |
+
x_norm = (x + 0.5) / w * 2 - 1
|
| 324 |
+
|
| 325 |
+
return torch.stack([x_norm, y_norm], dim=0)[None, None, :, :, :].expand(b, v, -1, -1, -1)
|
| 326 |
+
|
| 327 |
+
def _process_patches(
|
| 328 |
+
self,
|
| 329 |
+
image: torch.Tensor,
|
| 330 |
+
fxfycxcy: torch.Tensor,
|
| 331 |
+
c2w: torch.Tensor,
|
| 332 |
+
patch_size: int,
|
| 333 |
+
h: int,
|
| 334 |
+
w: int,
|
| 335 |
+
b: int,
|
| 336 |
+
v: int,
|
| 337 |
+
c: int
|
| 338 |
+
) -> Tuple[Optional[torch.Tensor], ...]:
|
| 339 |
+
"""Process patch-based data if patch_size is provided."""
|
| 340 |
+
ray_color, ray_o, ray_d, ray_xy_norm, proj_mat = sample_patch_rays(
|
| 341 |
+
image.reshape(b * v, c, h, w), fxfycxcy, c2w, patch_size, h, w
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
n_patch = ray_color.size(1)
|
| 345 |
+
|
| 346 |
+
return (
|
| 347 |
+
ray_color.reshape(b, v, n_patch, c),
|
| 348 |
+
ray_o.reshape(b, v, n_patch, 3),
|
| 349 |
+
ray_d.reshape(b, v, n_patch, 3),
|
| 350 |
+
ray_xy_norm.reshape(b, v, n_patch, 2),
|
| 351 |
+
proj_mat.reshape(b, v, 3, 4),
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
class TransformTarget(nn.Module):
|
| 356 |
+
"""
|
| 357 |
+
Handles target image transformations during training.
|
| 358 |
+
|
| 359 |
+
Currently implements random cropping for data augmentation.
|
| 360 |
+
"""
|
| 361 |
+
|
| 362 |
+
def __init__(self, config: edict):
|
| 363 |
+
super().__init__()
|
| 364 |
+
self.config = config
|
| 365 |
+
|
| 366 |
+
@torch.no_grad()
|
| 367 |
+
def forward(self, data_batch: edict) -> edict:
|
| 368 |
+
"""
|
| 369 |
+
Apply transformations to target data.
|
| 370 |
+
|
| 371 |
+
Args:
|
| 372 |
+
data_batch: Dictionary containing 'image' and 'fxfycxcy'
|
| 373 |
+
|
| 374 |
+
Returns:
|
| 375 |
+
Transformed data batch
|
| 376 |
+
"""
|
| 377 |
+
image = data_batch["image"] # [b, v, c, h, w]
|
| 378 |
+
fxfycxcy = data_batch["fxfycxcy"] # [b, v, 4]
|
| 379 |
+
|
| 380 |
+
b, v, c, h, w = image.size()
|
| 381 |
+
crop_size = getattr(self.config.training, 'crop_size', min(h, w))
|
| 382 |
+
|
| 383 |
+
# Apply random cropping if image is larger than crop size
|
| 384 |
+
if h > crop_size or w > crop_size:
|
| 385 |
+
crop_image = torch.zeros(
|
| 386 |
+
(b, v, c, crop_size, crop_size),
|
| 387 |
+
dtype=image.dtype,
|
| 388 |
+
device=image.device
|
| 389 |
+
)
|
| 390 |
+
crop_fxfycxcy = fxfycxcy.clone()
|
| 391 |
+
|
| 392 |
+
for i in range(b):
|
| 393 |
+
for j in range(v):
|
| 394 |
+
# Random crop position
|
| 395 |
+
idx_x = torch.randint(low=0, high=w - crop_size, size=(1,)).item()
|
| 396 |
+
idx_y = torch.randint(low=0, high=h - crop_size, size=(1,)).item()
|
| 397 |
+
|
| 398 |
+
# Apply crop
|
| 399 |
+
crop_image[i, j] = image[
|
| 400 |
+
i, j, :, idx_y:idx_y + crop_size, idx_x:idx_x + crop_size
|
| 401 |
+
]
|
| 402 |
+
|
| 403 |
+
# Adjust camera intrinsics
|
| 404 |
+
crop_fxfycxcy[i, j, 2] -= idx_x # cx
|
| 405 |
+
crop_fxfycxcy[i, j, 3] -= idx_y # cy
|
| 406 |
+
|
| 407 |
+
data_batch["image"] = crop_image
|
| 408 |
+
data_batch["fxfycxcy"] = crop_fxfycxcy
|
| 409 |
+
|
| 410 |
+
return data_batch
|
gslrm/model/utils_losses.py
ADDED
|
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (C) 2025, FaceLift Research Group
|
| 2 |
+
# https://github.com/weijielyu/FaceLift
|
| 3 |
+
#
|
| 4 |
+
# This software is free for non-commercial, research and evaluation use
|
| 5 |
+
# under the terms of the LICENSE.md file.
|
| 6 |
+
#
|
| 7 |
+
# For inquiries contact: wlyu3@ucmerced.edu
|
| 8 |
+
|
| 9 |
+
"""
|
| 10 |
+
Perceptual Loss Implementation using VGG19 and SSIM Loss Implementation.
|
| 11 |
+
|
| 12 |
+
Adapted from https://github.com/zhengqili/Crowdsampling-the-Plenoptic-Function/blob/f5216f312cf82d77f8d20454b5eeb3930324630a/models/networks.py#L1478
|
| 13 |
+
"""
|
| 14 |
+
import os
|
| 15 |
+
from typing import List, Tuple, Union, Optional
|
| 16 |
+
|
| 17 |
+
import scipy.io
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn as nn
|
| 20 |
+
from pytorch_msssim import SSIM
|
| 21 |
+
|
| 22 |
+
# VGG19 ImageNet normalization constants
|
| 23 |
+
IMAGENET_MEAN = [123.6800, 116.7790, 103.9390]
|
| 24 |
+
|
| 25 |
+
# VGG19 layer configuration
|
| 26 |
+
VGG19_LAYER_INDICES = [0, 2, 5, 7, 10, 12, 14, 16, 19, 21, 23, 25, 28, 30, 32, 34]
|
| 27 |
+
VGG19_LAYER_NAMES = [
|
| 28 |
+
"conv1", "conv2", "conv3", "conv4", "conv5", "conv6", "conv7", "conv8",
|
| 29 |
+
"conv9", "conv10", "conv11", "conv12", "conv13", "conv14", "conv15", "conv16"
|
| 30 |
+
]
|
| 31 |
+
VGG19_CHANNEL_SIZES = [64, 64, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512]
|
| 32 |
+
|
| 33 |
+
# Perceptual loss weighting factors
|
| 34 |
+
LAYER_WEIGHTS = [1.0, 1/2.6, 1/4.8, 1/3.7, 1/5.6, 10/1.5]
|
| 35 |
+
|
| 36 |
+
class VGG19(nn.Module):
|
| 37 |
+
"""
|
| 38 |
+
VGG19 network implementation for perceptual loss computation.
|
| 39 |
+
|
| 40 |
+
This class implements the VGG19 architecture with specific layer outputs
|
| 41 |
+
used for computing perceptual losses at different scales.
|
| 42 |
+
"""
|
| 43 |
+
|
| 44 |
+
def __init__(self) -> None:
|
| 45 |
+
"""Initialize VGG19 network layers."""
|
| 46 |
+
super(VGG19, self).__init__()
|
| 47 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=True)
|
| 48 |
+
self.relu1 = nn.ReLU(inplace=True)
|
| 49 |
+
|
| 50 |
+
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=True)
|
| 51 |
+
self.relu2 = nn.ReLU(inplace=True)
|
| 52 |
+
self.max1 = nn.AvgPool2d(kernel_size=2, stride=2)
|
| 53 |
+
|
| 54 |
+
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1, bias=True)
|
| 55 |
+
self.relu3 = nn.ReLU(inplace=True)
|
| 56 |
+
|
| 57 |
+
self.conv4 = nn.Conv2d(128, 128, kernel_size=3, padding=1, bias=True)
|
| 58 |
+
self.relu4 = nn.ReLU(inplace=True)
|
| 59 |
+
self.max2 = nn.AvgPool2d(kernel_size=2, stride=2)
|
| 60 |
+
|
| 61 |
+
self.conv5 = nn.Conv2d(128, 256, kernel_size=3, padding=1, bias=True)
|
| 62 |
+
self.relu5 = nn.ReLU(inplace=True)
|
| 63 |
+
|
| 64 |
+
self.conv6 = nn.Conv2d(256, 256, kernel_size=3, padding=1, bias=True)
|
| 65 |
+
self.relu6 = nn.ReLU(inplace=True)
|
| 66 |
+
|
| 67 |
+
self.conv7 = nn.Conv2d(256, 256, kernel_size=3, padding=1, bias=True)
|
| 68 |
+
self.relu7 = nn.ReLU(inplace=True)
|
| 69 |
+
|
| 70 |
+
self.conv8 = nn.Conv2d(256, 256, kernel_size=3, padding=1, bias=True)
|
| 71 |
+
self.relu8 = nn.ReLU(inplace=True)
|
| 72 |
+
self.max3 = nn.AvgPool2d(kernel_size=2, stride=2)
|
| 73 |
+
|
| 74 |
+
self.conv9 = nn.Conv2d(256, 512, kernel_size=3, padding=1, bias=True)
|
| 75 |
+
self.relu9 = nn.ReLU(inplace=True)
|
| 76 |
+
|
| 77 |
+
self.conv10 = nn.Conv2d(512, 512, kernel_size=3, padding=1, bias=True)
|
| 78 |
+
self.relu10 = nn.ReLU(inplace=True)
|
| 79 |
+
|
| 80 |
+
self.conv11 = nn.Conv2d(512, 512, kernel_size=3, padding=1, bias=True)
|
| 81 |
+
self.relu11 = nn.ReLU(inplace=True)
|
| 82 |
+
|
| 83 |
+
self.conv12 = nn.Conv2d(512, 512, kernel_size=3, padding=1, bias=True)
|
| 84 |
+
self.relu12 = nn.ReLU(inplace=True)
|
| 85 |
+
self.max4 = nn.AvgPool2d(kernel_size=2, stride=2)
|
| 86 |
+
|
| 87 |
+
self.conv13 = nn.Conv2d(512, 512, kernel_size=3, padding=1, bias=True)
|
| 88 |
+
self.relu13 = nn.ReLU(inplace=True)
|
| 89 |
+
|
| 90 |
+
self.conv14 = nn.Conv2d(512, 512, kernel_size=3, padding=1, bias=True)
|
| 91 |
+
self.relu14 = nn.ReLU(inplace=True)
|
| 92 |
+
|
| 93 |
+
self.conv15 = nn.Conv2d(512, 512, kernel_size=3, padding=1, bias=True)
|
| 94 |
+
self.relu15 = nn.ReLU(inplace=True)
|
| 95 |
+
|
| 96 |
+
self.conv16 = nn.Conv2d(512, 512, kernel_size=3, padding=1, bias=True)
|
| 97 |
+
self.relu16 = nn.ReLU(inplace=True)
|
| 98 |
+
self.max5 = nn.AvgPool2d(kernel_size=2, stride=2)
|
| 99 |
+
|
| 100 |
+
def forward(self, x: torch.Tensor, return_style: int) -> Union[List[torch.Tensor], Tuple[torch.Tensor, ...]]:
|
| 101 |
+
"""
|
| 102 |
+
Forward pass through VGG19 network.
|
| 103 |
+
|
| 104 |
+
Args:
|
| 105 |
+
x: Input tensor of shape [B, 3, H, W]
|
| 106 |
+
return_style: If > 0, return style features as list; otherwise return content features as tuple
|
| 107 |
+
|
| 108 |
+
Returns:
|
| 109 |
+
Either a list of style features or tuple of content features from different layers
|
| 110 |
+
"""
|
| 111 |
+
out1 = self.conv1(x)
|
| 112 |
+
out2 = self.relu1(out1)
|
| 113 |
+
|
| 114 |
+
out3 = self.conv2(out2)
|
| 115 |
+
out4 = self.relu2(out3)
|
| 116 |
+
out5 = self.max1(out4)
|
| 117 |
+
|
| 118 |
+
out6 = self.conv3(out5)
|
| 119 |
+
out7 = self.relu3(out6)
|
| 120 |
+
out8 = self.conv4(out7)
|
| 121 |
+
out9 = self.relu4(out8)
|
| 122 |
+
out10 = self.max2(out9)
|
| 123 |
+
out11 = self.conv5(out10)
|
| 124 |
+
out12 = self.relu5(out11)
|
| 125 |
+
out13 = self.conv6(out12)
|
| 126 |
+
out14 = self.relu6(out13)
|
| 127 |
+
out15 = self.conv7(out14)
|
| 128 |
+
out16 = self.relu7(out15)
|
| 129 |
+
out17 = self.conv8(out16)
|
| 130 |
+
out18 = self.relu8(out17)
|
| 131 |
+
out19 = self.max3(out18)
|
| 132 |
+
out20 = self.conv9(out19)
|
| 133 |
+
out21 = self.relu9(out20)
|
| 134 |
+
out22 = self.conv10(out21)
|
| 135 |
+
out23 = self.relu10(out22)
|
| 136 |
+
out24 = self.conv11(out23)
|
| 137 |
+
out25 = self.relu11(out24)
|
| 138 |
+
out26 = self.conv12(out25)
|
| 139 |
+
out27 = self.relu12(out26)
|
| 140 |
+
out28 = self.max4(out27)
|
| 141 |
+
out29 = self.conv13(out28)
|
| 142 |
+
out30 = self.relu13(out29)
|
| 143 |
+
out31 = self.conv14(out30)
|
| 144 |
+
out32 = self.relu14(out31)
|
| 145 |
+
|
| 146 |
+
if return_style > 0:
|
| 147 |
+
return [out2, out7, out12, out21, out30]
|
| 148 |
+
else:
|
| 149 |
+
return out4, out9, out14, out23, out32
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class PerceptualLoss(nn.Module):
|
| 153 |
+
"""
|
| 154 |
+
Perceptual Loss module using pre-trained VGG19.
|
| 155 |
+
|
| 156 |
+
This class implements perceptual loss by comparing features extracted from
|
| 157 |
+
different layers of a pre-trained VGG19 network. It computes weighted
|
| 158 |
+
differences across multiple scales to capture both low-level and high-level
|
| 159 |
+
visual differences between images.
|
| 160 |
+
"""
|
| 161 |
+
|
| 162 |
+
def __init__(self, device: str = "cpu", weight_file: Optional[str] = None) -> None:
|
| 163 |
+
"""
|
| 164 |
+
Initialize PerceptualLoss module.
|
| 165 |
+
|
| 166 |
+
Args:
|
| 167 |
+
device: Device to run computations on ('cpu' or 'cuda')
|
| 168 |
+
weight_file: Path to VGG19 weight file. If None, uses default path or environment variable.
|
| 169 |
+
|
| 170 |
+
Raises:
|
| 171 |
+
FileNotFoundError: If weight file is not found
|
| 172 |
+
RuntimeError: If weight file cannot be loaded
|
| 173 |
+
"""
|
| 174 |
+
super().__init__()
|
| 175 |
+
self.device = device
|
| 176 |
+
self.net = VGG19()
|
| 177 |
+
|
| 178 |
+
# Determine weight file path
|
| 179 |
+
if weight_file is None:
|
| 180 |
+
# Check environment variable first
|
| 181 |
+
weight_file = os.environ.get('VGG19_WEIGHTS_PATH')
|
| 182 |
+
if weight_file is None:
|
| 183 |
+
# Fallback to default path
|
| 184 |
+
weight_file = "/sensei-fs/users/kaiz/repos/weight-collections/imagenet-vgg-verydeep-19.mat"
|
| 185 |
+
|
| 186 |
+
# Load VGG19 weights
|
| 187 |
+
if not os.path.isfile(weight_file):
|
| 188 |
+
raise FileNotFoundError(
|
| 189 |
+
f"VGG19 weight file not found: {weight_file}\n"
|
| 190 |
+
f"Download it from: https://www.vlfeat.org/matconvnet/models/imagenet-vgg-verydeep-19.mat\n"
|
| 191 |
+
f"Expected MD5: 106118b7cf60435e6d8e04f6a6dc3657"
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
try:
|
| 195 |
+
vgg_rawnet = scipy.io.loadmat(weight_file)
|
| 196 |
+
vgg_layers = vgg_rawnet["layers"][0]
|
| 197 |
+
except Exception as e:
|
| 198 |
+
raise RuntimeError(f"Failed to load VGG19 weights from {weight_file}: {e}")
|
| 199 |
+
|
| 200 |
+
# Load pre-trained weights into the network
|
| 201 |
+
self._load_pretrained_weights(vgg_layers)
|
| 202 |
+
|
| 203 |
+
# Set network to evaluation mode and freeze parameters
|
| 204 |
+
self.net = self.net.eval().to(device)
|
| 205 |
+
for param in self.net.parameters():
|
| 206 |
+
param.requires_grad = False
|
| 207 |
+
|
| 208 |
+
def _load_pretrained_weights(self, vgg_layers) -> None:
|
| 209 |
+
"""Load pre-trained VGG19 weights into the network."""
|
| 210 |
+
for layer_idx in range(len(VGG19_LAYER_NAMES)):
|
| 211 |
+
layer_name = VGG19_LAYER_NAMES[layer_idx]
|
| 212 |
+
mat_layer_idx = VGG19_LAYER_INDICES[layer_idx]
|
| 213 |
+
channel_size = VGG19_CHANNEL_SIZES[layer_idx]
|
| 214 |
+
|
| 215 |
+
# Extract weights and biases from MATLAB format
|
| 216 |
+
layer_weights = torch.from_numpy(
|
| 217 |
+
vgg_layers[mat_layer_idx][0][0][2][0][0]
|
| 218 |
+
).permute(3, 2, 0, 1)
|
| 219 |
+
layer_biases = torch.from_numpy(
|
| 220 |
+
vgg_layers[mat_layer_idx][0][0][2][0][1]
|
| 221 |
+
).view(channel_size)
|
| 222 |
+
|
| 223 |
+
# Assign to network
|
| 224 |
+
getattr(self.net, layer_name).weight = nn.Parameter(layer_weights)
|
| 225 |
+
getattr(self.net, layer_name).bias = nn.Parameter(layer_biases)
|
| 226 |
+
|
| 227 |
+
def _compute_l1_error(self, truth: torch.Tensor, pred: torch.Tensor) -> torch.Tensor:
|
| 228 |
+
"""
|
| 229 |
+
Compute L1 (Mean Absolute Error) between two tensors.
|
| 230 |
+
|
| 231 |
+
Args:
|
| 232 |
+
truth: Ground truth tensor
|
| 233 |
+
pred: Predicted tensor
|
| 234 |
+
|
| 235 |
+
Returns:
|
| 236 |
+
L1 error as a scalar tensor
|
| 237 |
+
"""
|
| 238 |
+
return torch.mean(torch.abs(truth - pred))
|
| 239 |
+
|
| 240 |
+
def forward(self, pred_img: torch.Tensor, real_img: torch.Tensor) -> torch.Tensor:
|
| 241 |
+
"""
|
| 242 |
+
Compute perceptual loss between predicted and real images.
|
| 243 |
+
|
| 244 |
+
Args:
|
| 245 |
+
pred_img: Predicted image tensor of shape [B, 3, H, W] in range [0, 1]
|
| 246 |
+
real_img: Real image tensor of shape [B, 3, H, W] in range [0, 1]
|
| 247 |
+
|
| 248 |
+
Returns:
|
| 249 |
+
Perceptual loss as a scalar tensor
|
| 250 |
+
"""
|
| 251 |
+
# Convert to ImageNet normalization (RGB -> BGR and subtract mean)
|
| 252 |
+
imagenet_mean = torch.tensor(IMAGENET_MEAN, dtype=torch.float32, device=pred_img.device)
|
| 253 |
+
imagenet_mean = imagenet_mean.view(1, 3, 1, 1)
|
| 254 |
+
|
| 255 |
+
# Scale to [0, 255] and apply ImageNet normalization
|
| 256 |
+
real_img_normalized = real_img * 255.0 - imagenet_mean
|
| 257 |
+
pred_img_normalized = pred_img * 255.0 - imagenet_mean
|
| 258 |
+
|
| 259 |
+
# Extract features from both images
|
| 260 |
+
real_features = self.net(real_img_normalized, return_style=0)
|
| 261 |
+
pred_features = self.net(pred_img_normalized, return_style=0)
|
| 262 |
+
|
| 263 |
+
# Compute weighted L1 losses at different scales
|
| 264 |
+
losses = []
|
| 265 |
+
|
| 266 |
+
# Raw image loss
|
| 267 |
+
raw_loss = self._compute_l1_error(real_img_normalized, pred_img_normalized)
|
| 268 |
+
losses.append(raw_loss * LAYER_WEIGHTS[0])
|
| 269 |
+
|
| 270 |
+
# Feature losses at different VGG layers
|
| 271 |
+
for i, (real_feat, pred_feat) in enumerate(zip(real_features, pred_features)):
|
| 272 |
+
feature_loss = self._compute_l1_error(real_feat, pred_feat)
|
| 273 |
+
losses.append(feature_loss * LAYER_WEIGHTS[i + 1])
|
| 274 |
+
|
| 275 |
+
# Combine all losses and normalize
|
| 276 |
+
total_loss = sum(losses) / 255.0
|
| 277 |
+
return total_loss
|
| 278 |
+
|
| 279 |
+
class SsimLoss(nn.Module):
|
| 280 |
+
"""
|
| 281 |
+
SSIM Loss module that computes 1 - SSIM for image similarity.
|
| 282 |
+
|
| 283 |
+
Args:
|
| 284 |
+
data_range: Range of input data (default: 1.0 for [0,1] range)
|
| 285 |
+
"""
|
| 286 |
+
|
| 287 |
+
def __init__(self, data_range: float = 1.0) -> None:
|
| 288 |
+
super().__init__()
|
| 289 |
+
self.data_range = data_range
|
| 290 |
+
self.ssim_module = SSIM(
|
| 291 |
+
win_size=11,
|
| 292 |
+
win_sigma=1.5,
|
| 293 |
+
data_range=self.data_range,
|
| 294 |
+
size_average=True,
|
| 295 |
+
channel=3,
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
|
| 299 |
+
"""
|
| 300 |
+
Compute SSIM loss between two image tensors.
|
| 301 |
+
|
| 302 |
+
Args:
|
| 303 |
+
x: Image tensor of shape (N, C, H, W)
|
| 304 |
+
y: Image tensor of shape (N, C, H, W)
|
| 305 |
+
|
| 306 |
+
Returns:
|
| 307 |
+
SSIM loss (1 - SSIM similarity)
|
| 308 |
+
"""
|
| 309 |
+
return 1.0 - self.ssim_module(x, y)
|
gslrm/model/utils_transformer.py
ADDED
|
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (C) 2025, FaceLift Research Group
|
| 2 |
+
# https://github.com/weijielyu/FaceLift
|
| 3 |
+
#
|
| 4 |
+
# This software is free for non-commercial, research and evaluation use
|
| 5 |
+
# under the terms of the LICENSE.md file.
|
| 6 |
+
#
|
| 7 |
+
# For inquiries contact: wlyu3@ucmerced.edu
|
| 8 |
+
|
| 9 |
+
"""
|
| 10 |
+
Transformer utilities for GSLRM.
|
| 11 |
+
|
| 12 |
+
This module contains the core transformer components used by the GSLRM model,
|
| 13 |
+
including self-attention, MLP layers, and transformer blocks.
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
import torch
|
| 17 |
+
import torch.nn as nn
|
| 18 |
+
import torch.nn.functional as F
|
| 19 |
+
from einops import rearrange
|
| 20 |
+
|
| 21 |
+
try:
|
| 22 |
+
import xformers.ops as xops
|
| 23 |
+
except ImportError as e:
|
| 24 |
+
print("Please install xformers to use flashatt v2")
|
| 25 |
+
raise e
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def _init_weights(module):
|
| 29 |
+
"""
|
| 30 |
+
Initialize weights for transformer modules.
|
| 31 |
+
|
| 32 |
+
Reference: https://github.com/karpathy/nanoGPT/blob/eba36e84649f3c6d840a93092cb779a260544d08/model.py#L162-L168
|
| 33 |
+
|
| 34 |
+
Args:
|
| 35 |
+
module: Neural network module to initialize
|
| 36 |
+
"""
|
| 37 |
+
if isinstance(module, nn.Linear):
|
| 38 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 39 |
+
if module.bias is not None:
|
| 40 |
+
torch.nn.init.zeros_(module.bias)
|
| 41 |
+
elif isinstance(module, nn.Embedding):
|
| 42 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class MLP(nn.Module):
|
| 46 |
+
"""
|
| 47 |
+
Multi-layer perceptron with GELU activation.
|
| 48 |
+
|
| 49 |
+
Reference: https://github.com/facebookresearch/dino/blob/7c446df5b9f45747937fb0d72314eb9f7b66930a/vision_transformer.py#L49-L65
|
| 50 |
+
"""
|
| 51 |
+
|
| 52 |
+
def __init__(
|
| 53 |
+
self,
|
| 54 |
+
d,
|
| 55 |
+
mlp_ratio=4,
|
| 56 |
+
mlp_bias=False,
|
| 57 |
+
mlp_dropout=0.0,
|
| 58 |
+
mlp_dim=None,
|
| 59 |
+
):
|
| 60 |
+
"""
|
| 61 |
+
Initialize MLP layer.
|
| 62 |
+
|
| 63 |
+
Args:
|
| 64 |
+
d: Input/output dimension
|
| 65 |
+
mlp_ratio: Hidden dimension ratio (hidden_dim = d * mlp_ratio)
|
| 66 |
+
mlp_bias: Whether to use bias in linear layers
|
| 67 |
+
mlp_dropout: Dropout probability
|
| 68 |
+
mlp_dim: Explicit hidden dimension (overrides mlp_ratio if provided)
|
| 69 |
+
"""
|
| 70 |
+
super().__init__()
|
| 71 |
+
if mlp_dim is None:
|
| 72 |
+
mlp_dim = d * mlp_ratio
|
| 73 |
+
|
| 74 |
+
self.mlp = nn.Sequential(
|
| 75 |
+
nn.Linear(d, mlp_dim, bias=mlp_bias),
|
| 76 |
+
nn.GELU(),
|
| 77 |
+
nn.Linear(mlp_dim, d, bias=mlp_bias),
|
| 78 |
+
nn.Dropout(mlp_dropout),
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
def forward(self, x):
|
| 82 |
+
"""
|
| 83 |
+
Forward pass through MLP.
|
| 84 |
+
|
| 85 |
+
Args:
|
| 86 |
+
x: Input tensor of shape (batch, seq_len, d)
|
| 87 |
+
|
| 88 |
+
Returns:
|
| 89 |
+
Output tensor of shape (batch, seq_len, d)
|
| 90 |
+
"""
|
| 91 |
+
return self.mlp(x)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
class SelfAttention(nn.Module):
|
| 95 |
+
"""
|
| 96 |
+
Multi-head self-attention with flash attention support.
|
| 97 |
+
|
| 98 |
+
Reference: https://github.com/facebookresearch/dino/blob/7c446df5b9f45747937fb0d72314eb9f7b66930a/vision_transformer.py#L68-L92
|
| 99 |
+
"""
|
| 100 |
+
|
| 101 |
+
def __init__(
|
| 102 |
+
self,
|
| 103 |
+
d,
|
| 104 |
+
d_head,
|
| 105 |
+
attn_qkv_bias=False,
|
| 106 |
+
attn_dropout=0.0,
|
| 107 |
+
attn_fc_bias=False,
|
| 108 |
+
attn_fc_dropout=0.0,
|
| 109 |
+
use_flashatt_v2=True,
|
| 110 |
+
):
|
| 111 |
+
"""
|
| 112 |
+
Initialize self-attention layer.
|
| 113 |
+
|
| 114 |
+
Args:
|
| 115 |
+
d: Token dimension
|
| 116 |
+
d_head: Head dimension
|
| 117 |
+
attn_qkv_bias: Whether to use bias in QKV projection
|
| 118 |
+
attn_dropout: Attention dropout probability
|
| 119 |
+
attn_fc_bias: Whether to use bias in output projection
|
| 120 |
+
attn_fc_dropout: Output projection dropout probability
|
| 121 |
+
use_flashatt_v2: Whether to use flash attention v2
|
| 122 |
+
"""
|
| 123 |
+
super().__init__()
|
| 124 |
+
assert d % d_head == 0, f"Token dimension {d} should be divisible by head dimension {d_head}"
|
| 125 |
+
|
| 126 |
+
self.d = d
|
| 127 |
+
self.d_head = d_head
|
| 128 |
+
self.attn_dropout = attn_dropout
|
| 129 |
+
self.use_flashatt_v2 = use_flashatt_v2
|
| 130 |
+
|
| 131 |
+
# QKV projection (projects to 3*d for Q, K, V)
|
| 132 |
+
self.to_qkv = nn.Linear(d, 3 * d, bias=attn_qkv_bias)
|
| 133 |
+
|
| 134 |
+
# Output projection
|
| 135 |
+
self.fc = nn.Linear(d, d, bias=attn_fc_bias)
|
| 136 |
+
self.attn_fc_dropout = nn.Dropout(attn_fc_dropout)
|
| 137 |
+
|
| 138 |
+
def forward(self, x, subset_attention_size=None):
|
| 139 |
+
"""
|
| 140 |
+
Forward pass through self-attention.
|
| 141 |
+
|
| 142 |
+
Args:
|
| 143 |
+
x: Input tensor of shape (batch, seq_len, d)
|
| 144 |
+
subset_attention_size: Optional size for subset attention
|
| 145 |
+
|
| 146 |
+
Returns:
|
| 147 |
+
Output tensor of shape (batch, seq_len, d)
|
| 148 |
+
"""
|
| 149 |
+
# Generate Q, K, V
|
| 150 |
+
q, k, v = self.to_qkv(x).split(self.d, dim=2)
|
| 151 |
+
|
| 152 |
+
if self.use_flashatt_v2:
|
| 153 |
+
# Use xformers flash attention
|
| 154 |
+
q, k, v = map(
|
| 155 |
+
lambda t: rearrange(t, "b l (nh dh) -> b l nh dh", dh=self.d_head),
|
| 156 |
+
(q, k, v),
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
if subset_attention_size is not None and subset_attention_size < q.shape[1]:
|
| 160 |
+
# Handle subset attention for memory efficiency
|
| 161 |
+
x_subset = xops.memory_efficient_attention(
|
| 162 |
+
q[:, :subset_attention_size, :, :].contiguous(),
|
| 163 |
+
k[:, :subset_attention_size, :, :].contiguous(),
|
| 164 |
+
v[:, :subset_attention_size, :, :].contiguous(),
|
| 165 |
+
attn_bias=None,
|
| 166 |
+
op=(xops.fmha.flash.FwOp, xops.fmha.flash.BwOp),
|
| 167 |
+
)
|
| 168 |
+
x_rest = xops.memory_efficient_attention(
|
| 169 |
+
q[:, subset_attention_size:, :, :].contiguous(),
|
| 170 |
+
k,
|
| 171 |
+
v,
|
| 172 |
+
attn_bias=None,
|
| 173 |
+
op=(xops.fmha.flash.FwOp, xops.fmha.flash.BwOp),
|
| 174 |
+
)
|
| 175 |
+
x = torch.cat([x_subset, x_rest], dim=1)
|
| 176 |
+
else:
|
| 177 |
+
# Standard flash attention
|
| 178 |
+
x = xops.memory_efficient_attention(
|
| 179 |
+
q, k, v,
|
| 180 |
+
attn_bias=None,
|
| 181 |
+
op=(xops.fmha.flash.FwOp, xops.fmha.flash.BwOp),
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
x = rearrange(x, "b l nh dh -> b l (nh dh)")
|
| 185 |
+
else:
|
| 186 |
+
# Use PyTorch scaled dot product attention
|
| 187 |
+
q, k, v = (
|
| 188 |
+
rearrange(q, "b l (nh dh) -> b nh l dh", dh=self.d_head),
|
| 189 |
+
rearrange(k, "b l (nh dh) -> b nh l dh", dh=self.d_head),
|
| 190 |
+
rearrange(v, "b l (nh dh) -> b nh l dh", dh=self.d_head),
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
dropout_p = self.attn_dropout if self.training else 0.0
|
| 194 |
+
|
| 195 |
+
if subset_attention_size is not None and subset_attention_size < q.shape[2]:
|
| 196 |
+
# Handle subset attention
|
| 197 |
+
x_subset = F.scaled_dot_product_attention(
|
| 198 |
+
q[:, :, :subset_attention_size, :].contiguous(),
|
| 199 |
+
k[:, :, :subset_attention_size, :].contiguous(),
|
| 200 |
+
v[:, :, :subset_attention_size, :].contiguous(),
|
| 201 |
+
dropout_p=dropout_p,
|
| 202 |
+
)
|
| 203 |
+
x_rest = F.scaled_dot_product_attention(
|
| 204 |
+
q[:, :, subset_attention_size:, :].contiguous(),
|
| 205 |
+
k, v,
|
| 206 |
+
dropout_p=dropout_p,
|
| 207 |
+
)
|
| 208 |
+
x = torch.cat([x_subset, x_rest], dim=2)
|
| 209 |
+
else:
|
| 210 |
+
# Standard attention
|
| 211 |
+
x = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
|
| 212 |
+
|
| 213 |
+
x = rearrange(x, "b nh l dh -> b l (nh dh)")
|
| 214 |
+
|
| 215 |
+
# Apply output projection and dropout
|
| 216 |
+
return self.attn_fc_dropout(self.fc(x))
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
class TransformerBlock(nn.Module):
|
| 220 |
+
"""
|
| 221 |
+
Standard transformer block with pre-normalization.
|
| 222 |
+
|
| 223 |
+
Reference: https://github.com/facebookresearch/dino/blob/7c446df5b9f45747937fb0d72314eb9f7b66930a/vision_transformer.py#L95-L113
|
| 224 |
+
"""
|
| 225 |
+
|
| 226 |
+
def __init__(
|
| 227 |
+
self,
|
| 228 |
+
d,
|
| 229 |
+
d_head,
|
| 230 |
+
ln_bias=False,
|
| 231 |
+
attn_qkv_bias=False,
|
| 232 |
+
attn_dropout=0.0,
|
| 233 |
+
attn_fc_bias=False,
|
| 234 |
+
attn_fc_dropout=0.0,
|
| 235 |
+
mlp_ratio=4,
|
| 236 |
+
mlp_bias=False,
|
| 237 |
+
mlp_dropout=0.0,
|
| 238 |
+
):
|
| 239 |
+
"""
|
| 240 |
+
Initialize transformer block.
|
| 241 |
+
|
| 242 |
+
Args:
|
| 243 |
+
d: Token dimension
|
| 244 |
+
d_head: Attention head dimension
|
| 245 |
+
ln_bias: Whether to use bias in layer norm
|
| 246 |
+
attn_qkv_bias: Whether to use bias in attention QKV projection
|
| 247 |
+
attn_dropout: Attention dropout probability
|
| 248 |
+
attn_fc_bias: Whether to use bias in attention output projection
|
| 249 |
+
attn_fc_dropout: Attention output dropout probability
|
| 250 |
+
mlp_ratio: MLP hidden dimension ratio
|
| 251 |
+
mlp_bias: Whether to use bias in MLP layers
|
| 252 |
+
mlp_dropout: MLP dropout probability
|
| 253 |
+
"""
|
| 254 |
+
super().__init__()
|
| 255 |
+
|
| 256 |
+
# Layer normalization
|
| 257 |
+
self.norm1 = nn.LayerNorm(d, bias=ln_bias)
|
| 258 |
+
self.norm2 = nn.LayerNorm(d, bias=ln_bias)
|
| 259 |
+
|
| 260 |
+
# Self-attention
|
| 261 |
+
self.attn = SelfAttention(
|
| 262 |
+
d=d,
|
| 263 |
+
d_head=d_head,
|
| 264 |
+
attn_qkv_bias=attn_qkv_bias,
|
| 265 |
+
attn_dropout=attn_dropout,
|
| 266 |
+
attn_fc_bias=attn_fc_bias,
|
| 267 |
+
attn_fc_dropout=attn_fc_dropout,
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
# MLP
|
| 271 |
+
self.mlp = MLP(
|
| 272 |
+
d=d,
|
| 273 |
+
mlp_ratio=mlp_ratio,
|
| 274 |
+
mlp_bias=mlp_bias,
|
| 275 |
+
mlp_dropout=mlp_dropout,
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
def forward(self, x, subset_attention_size=None):
|
| 279 |
+
"""
|
| 280 |
+
Forward pass through transformer block.
|
| 281 |
+
|
| 282 |
+
Args:
|
| 283 |
+
x: Input tensor of shape (batch, seq_len, d)
|
| 284 |
+
subset_attention_size: Optional size for subset attention
|
| 285 |
+
|
| 286 |
+
Returns:
|
| 287 |
+
Output tensor of shape (batch, seq_len, d)
|
| 288 |
+
"""
|
| 289 |
+
# Pre-norm attention with residual connection
|
| 290 |
+
x = x + self.attn(self.norm1(x), subset_attention_size=subset_attention_size)
|
| 291 |
+
|
| 292 |
+
# Pre-norm MLP with residual connection
|
| 293 |
+
x = x + self.mlp(self.norm2(x))
|
| 294 |
+
|
| 295 |
+
return x
|
mvdiffusion/__init__.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (C) 2025, FaceLift Research Group
|
| 2 |
+
# https://github.com/weijielyu/FaceLift
|
| 3 |
+
#
|
| 4 |
+
# This software is free for non-commercial, research and evaluation use
|
| 5 |
+
# under the terms of the LICENSE.md file.
|
| 6 |
+
#
|
| 7 |
+
# For inquiries contact: wlyu3@ucmerced.edu
|
| 8 |
+
|
mvdiffusion/models/__init__.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (C) 2025, FaceLift Research Group
|
| 2 |
+
# https://github.com/weijielyu/FaceLift
|
| 3 |
+
#
|
| 4 |
+
# This software is free for non-commercial, research and evaluation use
|
| 5 |
+
# under the terms of the LICENSE.md file.
|
| 6 |
+
#
|
| 7 |
+
# For inquiries contact: wlyu3@ucmerced.edu
|
| 8 |
+
|
mvdiffusion/models/transformer_mv2d_image.py
ADDED
|
@@ -0,0 +1,1016 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from dataclasses import dataclass
|
| 16 |
+
from typing import Any, Dict, Optional
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn.functional as F
|
| 20 |
+
from torch import nn
|
| 21 |
+
|
| 22 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 23 |
+
from diffusers.models.embeddings import ImagePositionalEmbeddings
|
| 24 |
+
from diffusers.utils import BaseOutput, deprecate
|
| 25 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
| 26 |
+
from diffusers.models.attention import FeedForward, AdaLayerNorm, AdaLayerNormZero, Attention
|
| 27 |
+
from diffusers.models.embeddings import PatchEmbed
|
| 28 |
+
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
| 29 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 30 |
+
from diffusers.utils.import_utils import is_xformers_available
|
| 31 |
+
|
| 32 |
+
from einops import rearrange, repeat
|
| 33 |
+
import pdb
|
| 34 |
+
import random
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
if is_xformers_available():
|
| 38 |
+
import xformers
|
| 39 |
+
import xformers.ops
|
| 40 |
+
else:
|
| 41 |
+
xformers = None
|
| 42 |
+
|
| 43 |
+
def my_repeat(tensor, num_repeats):
|
| 44 |
+
"""
|
| 45 |
+
Repeat a tensor along a given dimension
|
| 46 |
+
"""
|
| 47 |
+
if len(tensor.shape) == 3:
|
| 48 |
+
return repeat(tensor, "b d c -> (b v) d c", v=num_repeats)
|
| 49 |
+
elif len(tensor.shape) == 4:
|
| 50 |
+
return repeat(tensor, "a b d c -> (a v) b d c", v=num_repeats)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
@dataclass
|
| 54 |
+
class TransformerMV2DModelOutput(BaseOutput):
|
| 55 |
+
"""
|
| 56 |
+
The output of [`Transformer2DModel`].
|
| 57 |
+
|
| 58 |
+
Args:
|
| 59 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
| 60 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
| 61 |
+
distributions for the unnoised latent pixels.
|
| 62 |
+
"""
|
| 63 |
+
|
| 64 |
+
sample: torch.FloatTensor
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
class TransformerMV2DModel(ModelMixin, ConfigMixin):
|
| 68 |
+
"""
|
| 69 |
+
A 2D Transformer model for image-like data.
|
| 70 |
+
|
| 71 |
+
Parameters:
|
| 72 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
| 73 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
| 74 |
+
in_channels (`int`, *optional*):
|
| 75 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
| 76 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
| 77 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
| 78 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
| 79 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
| 80 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
| 81 |
+
num_vector_embeds (`int`, *optional*):
|
| 82 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
| 83 |
+
Includes the class for the masked latent pixel.
|
| 84 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
| 85 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
| 86 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
| 87 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
| 88 |
+
added to the hidden states.
|
| 89 |
+
|
| 90 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
| 91 |
+
attention_bias (`bool`, *optional*):
|
| 92 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
| 93 |
+
"""
|
| 94 |
+
|
| 95 |
+
@register_to_config
|
| 96 |
+
def __init__(
|
| 97 |
+
self,
|
| 98 |
+
num_attention_heads: int = 16,
|
| 99 |
+
attention_head_dim: int = 88,
|
| 100 |
+
in_channels: Optional[int] = None,
|
| 101 |
+
out_channels: Optional[int] = None,
|
| 102 |
+
num_layers: int = 1,
|
| 103 |
+
dropout: float = 0.0,
|
| 104 |
+
norm_num_groups: int = 32,
|
| 105 |
+
cross_attention_dim: Optional[int] = None,
|
| 106 |
+
attention_bias: bool = False,
|
| 107 |
+
sample_size: Optional[int] = None,
|
| 108 |
+
num_vector_embeds: Optional[int] = None,
|
| 109 |
+
patch_size: Optional[int] = None,
|
| 110 |
+
activation_fn: str = "geglu",
|
| 111 |
+
num_embeds_ada_norm: Optional[int] = None,
|
| 112 |
+
use_linear_projection: bool = False,
|
| 113 |
+
only_cross_attention: bool = False,
|
| 114 |
+
upcast_attention: bool = False,
|
| 115 |
+
norm_type: str = "layer_norm",
|
| 116 |
+
norm_elementwise_affine: bool = True,
|
| 117 |
+
num_views: int = 1,
|
| 118 |
+
cd_attention_last: bool=False,
|
| 119 |
+
cd_attention_mid: bool=False,
|
| 120 |
+
multiview_attention: bool=True,
|
| 121 |
+
sparse_mv_attention: bool = False,
|
| 122 |
+
):
|
| 123 |
+
super().__init__()
|
| 124 |
+
self.use_linear_projection = use_linear_projection
|
| 125 |
+
self.num_attention_heads = num_attention_heads
|
| 126 |
+
self.attention_head_dim = attention_head_dim
|
| 127 |
+
inner_dim = num_attention_heads * attention_head_dim
|
| 128 |
+
|
| 129 |
+
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
| 130 |
+
# Define whether input is continuous or discrete depending on configuration
|
| 131 |
+
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
| 132 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
| 133 |
+
self.is_input_patches = in_channels is not None and patch_size is not None
|
| 134 |
+
|
| 135 |
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
| 136 |
+
deprecation_message = (
|
| 137 |
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
| 138 |
+
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
| 139 |
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
| 140 |
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
| 141 |
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
| 142 |
+
)
|
| 143 |
+
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
|
| 144 |
+
norm_type = "ada_norm"
|
| 145 |
+
|
| 146 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
| 147 |
+
raise ValueError(
|
| 148 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
| 149 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
| 150 |
+
)
|
| 151 |
+
elif self.is_input_vectorized and self.is_input_patches:
|
| 152 |
+
raise ValueError(
|
| 153 |
+
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
| 154 |
+
" sure that either `num_vector_embeds` or `num_patches` is None."
|
| 155 |
+
)
|
| 156 |
+
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
|
| 157 |
+
raise ValueError(
|
| 158 |
+
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
| 159 |
+
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
# 2. Define input layers
|
| 163 |
+
if self.is_input_continuous:
|
| 164 |
+
self.in_channels = in_channels
|
| 165 |
+
|
| 166 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
| 167 |
+
if use_linear_projection:
|
| 168 |
+
self.proj_in = LoRACompatibleLinear(in_channels, inner_dim)
|
| 169 |
+
else:
|
| 170 |
+
self.proj_in = LoRACompatibleConv(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
| 171 |
+
elif self.is_input_vectorized:
|
| 172 |
+
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
| 173 |
+
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
|
| 174 |
+
|
| 175 |
+
self.height = sample_size
|
| 176 |
+
self.width = sample_size
|
| 177 |
+
self.num_vector_embeds = num_vector_embeds
|
| 178 |
+
self.num_latent_pixels = self.height * self.width
|
| 179 |
+
|
| 180 |
+
self.latent_image_embedding = ImagePositionalEmbeddings(
|
| 181 |
+
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
|
| 182 |
+
)
|
| 183 |
+
elif self.is_input_patches:
|
| 184 |
+
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
| 185 |
+
|
| 186 |
+
self.height = sample_size
|
| 187 |
+
self.width = sample_size
|
| 188 |
+
|
| 189 |
+
self.patch_size = patch_size
|
| 190 |
+
self.pos_embed = PatchEmbed(
|
| 191 |
+
height=sample_size,
|
| 192 |
+
width=sample_size,
|
| 193 |
+
patch_size=patch_size,
|
| 194 |
+
in_channels=in_channels,
|
| 195 |
+
embed_dim=inner_dim,
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
# 3. Define transformers blocks
|
| 199 |
+
self.transformer_blocks = nn.ModuleList(
|
| 200 |
+
[
|
| 201 |
+
BasicMVTransformerBlock(
|
| 202 |
+
inner_dim,
|
| 203 |
+
num_attention_heads,
|
| 204 |
+
attention_head_dim,
|
| 205 |
+
dropout=dropout,
|
| 206 |
+
cross_attention_dim=cross_attention_dim,
|
| 207 |
+
activation_fn=activation_fn,
|
| 208 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
| 209 |
+
attention_bias=attention_bias,
|
| 210 |
+
only_cross_attention=only_cross_attention,
|
| 211 |
+
upcast_attention=upcast_attention,
|
| 212 |
+
norm_type=norm_type,
|
| 213 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
| 214 |
+
num_views=num_views,
|
| 215 |
+
cd_attention_last=cd_attention_last,
|
| 216 |
+
cd_attention_mid=cd_attention_mid,
|
| 217 |
+
multiview_attention=multiview_attention,
|
| 218 |
+
sparse_mv_attention=sparse_mv_attention
|
| 219 |
+
)
|
| 220 |
+
for d in range(num_layers)
|
| 221 |
+
]
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
# 4. Define output layers
|
| 225 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
| 226 |
+
if self.is_input_continuous:
|
| 227 |
+
# TODO: should use out_channels for continuous projections
|
| 228 |
+
if use_linear_projection:
|
| 229 |
+
self.proj_out = LoRACompatibleLinear(inner_dim, in_channels)
|
| 230 |
+
else:
|
| 231 |
+
self.proj_out = LoRACompatibleConv(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
| 232 |
+
elif self.is_input_vectorized:
|
| 233 |
+
self.norm_out = nn.LayerNorm(inner_dim)
|
| 234 |
+
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
|
| 235 |
+
elif self.is_input_patches:
|
| 236 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
| 237 |
+
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
|
| 238 |
+
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
| 239 |
+
|
| 240 |
+
def forward(
|
| 241 |
+
self,
|
| 242 |
+
hidden_states: torch.Tensor,
|
| 243 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 244 |
+
dino_feature: Optional[torch.Tensor] = None,
|
| 245 |
+
timestep: Optional[torch.LongTensor] = None,
|
| 246 |
+
class_labels: Optional[torch.LongTensor] = None,
|
| 247 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
| 248 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 249 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 250 |
+
return_dict: bool = True,
|
| 251 |
+
):
|
| 252 |
+
"""
|
| 253 |
+
The [`Transformer2DModel`] forward method.
|
| 254 |
+
|
| 255 |
+
Args:
|
| 256 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
| 257 |
+
Input `hidden_states`.
|
| 258 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
| 259 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
| 260 |
+
self-attention.
|
| 261 |
+
timestep ( `torch.LongTensor`, *optional*):
|
| 262 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
| 263 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
| 264 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
| 265 |
+
`AdaLayerZeroNorm`.
|
| 266 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
| 267 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
| 268 |
+
|
| 269 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
| 270 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
| 271 |
+
|
| 272 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
| 273 |
+
above. This bias will be added to the cross-attention scores.
|
| 274 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 275 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
| 276 |
+
tuple.
|
| 277 |
+
|
| 278 |
+
Returns:
|
| 279 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 280 |
+
`tuple` where the first element is the sample tensor.
|
| 281 |
+
"""
|
| 282 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
| 283 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
| 284 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
| 285 |
+
# expects mask of shape:
|
| 286 |
+
# [batch, key_tokens]
|
| 287 |
+
# adds singleton query_tokens dimension:
|
| 288 |
+
# [batch, 1, key_tokens]
|
| 289 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
| 290 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
| 291 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
| 292 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
| 293 |
+
# assume that mask is expressed as:
|
| 294 |
+
# (1 = keep, 0 = discard)
|
| 295 |
+
# convert mask into a bias that can be added to attention scores:
|
| 296 |
+
# (keep = +0, discard = -10000.0)
|
| 297 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
| 298 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 299 |
+
|
| 300 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
| 301 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
| 302 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
| 303 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
| 304 |
+
|
| 305 |
+
# 1. Input
|
| 306 |
+
if self.is_input_continuous:
|
| 307 |
+
batch, _, height, width = hidden_states.shape
|
| 308 |
+
residual = hidden_states
|
| 309 |
+
|
| 310 |
+
hidden_states = self.norm(hidden_states)
|
| 311 |
+
if not self.use_linear_projection:
|
| 312 |
+
hidden_states = self.proj_in(hidden_states)
|
| 313 |
+
inner_dim = hidden_states.shape[1]
|
| 314 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
| 315 |
+
else:
|
| 316 |
+
inner_dim = hidden_states.shape[1]
|
| 317 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
| 318 |
+
hidden_states = self.proj_in(hidden_states)
|
| 319 |
+
elif self.is_input_vectorized:
|
| 320 |
+
hidden_states = self.latent_image_embedding(hidden_states)
|
| 321 |
+
elif self.is_input_patches:
|
| 322 |
+
hidden_states = self.pos_embed(hidden_states)
|
| 323 |
+
|
| 324 |
+
# 2. Blocks
|
| 325 |
+
for block in self.transformer_blocks:
|
| 326 |
+
hidden_states = block(
|
| 327 |
+
hidden_states,
|
| 328 |
+
attention_mask=attention_mask,
|
| 329 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 330 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 331 |
+
timestep=timestep,
|
| 332 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 333 |
+
class_labels=class_labels,
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
# 3. Output
|
| 337 |
+
if self.is_input_continuous:
|
| 338 |
+
if not self.use_linear_projection:
|
| 339 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
| 340 |
+
hidden_states = self.proj_out(hidden_states)
|
| 341 |
+
else:
|
| 342 |
+
hidden_states = self.proj_out(hidden_states)
|
| 343 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
| 344 |
+
|
| 345 |
+
output = hidden_states + residual
|
| 346 |
+
elif self.is_input_vectorized:
|
| 347 |
+
hidden_states = self.norm_out(hidden_states)
|
| 348 |
+
logits = self.out(hidden_states)
|
| 349 |
+
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
| 350 |
+
logits = logits.permute(0, 2, 1)
|
| 351 |
+
|
| 352 |
+
# log(p(x_0))
|
| 353 |
+
output = F.log_softmax(logits.double(), dim=1).float()
|
| 354 |
+
elif self.is_input_patches:
|
| 355 |
+
# TODO: cleanup!
|
| 356 |
+
conditioning = self.transformer_blocks[0].norm1.emb(
|
| 357 |
+
timestep, class_labels, hidden_dtype=hidden_states.dtype
|
| 358 |
+
)
|
| 359 |
+
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
| 360 |
+
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
| 361 |
+
hidden_states = self.proj_out_2(hidden_states)
|
| 362 |
+
|
| 363 |
+
# unpatchify
|
| 364 |
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
| 365 |
+
hidden_states = hidden_states.reshape(
|
| 366 |
+
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
| 367 |
+
)
|
| 368 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
| 369 |
+
output = hidden_states.reshape(
|
| 370 |
+
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
|
| 371 |
+
)
|
| 372 |
+
|
| 373 |
+
if not return_dict:
|
| 374 |
+
return (output,)
|
| 375 |
+
|
| 376 |
+
return TransformerMV2DModelOutput(sample=output)
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
@maybe_allow_in_graph
|
| 380 |
+
class BasicMVTransformerBlock(nn.Module):
|
| 381 |
+
r"""
|
| 382 |
+
A basic Transformer block.
|
| 383 |
+
|
| 384 |
+
Parameters:
|
| 385 |
+
dim (`int`): The number of channels in the input and output.
|
| 386 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
| 387 |
+
attention_head_dim (`int`): The number of channels in each head.
|
| 388 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
| 389 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
| 390 |
+
only_cross_attention (`bool`, *optional*):
|
| 391 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
| 392 |
+
double_self_attention (`bool`, *optional*):
|
| 393 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
| 394 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
| 395 |
+
num_embeds_ada_norm (:
|
| 396 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
| 397 |
+
attention_bias (:
|
| 398 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
| 399 |
+
"""
|
| 400 |
+
|
| 401 |
+
def __init__(
|
| 402 |
+
self,
|
| 403 |
+
dim: int,
|
| 404 |
+
num_attention_heads: int,
|
| 405 |
+
attention_head_dim: int,
|
| 406 |
+
dropout=0.0,
|
| 407 |
+
cross_attention_dim: Optional[int] = None,
|
| 408 |
+
activation_fn: str = "geglu",
|
| 409 |
+
num_embeds_ada_norm: Optional[int] = None,
|
| 410 |
+
attention_bias: bool = False,
|
| 411 |
+
only_cross_attention: bool = False,
|
| 412 |
+
double_self_attention: bool = False,
|
| 413 |
+
upcast_attention: bool = False,
|
| 414 |
+
norm_elementwise_affine: bool = True,
|
| 415 |
+
norm_type: str = "layer_norm",
|
| 416 |
+
final_dropout: bool = False,
|
| 417 |
+
num_views: int = 1,
|
| 418 |
+
cd_attention_last: bool = False,
|
| 419 |
+
cd_attention_mid: bool = False,
|
| 420 |
+
multiview_attention: bool = True,
|
| 421 |
+
sparse_mv_attention: bool = False
|
| 422 |
+
):
|
| 423 |
+
super().__init__()
|
| 424 |
+
self.only_cross_attention = only_cross_attention
|
| 425 |
+
|
| 426 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
| 427 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
| 428 |
+
|
| 429 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
| 430 |
+
raise ValueError(
|
| 431 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
| 432 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
| 436 |
+
# 1. Self-Attn
|
| 437 |
+
if self.use_ada_layer_norm:
|
| 438 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
| 439 |
+
elif self.use_ada_layer_norm_zero:
|
| 440 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
| 441 |
+
else:
|
| 442 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
| 443 |
+
|
| 444 |
+
self.multiview_attention = multiview_attention
|
| 445 |
+
self.sparse_mv_attention = sparse_mv_attention
|
| 446 |
+
|
| 447 |
+
self.attn1 = CustomAttention(
|
| 448 |
+
query_dim=dim,
|
| 449 |
+
heads=num_attention_heads,
|
| 450 |
+
dim_head=attention_head_dim,
|
| 451 |
+
dropout=dropout,
|
| 452 |
+
bias=attention_bias,
|
| 453 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
| 454 |
+
upcast_attention=upcast_attention,
|
| 455 |
+
processor=MVAttnProcessor()
|
| 456 |
+
)
|
| 457 |
+
|
| 458 |
+
# 2. Cross-Attn
|
| 459 |
+
if cross_attention_dim is not None or double_self_attention:
|
| 460 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
| 461 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
| 462 |
+
# the second cross attention block.
|
| 463 |
+
self.norm2 = (
|
| 464 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
| 465 |
+
if self.use_ada_layer_norm
|
| 466 |
+
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
| 467 |
+
)
|
| 468 |
+
self.attn2 = Attention(
|
| 469 |
+
query_dim=dim,
|
| 470 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
| 471 |
+
heads=num_attention_heads,
|
| 472 |
+
dim_head=attention_head_dim,
|
| 473 |
+
dropout=dropout,
|
| 474 |
+
bias=attention_bias,
|
| 475 |
+
upcast_attention=upcast_attention,
|
| 476 |
+
) # is self-attn if encoder_hidden_states is none
|
| 477 |
+
else:
|
| 478 |
+
self.norm2 = None
|
| 479 |
+
self.attn2 = None
|
| 480 |
+
|
| 481 |
+
# 3. Feed-forward
|
| 482 |
+
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
| 483 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
|
| 484 |
+
|
| 485 |
+
# let chunk size default to None
|
| 486 |
+
self._chunk_size = None
|
| 487 |
+
self._chunk_dim = 0
|
| 488 |
+
|
| 489 |
+
self.num_views = num_views
|
| 490 |
+
|
| 491 |
+
self.cd_attention_last = cd_attention_last
|
| 492 |
+
|
| 493 |
+
if self.cd_attention_last:
|
| 494 |
+
# Joint task -Attn
|
| 495 |
+
self.attn_joint_last = CustomJointAttention(
|
| 496 |
+
query_dim=dim,
|
| 497 |
+
heads=num_attention_heads,
|
| 498 |
+
dim_head=attention_head_dim,
|
| 499 |
+
dropout=dropout,
|
| 500 |
+
bias=attention_bias,
|
| 501 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
| 502 |
+
upcast_attention=upcast_attention,
|
| 503 |
+
processor=JointAttnProcessor()
|
| 504 |
+
)
|
| 505 |
+
nn.init.zeros_(self.attn_joint_last.to_out[0].weight.data)
|
| 506 |
+
self.norm_joint_last = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
| 507 |
+
|
| 508 |
+
|
| 509 |
+
self.cd_attention_mid = cd_attention_mid
|
| 510 |
+
|
| 511 |
+
if self.cd_attention_mid:
|
| 512 |
+
print("cross-domain attn in the middle")
|
| 513 |
+
# Joint task -Attn
|
| 514 |
+
self.attn_joint_mid = CustomJointAttention(
|
| 515 |
+
query_dim=dim,
|
| 516 |
+
heads=num_attention_heads,
|
| 517 |
+
dim_head=attention_head_dim,
|
| 518 |
+
dropout=dropout,
|
| 519 |
+
bias=attention_bias,
|
| 520 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
| 521 |
+
upcast_attention=upcast_attention,
|
| 522 |
+
processor=JointAttnProcessor()
|
| 523 |
+
)
|
| 524 |
+
nn.init.zeros_(self.attn_joint_mid.to_out[0].weight.data)
|
| 525 |
+
self.norm_joint_mid = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
| 526 |
+
|
| 527 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
|
| 528 |
+
# Sets chunk feed-forward
|
| 529 |
+
self._chunk_size = chunk_size
|
| 530 |
+
self._chunk_dim = dim
|
| 531 |
+
|
| 532 |
+
def forward(
|
| 533 |
+
self,
|
| 534 |
+
hidden_states: torch.FloatTensor,
|
| 535 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 536 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 537 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 538 |
+
timestep: Optional[torch.LongTensor] = None,
|
| 539 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
| 540 |
+
class_labels: Optional[torch.LongTensor] = None,
|
| 541 |
+
):
|
| 542 |
+
assert attention_mask is None # not supported yet
|
| 543 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
| 544 |
+
# 1. Self-Attention
|
| 545 |
+
if self.use_ada_layer_norm:
|
| 546 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
| 547 |
+
elif self.use_ada_layer_norm_zero:
|
| 548 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
| 549 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
| 550 |
+
)
|
| 551 |
+
else:
|
| 552 |
+
norm_hidden_states = self.norm1(hidden_states)
|
| 553 |
+
|
| 554 |
+
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
| 555 |
+
|
| 556 |
+
attn_output = self.attn1(
|
| 557 |
+
norm_hidden_states,
|
| 558 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
| 559 |
+
attention_mask=attention_mask,
|
| 560 |
+
num_views=self.num_views,
|
| 561 |
+
multiview_attention=self.multiview_attention,
|
| 562 |
+
sparse_mv_attention=self.sparse_mv_attention,
|
| 563 |
+
**cross_attention_kwargs,
|
| 564 |
+
)
|
| 565 |
+
|
| 566 |
+
|
| 567 |
+
if self.use_ada_layer_norm_zero:
|
| 568 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
| 569 |
+
hidden_states = attn_output + hidden_states
|
| 570 |
+
|
| 571 |
+
# joint attention twice
|
| 572 |
+
if self.cd_attention_mid:
|
| 573 |
+
norm_hidden_states = (
|
| 574 |
+
self.norm_joint_mid(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_joint_mid(hidden_states)
|
| 575 |
+
)
|
| 576 |
+
hidden_states = self.attn_joint_mid(norm_hidden_states) + hidden_states
|
| 577 |
+
|
| 578 |
+
# 2. Cross-Attention
|
| 579 |
+
if self.attn2 is not None:
|
| 580 |
+
norm_hidden_states = (
|
| 581 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
| 582 |
+
)
|
| 583 |
+
|
| 584 |
+
attn_output = self.attn2(
|
| 585 |
+
norm_hidden_states,
|
| 586 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 587 |
+
attention_mask=encoder_attention_mask,
|
| 588 |
+
**cross_attention_kwargs,
|
| 589 |
+
)
|
| 590 |
+
hidden_states = attn_output + hidden_states
|
| 591 |
+
|
| 592 |
+
# 3. Feed-forward
|
| 593 |
+
norm_hidden_states = self.norm3(hidden_states)
|
| 594 |
+
|
| 595 |
+
if self.use_ada_layer_norm_zero:
|
| 596 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
| 597 |
+
|
| 598 |
+
if self._chunk_size is not None:
|
| 599 |
+
# "feed_forward_chunk_size" can be used to save memory
|
| 600 |
+
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
| 601 |
+
raise ValueError(
|
| 602 |
+
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
| 603 |
+
)
|
| 604 |
+
|
| 605 |
+
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
| 606 |
+
ff_output = torch.cat(
|
| 607 |
+
[self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)],
|
| 608 |
+
dim=self._chunk_dim,
|
| 609 |
+
)
|
| 610 |
+
else:
|
| 611 |
+
ff_output = self.ff(norm_hidden_states)
|
| 612 |
+
|
| 613 |
+
if self.use_ada_layer_norm_zero:
|
| 614 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
| 615 |
+
|
| 616 |
+
hidden_states = ff_output + hidden_states
|
| 617 |
+
|
| 618 |
+
if self.cd_attention_last:
|
| 619 |
+
norm_hidden_states = (
|
| 620 |
+
self.norm_joint_last(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_joint_last(hidden_states)
|
| 621 |
+
)
|
| 622 |
+
hidden_states = self.attn_joint_last(norm_hidden_states) + hidden_states
|
| 623 |
+
|
| 624 |
+
return hidden_states
|
| 625 |
+
|
| 626 |
+
|
| 627 |
+
class CustomAttention(Attention):
|
| 628 |
+
def set_use_memory_efficient_attention_xformers(
|
| 629 |
+
self, use_memory_efficient_attention_xformers: bool, *args, **kwargs
|
| 630 |
+
):
|
| 631 |
+
processor = XFormersMVAttnProcessor()
|
| 632 |
+
self.set_processor(processor)
|
| 633 |
+
# print("using xformers attention processor")
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
class CustomJointAttention(Attention):
|
| 637 |
+
def set_use_memory_efficient_attention_xformers(
|
| 638 |
+
self, use_memory_efficient_attention_xformers: bool, *args, **kwargs
|
| 639 |
+
):
|
| 640 |
+
processor = XFormersJointAttnProcessor()
|
| 641 |
+
self.set_processor(processor)
|
| 642 |
+
# print("using xformers attention processor")
|
| 643 |
+
|
| 644 |
+
class MVAttnProcessor:
|
| 645 |
+
r"""
|
| 646 |
+
Default processor for performing attention-related computations.
|
| 647 |
+
"""
|
| 648 |
+
|
| 649 |
+
def __call__(
|
| 650 |
+
self,
|
| 651 |
+
attn: Attention,
|
| 652 |
+
hidden_states,
|
| 653 |
+
encoder_hidden_states=None,
|
| 654 |
+
attention_mask=None,
|
| 655 |
+
temb=None,
|
| 656 |
+
num_views=1,
|
| 657 |
+
multiview_attention=True
|
| 658 |
+
):
|
| 659 |
+
residual = hidden_states
|
| 660 |
+
|
| 661 |
+
if attn.spatial_norm is not None:
|
| 662 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 663 |
+
|
| 664 |
+
input_ndim = hidden_states.ndim
|
| 665 |
+
|
| 666 |
+
if input_ndim == 4:
|
| 667 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 668 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 669 |
+
|
| 670 |
+
batch_size, sequence_length, _ = (
|
| 671 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 672 |
+
)
|
| 673 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 674 |
+
|
| 675 |
+
if attn.group_norm is not None:
|
| 676 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 677 |
+
|
| 678 |
+
query = attn.to_q(hidden_states)
|
| 679 |
+
|
| 680 |
+
if encoder_hidden_states is None:
|
| 681 |
+
encoder_hidden_states = hidden_states
|
| 682 |
+
elif attn.norm_cross:
|
| 683 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 684 |
+
|
| 685 |
+
key = attn.to_k(encoder_hidden_states)
|
| 686 |
+
value = attn.to_v(encoder_hidden_states)
|
| 687 |
+
|
| 688 |
+
# print('query', query.shape, 'key', key.shape, 'value', value.shape)
|
| 689 |
+
#([bx4, 1024, 320]) key torch.Size([bx4, 1024, 320]) value torch.Size([bx4, 1024, 320])
|
| 690 |
+
# pdb.set_trace()
|
| 691 |
+
# multi-view self-attention
|
| 692 |
+
if multiview_attention:
|
| 693 |
+
if num_views <= 6:
|
| 694 |
+
# after use xformer; possible to train with 6 views
|
| 695 |
+
key = rearrange(key, "(b t) d c -> b (t d) c", t=num_views).repeat_interleave(num_views, dim=0)
|
| 696 |
+
value = rearrange(value, "(b t) d c -> b (t d) c", t=num_views).repeat_interleave(num_views, dim=0)
|
| 697 |
+
else:# apply sparse attention
|
| 698 |
+
pass
|
| 699 |
+
# print("use sparse attention")
|
| 700 |
+
# # seems that the sparse random sampling cause problems
|
| 701 |
+
# # don't use random sampling, just fix the indexes
|
| 702 |
+
# onekey = rearrange(key, "(b t) d c -> b t d c", t=num_views)
|
| 703 |
+
# onevalue = rearrange(value, "(b t) d c -> b t d c", t=num_views)
|
| 704 |
+
# allkeys = []
|
| 705 |
+
# allvalues = []
|
| 706 |
+
# all_indexes = {
|
| 707 |
+
# 0 : [0, 2, 3, 4],
|
| 708 |
+
# 1: [0, 1, 3, 5],
|
| 709 |
+
# 2: [0, 2, 3, 4],
|
| 710 |
+
# 3: [0, 2, 3, 4],
|
| 711 |
+
# 4: [0, 2, 3, 4],
|
| 712 |
+
# 5: [0, 1, 3, 5]
|
| 713 |
+
# }
|
| 714 |
+
# for jj in range(num_views):
|
| 715 |
+
# # valid_index = [x for x in range(0, num_views) if x!= jj]
|
| 716 |
+
# # indexes = random.sample(valid_index, 3) + [jj] + [0]
|
| 717 |
+
# indexes = all_indexes[jj]
|
| 718 |
+
|
| 719 |
+
# indexes = torch.tensor(indexes).long().to(key.device)
|
| 720 |
+
# allkeys.append(onekey[:, indexes])
|
| 721 |
+
# allvalues.append(onevalue[:, indexes])
|
| 722 |
+
# keys = torch.stack(allkeys, dim=1) # checked, should be dim=1
|
| 723 |
+
# values = torch.stack(allvalues, dim=1)
|
| 724 |
+
# key = rearrange(keys, 'b t f d c -> (b t) (f d) c')
|
| 725 |
+
# value = rearrange(values, 'b t f d c -> (b t) (f d) c')
|
| 726 |
+
|
| 727 |
+
|
| 728 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
| 729 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
| 730 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
| 731 |
+
|
| 732 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
| 733 |
+
hidden_states = torch.bmm(attention_probs, value)
|
| 734 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 735 |
+
|
| 736 |
+
# linear proj
|
| 737 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 738 |
+
# dropout
|
| 739 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 740 |
+
|
| 741 |
+
if input_ndim == 4:
|
| 742 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 743 |
+
|
| 744 |
+
if attn.residual_connection:
|
| 745 |
+
hidden_states = hidden_states + residual
|
| 746 |
+
|
| 747 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 748 |
+
|
| 749 |
+
return hidden_states
|
| 750 |
+
|
| 751 |
+
|
| 752 |
+
class XFormersMVAttnProcessor:
|
| 753 |
+
r"""
|
| 754 |
+
Default processor for performing attention-related computations.
|
| 755 |
+
"""
|
| 756 |
+
|
| 757 |
+
def __call__(
|
| 758 |
+
self,
|
| 759 |
+
attn: Attention,
|
| 760 |
+
hidden_states,
|
| 761 |
+
encoder_hidden_states=None,
|
| 762 |
+
attention_mask=None,
|
| 763 |
+
temb=None,
|
| 764 |
+
num_views=1.,
|
| 765 |
+
multiview_attention=True,
|
| 766 |
+
sparse_mv_attention=False,
|
| 767 |
+
):
|
| 768 |
+
residual = hidden_states
|
| 769 |
+
|
| 770 |
+
if attn.spatial_norm is not None:
|
| 771 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 772 |
+
|
| 773 |
+
input_ndim = hidden_states.ndim
|
| 774 |
+
|
| 775 |
+
if input_ndim == 4:
|
| 776 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 777 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 778 |
+
|
| 779 |
+
batch_size, sequence_length, _ = (
|
| 780 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 781 |
+
)
|
| 782 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 783 |
+
|
| 784 |
+
# from yuancheng; here attention_mask is None
|
| 785 |
+
if attention_mask is not None:
|
| 786 |
+
# expand our mask's singleton query_tokens dimension:
|
| 787 |
+
# [batch*heads, 1, key_tokens] ->
|
| 788 |
+
# [batch*heads, query_tokens, key_tokens]
|
| 789 |
+
# so that it can be added as a bias onto the attention scores that xformers computes:
|
| 790 |
+
# [batch*heads, query_tokens, key_tokens]
|
| 791 |
+
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
|
| 792 |
+
_, query_tokens, _ = hidden_states.shape
|
| 793 |
+
attention_mask = attention_mask.expand(-1, query_tokens, -1)
|
| 794 |
+
|
| 795 |
+
if attn.group_norm is not None:
|
| 796 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 797 |
+
|
| 798 |
+
query = attn.to_q(hidden_states)
|
| 799 |
+
|
| 800 |
+
if encoder_hidden_states is None:
|
| 801 |
+
encoder_hidden_states = hidden_states
|
| 802 |
+
elif attn.norm_cross:
|
| 803 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 804 |
+
|
| 805 |
+
key_raw = attn.to_k(encoder_hidden_states)
|
| 806 |
+
value_raw = attn.to_v(encoder_hidden_states)
|
| 807 |
+
|
| 808 |
+
# print('query', query.shape, 'key', key.shape, 'value', value.shape)
|
| 809 |
+
#([bx4, 1024, 320]) key torch.Size([bx4, 1024, 320]) value torch.Size([bx4, 1024, 320])
|
| 810 |
+
# pdb.set_trace()
|
| 811 |
+
# multi-view self-attention
|
| 812 |
+
if multiview_attention:
|
| 813 |
+
if not sparse_mv_attention:
|
| 814 |
+
key = my_repeat(rearrange(key_raw, "(b t) d c -> b (t d) c", t=num_views), num_views)
|
| 815 |
+
value = my_repeat(rearrange(value_raw, "(b t) d c -> b (t d) c", t=num_views), num_views)
|
| 816 |
+
else:
|
| 817 |
+
key_front = my_repeat(rearrange(key_raw, "(b t) d c -> b t d c", t=num_views)[:, 0, :, :], num_views) # [(b t), d, c]
|
| 818 |
+
value_front = my_repeat(rearrange(value_raw, "(b t) d c -> b t d c", t=num_views)[:, 0, :, :], num_views)
|
| 819 |
+
key = torch.cat([key_front, key_raw], dim=1) # shape (b t) (2 d) c
|
| 820 |
+
value = torch.cat([value_front, value_raw], dim=1)
|
| 821 |
+
|
| 822 |
+
|
| 823 |
+
else:
|
| 824 |
+
# print("don't use multiview attention.")
|
| 825 |
+
key = key_raw
|
| 826 |
+
value = value_raw
|
| 827 |
+
|
| 828 |
+
query = attn.head_to_batch_dim(query)
|
| 829 |
+
key = attn.head_to_batch_dim(key)
|
| 830 |
+
value = attn.head_to_batch_dim(value)
|
| 831 |
+
|
| 832 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
| 833 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 834 |
+
|
| 835 |
+
# linear proj
|
| 836 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 837 |
+
# dropout
|
| 838 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 839 |
+
|
| 840 |
+
if input_ndim == 4:
|
| 841 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 842 |
+
|
| 843 |
+
if attn.residual_connection:
|
| 844 |
+
hidden_states = hidden_states + residual
|
| 845 |
+
|
| 846 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 847 |
+
|
| 848 |
+
return hidden_states
|
| 849 |
+
|
| 850 |
+
|
| 851 |
+
|
| 852 |
+
class XFormersJointAttnProcessor:
|
| 853 |
+
r"""
|
| 854 |
+
Default processor for performing attention-related computations.
|
| 855 |
+
"""
|
| 856 |
+
|
| 857 |
+
def __call__(
|
| 858 |
+
self,
|
| 859 |
+
attn: Attention,
|
| 860 |
+
hidden_states,
|
| 861 |
+
encoder_hidden_states=None,
|
| 862 |
+
attention_mask=None,
|
| 863 |
+
temb=None,
|
| 864 |
+
num_tasks=2
|
| 865 |
+
):
|
| 866 |
+
|
| 867 |
+
residual = hidden_states
|
| 868 |
+
|
| 869 |
+
if attn.spatial_norm is not None:
|
| 870 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 871 |
+
|
| 872 |
+
input_ndim = hidden_states.ndim
|
| 873 |
+
|
| 874 |
+
if input_ndim == 4:
|
| 875 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 876 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 877 |
+
|
| 878 |
+
batch_size, sequence_length, _ = (
|
| 879 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 880 |
+
)
|
| 881 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 882 |
+
|
| 883 |
+
# from yuancheng; here attention_mask is None
|
| 884 |
+
if attention_mask is not None:
|
| 885 |
+
# expand our mask's singleton query_tokens dimension:
|
| 886 |
+
# [batch*heads, 1, key_tokens] ->
|
| 887 |
+
# [batch*heads, query_tokens, key_tokens]
|
| 888 |
+
# so that it can be added as a bias onto the attention scores that xformers computes:
|
| 889 |
+
# [batch*heads, query_tokens, key_tokens]
|
| 890 |
+
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
|
| 891 |
+
_, query_tokens, _ = hidden_states.shape
|
| 892 |
+
attention_mask = attention_mask.expand(-1, query_tokens, -1)
|
| 893 |
+
|
| 894 |
+
if attn.group_norm is not None:
|
| 895 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 896 |
+
|
| 897 |
+
query = attn.to_q(hidden_states)
|
| 898 |
+
|
| 899 |
+
if encoder_hidden_states is None:
|
| 900 |
+
encoder_hidden_states = hidden_states
|
| 901 |
+
elif attn.norm_cross:
|
| 902 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 903 |
+
|
| 904 |
+
key = attn.to_k(encoder_hidden_states)
|
| 905 |
+
value = attn.to_v(encoder_hidden_states)
|
| 906 |
+
|
| 907 |
+
assert num_tasks == 2 # only support two tasks now
|
| 908 |
+
|
| 909 |
+
key_0, key_1 = torch.chunk(key, dim=0, chunks=2) # keys shape (b t) d c
|
| 910 |
+
value_0, value_1 = torch.chunk(value, dim=0, chunks=2)
|
| 911 |
+
key = torch.cat([key_0, key_1], dim=1) # (b t) 2d c
|
| 912 |
+
value = torch.cat([value_0, value_1], dim=1) # (b t) 2d c
|
| 913 |
+
key = torch.cat([key]*2, dim=0) # ( 2 b t) 2d c
|
| 914 |
+
value = torch.cat([value]*2, dim=0) # (2 b t) 2d c
|
| 915 |
+
|
| 916 |
+
|
| 917 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
| 918 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
| 919 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
| 920 |
+
|
| 921 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
| 922 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 923 |
+
|
| 924 |
+
# linear proj
|
| 925 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 926 |
+
# dropout
|
| 927 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 928 |
+
|
| 929 |
+
if input_ndim == 4:
|
| 930 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 931 |
+
|
| 932 |
+
if attn.residual_connection:
|
| 933 |
+
hidden_states = hidden_states + residual
|
| 934 |
+
|
| 935 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 936 |
+
|
| 937 |
+
return hidden_states
|
| 938 |
+
|
| 939 |
+
|
| 940 |
+
class JointAttnProcessor:
|
| 941 |
+
r"""
|
| 942 |
+
Default processor for performing attention-related computations.
|
| 943 |
+
"""
|
| 944 |
+
|
| 945 |
+
def __call__(
|
| 946 |
+
self,
|
| 947 |
+
attn: Attention,
|
| 948 |
+
hidden_states,
|
| 949 |
+
encoder_hidden_states=None,
|
| 950 |
+
attention_mask=None,
|
| 951 |
+
temb=None,
|
| 952 |
+
num_tasks=2
|
| 953 |
+
):
|
| 954 |
+
|
| 955 |
+
residual = hidden_states
|
| 956 |
+
|
| 957 |
+
if attn.spatial_norm is not None:
|
| 958 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 959 |
+
|
| 960 |
+
input_ndim = hidden_states.ndim
|
| 961 |
+
|
| 962 |
+
if input_ndim == 4:
|
| 963 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 964 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 965 |
+
|
| 966 |
+
batch_size, sequence_length, _ = (
|
| 967 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 968 |
+
)
|
| 969 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 970 |
+
|
| 971 |
+
|
| 972 |
+
if attn.group_norm is not None:
|
| 973 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 974 |
+
|
| 975 |
+
query = attn.to_q(hidden_states)
|
| 976 |
+
|
| 977 |
+
if encoder_hidden_states is None:
|
| 978 |
+
encoder_hidden_states = hidden_states
|
| 979 |
+
elif attn.norm_cross:
|
| 980 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 981 |
+
|
| 982 |
+
key = attn.to_k(encoder_hidden_states)
|
| 983 |
+
value = attn.to_v(encoder_hidden_states)
|
| 984 |
+
|
| 985 |
+
assert num_tasks == 2 # only support two tasks now
|
| 986 |
+
|
| 987 |
+
key_0, key_1 = torch.chunk(key, dim=0, chunks=2) # keys shape (b t) d c
|
| 988 |
+
value_0, value_1 = torch.chunk(value, dim=0, chunks=2)
|
| 989 |
+
key = torch.cat([key_0, key_1], dim=1) # (b t) 2d c
|
| 990 |
+
value = torch.cat([value_0, value_1], dim=1) # (b t) 2d c
|
| 991 |
+
key = torch.cat([key]*2, dim=0) # ( 2 b t) 2d c
|
| 992 |
+
value = torch.cat([value]*2, dim=0) # (2 b t) 2d c
|
| 993 |
+
|
| 994 |
+
|
| 995 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
| 996 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
| 997 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
| 998 |
+
|
| 999 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
| 1000 |
+
hidden_states = torch.bmm(attention_probs, value)
|
| 1001 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 1002 |
+
|
| 1003 |
+
# linear proj
|
| 1004 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 1005 |
+
# dropout
|
| 1006 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 1007 |
+
|
| 1008 |
+
if input_ndim == 4:
|
| 1009 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 1010 |
+
|
| 1011 |
+
if attn.residual_connection:
|
| 1012 |
+
hidden_states = hidden_states + residual
|
| 1013 |
+
|
| 1014 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 1015 |
+
|
| 1016 |
+
return hidden_states
|
mvdiffusion/models/unet_mv2d_blocks.py
ADDED
|
@@ -0,0 +1,932 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from typing import Any, Dict, Optional, Tuple
|
| 15 |
+
|
| 16 |
+
import numpy as np
|
| 17 |
+
import torch
|
| 18 |
+
import torch.nn.functional as F
|
| 19 |
+
from torch import nn
|
| 20 |
+
|
| 21 |
+
from diffusers.utils import is_torch_version, logging
|
| 22 |
+
# from diffusers.models.normalization import AdaGroupNorm
|
| 23 |
+
from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0
|
| 24 |
+
from diffusers.models.transformers.dual_transformer_2d import DualTransformer2DModel
|
| 25 |
+
from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D
|
| 26 |
+
|
| 27 |
+
from diffusers.models.unets.unet_2d_blocks import DownBlock2D, ResnetDownsampleBlock2D, AttnDownBlock2D, CrossAttnDownBlock2D, SimpleCrossAttnDownBlock2D, SkipDownBlock2D, AttnSkipDownBlock2D, DownEncoderBlock2D, AttnDownEncoderBlock2D, KDownBlock2D, KCrossAttnDownBlock2D
|
| 28 |
+
from diffusers.models.unets.unet_2d_blocks import UpBlock2D, ResnetUpsampleBlock2D, CrossAttnUpBlock2D, SimpleCrossAttnUpBlock2D, AttnUpBlock2D, SkipUpBlock2D, AttnSkipUpBlock2D, UpDecoderBlock2D, AttnUpDecoderBlock2D, KUpBlock2D, KCrossAttnUpBlock2D
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def get_down_block(
|
| 35 |
+
down_block_type,
|
| 36 |
+
num_layers,
|
| 37 |
+
in_channels,
|
| 38 |
+
out_channels,
|
| 39 |
+
temb_channels,
|
| 40 |
+
add_downsample,
|
| 41 |
+
resnet_eps,
|
| 42 |
+
resnet_act_fn,
|
| 43 |
+
transformer_layers_per_block=1,
|
| 44 |
+
num_attention_heads=None,
|
| 45 |
+
resnet_groups=None,
|
| 46 |
+
cross_attention_dim=None,
|
| 47 |
+
downsample_padding=None,
|
| 48 |
+
dual_cross_attention=False,
|
| 49 |
+
use_linear_projection=False,
|
| 50 |
+
only_cross_attention=False,
|
| 51 |
+
upcast_attention=False,
|
| 52 |
+
resnet_time_scale_shift="default",
|
| 53 |
+
resnet_skip_time_act=False,
|
| 54 |
+
resnet_out_scale_factor=1.0,
|
| 55 |
+
cross_attention_norm=None,
|
| 56 |
+
attention_head_dim=None,
|
| 57 |
+
downsample_type=None,
|
| 58 |
+
num_views=1,
|
| 59 |
+
cd_attention_last: bool = False,
|
| 60 |
+
cd_attention_mid: bool = False,
|
| 61 |
+
multiview_attention: bool = True,
|
| 62 |
+
sparse_mv_attention: bool = False,
|
| 63 |
+
selfattn_block: str = "custom",
|
| 64 |
+
):
|
| 65 |
+
# If attn head dim is not defined, we default it to the number of heads
|
| 66 |
+
if attention_head_dim is None:
|
| 67 |
+
logger.warn(
|
| 68 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
| 69 |
+
)
|
| 70 |
+
attention_head_dim = num_attention_heads
|
| 71 |
+
|
| 72 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
| 73 |
+
if down_block_type == "DownBlock2D":
|
| 74 |
+
return DownBlock2D(
|
| 75 |
+
num_layers=num_layers,
|
| 76 |
+
in_channels=in_channels,
|
| 77 |
+
out_channels=out_channels,
|
| 78 |
+
temb_channels=temb_channels,
|
| 79 |
+
add_downsample=add_downsample,
|
| 80 |
+
resnet_eps=resnet_eps,
|
| 81 |
+
resnet_act_fn=resnet_act_fn,
|
| 82 |
+
resnet_groups=resnet_groups,
|
| 83 |
+
downsample_padding=downsample_padding,
|
| 84 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 85 |
+
)
|
| 86 |
+
elif down_block_type == "ResnetDownsampleBlock2D":
|
| 87 |
+
return ResnetDownsampleBlock2D(
|
| 88 |
+
num_layers=num_layers,
|
| 89 |
+
in_channels=in_channels,
|
| 90 |
+
out_channels=out_channels,
|
| 91 |
+
temb_channels=temb_channels,
|
| 92 |
+
add_downsample=add_downsample,
|
| 93 |
+
resnet_eps=resnet_eps,
|
| 94 |
+
resnet_act_fn=resnet_act_fn,
|
| 95 |
+
resnet_groups=resnet_groups,
|
| 96 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 97 |
+
skip_time_act=resnet_skip_time_act,
|
| 98 |
+
output_scale_factor=resnet_out_scale_factor,
|
| 99 |
+
)
|
| 100 |
+
elif down_block_type == "AttnDownBlock2D":
|
| 101 |
+
if add_downsample is False:
|
| 102 |
+
downsample_type = None
|
| 103 |
+
else:
|
| 104 |
+
downsample_type = downsample_type or "conv" # default to 'conv'
|
| 105 |
+
return AttnDownBlock2D(
|
| 106 |
+
num_layers=num_layers,
|
| 107 |
+
in_channels=in_channels,
|
| 108 |
+
out_channels=out_channels,
|
| 109 |
+
temb_channels=temb_channels,
|
| 110 |
+
resnet_eps=resnet_eps,
|
| 111 |
+
resnet_act_fn=resnet_act_fn,
|
| 112 |
+
resnet_groups=resnet_groups,
|
| 113 |
+
downsample_padding=downsample_padding,
|
| 114 |
+
attention_head_dim=attention_head_dim,
|
| 115 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 116 |
+
downsample_type=downsample_type,
|
| 117 |
+
)
|
| 118 |
+
elif down_block_type == "CrossAttnDownBlock2D":
|
| 119 |
+
if cross_attention_dim is None:
|
| 120 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
|
| 121 |
+
return CrossAttnDownBlock2D(
|
| 122 |
+
num_layers=num_layers,
|
| 123 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
| 124 |
+
in_channels=in_channels,
|
| 125 |
+
out_channels=out_channels,
|
| 126 |
+
temb_channels=temb_channels,
|
| 127 |
+
add_downsample=add_downsample,
|
| 128 |
+
resnet_eps=resnet_eps,
|
| 129 |
+
resnet_act_fn=resnet_act_fn,
|
| 130 |
+
resnet_groups=resnet_groups,
|
| 131 |
+
downsample_padding=downsample_padding,
|
| 132 |
+
cross_attention_dim=cross_attention_dim,
|
| 133 |
+
num_attention_heads=num_attention_heads,
|
| 134 |
+
dual_cross_attention=dual_cross_attention,
|
| 135 |
+
use_linear_projection=use_linear_projection,
|
| 136 |
+
only_cross_attention=only_cross_attention,
|
| 137 |
+
upcast_attention=upcast_attention,
|
| 138 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 139 |
+
)
|
| 140 |
+
# custom MV2D attention block
|
| 141 |
+
elif down_block_type == "CrossAttnDownBlockMV2D":
|
| 142 |
+
if cross_attention_dim is None:
|
| 143 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlockMV2D")
|
| 144 |
+
return CrossAttnDownBlockMV2D(
|
| 145 |
+
num_layers=num_layers,
|
| 146 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
| 147 |
+
in_channels=in_channels,
|
| 148 |
+
out_channels=out_channels,
|
| 149 |
+
temb_channels=temb_channels,
|
| 150 |
+
add_downsample=add_downsample,
|
| 151 |
+
resnet_eps=resnet_eps,
|
| 152 |
+
resnet_act_fn=resnet_act_fn,
|
| 153 |
+
resnet_groups=resnet_groups,
|
| 154 |
+
downsample_padding=downsample_padding,
|
| 155 |
+
cross_attention_dim=cross_attention_dim,
|
| 156 |
+
num_attention_heads=num_attention_heads,
|
| 157 |
+
dual_cross_attention=dual_cross_attention,
|
| 158 |
+
use_linear_projection=use_linear_projection,
|
| 159 |
+
only_cross_attention=only_cross_attention,
|
| 160 |
+
upcast_attention=upcast_attention,
|
| 161 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 162 |
+
num_views=num_views,
|
| 163 |
+
cd_attention_last=cd_attention_last,
|
| 164 |
+
cd_attention_mid=cd_attention_mid,
|
| 165 |
+
multiview_attention=multiview_attention,
|
| 166 |
+
sparse_mv_attention=sparse_mv_attention,
|
| 167 |
+
selfattn_block=selfattn_block,
|
| 168 |
+
)
|
| 169 |
+
elif down_block_type == "SimpleCrossAttnDownBlock2D":
|
| 170 |
+
if cross_attention_dim is None:
|
| 171 |
+
raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D")
|
| 172 |
+
return SimpleCrossAttnDownBlock2D(
|
| 173 |
+
num_layers=num_layers,
|
| 174 |
+
in_channels=in_channels,
|
| 175 |
+
out_channels=out_channels,
|
| 176 |
+
temb_channels=temb_channels,
|
| 177 |
+
add_downsample=add_downsample,
|
| 178 |
+
resnet_eps=resnet_eps,
|
| 179 |
+
resnet_act_fn=resnet_act_fn,
|
| 180 |
+
resnet_groups=resnet_groups,
|
| 181 |
+
cross_attention_dim=cross_attention_dim,
|
| 182 |
+
attention_head_dim=attention_head_dim,
|
| 183 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 184 |
+
skip_time_act=resnet_skip_time_act,
|
| 185 |
+
output_scale_factor=resnet_out_scale_factor,
|
| 186 |
+
only_cross_attention=only_cross_attention,
|
| 187 |
+
cross_attention_norm=cross_attention_norm,
|
| 188 |
+
)
|
| 189 |
+
elif down_block_type == "SkipDownBlock2D":
|
| 190 |
+
return SkipDownBlock2D(
|
| 191 |
+
num_layers=num_layers,
|
| 192 |
+
in_channels=in_channels,
|
| 193 |
+
out_channels=out_channels,
|
| 194 |
+
temb_channels=temb_channels,
|
| 195 |
+
add_downsample=add_downsample,
|
| 196 |
+
resnet_eps=resnet_eps,
|
| 197 |
+
resnet_act_fn=resnet_act_fn,
|
| 198 |
+
downsample_padding=downsample_padding,
|
| 199 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 200 |
+
)
|
| 201 |
+
elif down_block_type == "AttnSkipDownBlock2D":
|
| 202 |
+
return AttnSkipDownBlock2D(
|
| 203 |
+
num_layers=num_layers,
|
| 204 |
+
in_channels=in_channels,
|
| 205 |
+
out_channels=out_channels,
|
| 206 |
+
temb_channels=temb_channels,
|
| 207 |
+
add_downsample=add_downsample,
|
| 208 |
+
resnet_eps=resnet_eps,
|
| 209 |
+
resnet_act_fn=resnet_act_fn,
|
| 210 |
+
attention_head_dim=attention_head_dim,
|
| 211 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 212 |
+
)
|
| 213 |
+
elif down_block_type == "DownEncoderBlock2D":
|
| 214 |
+
return DownEncoderBlock2D(
|
| 215 |
+
num_layers=num_layers,
|
| 216 |
+
in_channels=in_channels,
|
| 217 |
+
out_channels=out_channels,
|
| 218 |
+
add_downsample=add_downsample,
|
| 219 |
+
resnet_eps=resnet_eps,
|
| 220 |
+
resnet_act_fn=resnet_act_fn,
|
| 221 |
+
resnet_groups=resnet_groups,
|
| 222 |
+
downsample_padding=downsample_padding,
|
| 223 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 224 |
+
)
|
| 225 |
+
elif down_block_type == "AttnDownEncoderBlock2D":
|
| 226 |
+
return AttnDownEncoderBlock2D(
|
| 227 |
+
num_layers=num_layers,
|
| 228 |
+
in_channels=in_channels,
|
| 229 |
+
out_channels=out_channels,
|
| 230 |
+
add_downsample=add_downsample,
|
| 231 |
+
resnet_eps=resnet_eps,
|
| 232 |
+
resnet_act_fn=resnet_act_fn,
|
| 233 |
+
resnet_groups=resnet_groups,
|
| 234 |
+
downsample_padding=downsample_padding,
|
| 235 |
+
attention_head_dim=attention_head_dim,
|
| 236 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 237 |
+
)
|
| 238 |
+
elif down_block_type == "KDownBlock2D":
|
| 239 |
+
return KDownBlock2D(
|
| 240 |
+
num_layers=num_layers,
|
| 241 |
+
in_channels=in_channels,
|
| 242 |
+
out_channels=out_channels,
|
| 243 |
+
temb_channels=temb_channels,
|
| 244 |
+
add_downsample=add_downsample,
|
| 245 |
+
resnet_eps=resnet_eps,
|
| 246 |
+
resnet_act_fn=resnet_act_fn,
|
| 247 |
+
)
|
| 248 |
+
elif down_block_type == "KCrossAttnDownBlock2D":
|
| 249 |
+
return KCrossAttnDownBlock2D(
|
| 250 |
+
num_layers=num_layers,
|
| 251 |
+
in_channels=in_channels,
|
| 252 |
+
out_channels=out_channels,
|
| 253 |
+
temb_channels=temb_channels,
|
| 254 |
+
add_downsample=add_downsample,
|
| 255 |
+
resnet_eps=resnet_eps,
|
| 256 |
+
resnet_act_fn=resnet_act_fn,
|
| 257 |
+
cross_attention_dim=cross_attention_dim,
|
| 258 |
+
attention_head_dim=attention_head_dim,
|
| 259 |
+
add_self_attention=True if not add_downsample else False,
|
| 260 |
+
)
|
| 261 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
def get_up_block(
|
| 265 |
+
up_block_type,
|
| 266 |
+
num_layers,
|
| 267 |
+
in_channels,
|
| 268 |
+
out_channels,
|
| 269 |
+
prev_output_channel,
|
| 270 |
+
temb_channels,
|
| 271 |
+
add_upsample,
|
| 272 |
+
resnet_eps,
|
| 273 |
+
resnet_act_fn,
|
| 274 |
+
transformer_layers_per_block=1,
|
| 275 |
+
num_attention_heads=None,
|
| 276 |
+
resnet_groups=None,
|
| 277 |
+
cross_attention_dim=None,
|
| 278 |
+
dual_cross_attention=False,
|
| 279 |
+
use_linear_projection=False,
|
| 280 |
+
only_cross_attention=False,
|
| 281 |
+
upcast_attention=False,
|
| 282 |
+
resnet_time_scale_shift="default",
|
| 283 |
+
resnet_skip_time_act=False,
|
| 284 |
+
resnet_out_scale_factor=1.0,
|
| 285 |
+
cross_attention_norm=None,
|
| 286 |
+
attention_head_dim=None,
|
| 287 |
+
upsample_type=None,
|
| 288 |
+
num_views=1,
|
| 289 |
+
cd_attention_last: bool = False,
|
| 290 |
+
cd_attention_mid: bool = False,
|
| 291 |
+
multiview_attention: bool = True,
|
| 292 |
+
sparse_mv_attention: bool = False,
|
| 293 |
+
selfattn_block: str = "custom",
|
| 294 |
+
):
|
| 295 |
+
# If attn head dim is not defined, we default it to the number of heads
|
| 296 |
+
if attention_head_dim is None:
|
| 297 |
+
logger.warn(
|
| 298 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
| 299 |
+
)
|
| 300 |
+
attention_head_dim = num_attention_heads
|
| 301 |
+
|
| 302 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
| 303 |
+
if up_block_type == "UpBlock2D":
|
| 304 |
+
return UpBlock2D(
|
| 305 |
+
num_layers=num_layers,
|
| 306 |
+
in_channels=in_channels,
|
| 307 |
+
out_channels=out_channels,
|
| 308 |
+
prev_output_channel=prev_output_channel,
|
| 309 |
+
temb_channels=temb_channels,
|
| 310 |
+
add_upsample=add_upsample,
|
| 311 |
+
resnet_eps=resnet_eps,
|
| 312 |
+
resnet_act_fn=resnet_act_fn,
|
| 313 |
+
resnet_groups=resnet_groups,
|
| 314 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 315 |
+
)
|
| 316 |
+
elif up_block_type == "ResnetUpsampleBlock2D":
|
| 317 |
+
return ResnetUpsampleBlock2D(
|
| 318 |
+
num_layers=num_layers,
|
| 319 |
+
in_channels=in_channels,
|
| 320 |
+
out_channels=out_channels,
|
| 321 |
+
prev_output_channel=prev_output_channel,
|
| 322 |
+
temb_channels=temb_channels,
|
| 323 |
+
add_upsample=add_upsample,
|
| 324 |
+
resnet_eps=resnet_eps,
|
| 325 |
+
resnet_act_fn=resnet_act_fn,
|
| 326 |
+
resnet_groups=resnet_groups,
|
| 327 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 328 |
+
skip_time_act=resnet_skip_time_act,
|
| 329 |
+
output_scale_factor=resnet_out_scale_factor,
|
| 330 |
+
)
|
| 331 |
+
elif up_block_type == "CrossAttnUpBlock2D":
|
| 332 |
+
if cross_attention_dim is None:
|
| 333 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
|
| 334 |
+
return CrossAttnUpBlock2D(
|
| 335 |
+
num_layers=num_layers,
|
| 336 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
| 337 |
+
in_channels=in_channels,
|
| 338 |
+
out_channels=out_channels,
|
| 339 |
+
prev_output_channel=prev_output_channel,
|
| 340 |
+
temb_channels=temb_channels,
|
| 341 |
+
add_upsample=add_upsample,
|
| 342 |
+
resnet_eps=resnet_eps,
|
| 343 |
+
resnet_act_fn=resnet_act_fn,
|
| 344 |
+
resnet_groups=resnet_groups,
|
| 345 |
+
cross_attention_dim=cross_attention_dim,
|
| 346 |
+
num_attention_heads=num_attention_heads,
|
| 347 |
+
dual_cross_attention=dual_cross_attention,
|
| 348 |
+
use_linear_projection=use_linear_projection,
|
| 349 |
+
only_cross_attention=only_cross_attention,
|
| 350 |
+
upcast_attention=upcast_attention,
|
| 351 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 352 |
+
)
|
| 353 |
+
# custom MV2D attention block
|
| 354 |
+
elif up_block_type == "CrossAttnUpBlockMV2D":
|
| 355 |
+
if cross_attention_dim is None:
|
| 356 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlockMV2D")
|
| 357 |
+
return CrossAttnUpBlockMV2D(
|
| 358 |
+
num_layers=num_layers,
|
| 359 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
| 360 |
+
in_channels=in_channels,
|
| 361 |
+
out_channels=out_channels,
|
| 362 |
+
prev_output_channel=prev_output_channel,
|
| 363 |
+
temb_channels=temb_channels,
|
| 364 |
+
add_upsample=add_upsample,
|
| 365 |
+
resnet_eps=resnet_eps,
|
| 366 |
+
resnet_act_fn=resnet_act_fn,
|
| 367 |
+
resnet_groups=resnet_groups,
|
| 368 |
+
cross_attention_dim=cross_attention_dim,
|
| 369 |
+
num_attention_heads=num_attention_heads,
|
| 370 |
+
dual_cross_attention=dual_cross_attention,
|
| 371 |
+
use_linear_projection=use_linear_projection,
|
| 372 |
+
only_cross_attention=only_cross_attention,
|
| 373 |
+
upcast_attention=upcast_attention,
|
| 374 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 375 |
+
num_views=num_views,
|
| 376 |
+
cd_attention_last=cd_attention_last,
|
| 377 |
+
cd_attention_mid=cd_attention_mid,
|
| 378 |
+
multiview_attention=multiview_attention,
|
| 379 |
+
sparse_mv_attention=sparse_mv_attention,
|
| 380 |
+
selfattn_block=selfattn_block,
|
| 381 |
+
)
|
| 382 |
+
elif up_block_type == "SimpleCrossAttnUpBlock2D":
|
| 383 |
+
if cross_attention_dim is None:
|
| 384 |
+
raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D")
|
| 385 |
+
return SimpleCrossAttnUpBlock2D(
|
| 386 |
+
num_layers=num_layers,
|
| 387 |
+
in_channels=in_channels,
|
| 388 |
+
out_channels=out_channels,
|
| 389 |
+
prev_output_channel=prev_output_channel,
|
| 390 |
+
temb_channels=temb_channels,
|
| 391 |
+
add_upsample=add_upsample,
|
| 392 |
+
resnet_eps=resnet_eps,
|
| 393 |
+
resnet_act_fn=resnet_act_fn,
|
| 394 |
+
resnet_groups=resnet_groups,
|
| 395 |
+
cross_attention_dim=cross_attention_dim,
|
| 396 |
+
attention_head_dim=attention_head_dim,
|
| 397 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 398 |
+
skip_time_act=resnet_skip_time_act,
|
| 399 |
+
output_scale_factor=resnet_out_scale_factor,
|
| 400 |
+
only_cross_attention=only_cross_attention,
|
| 401 |
+
cross_attention_norm=cross_attention_norm,
|
| 402 |
+
)
|
| 403 |
+
elif up_block_type == "AttnUpBlock2D":
|
| 404 |
+
if add_upsample is False:
|
| 405 |
+
upsample_type = None
|
| 406 |
+
else:
|
| 407 |
+
upsample_type = upsample_type or "conv" # default to 'conv'
|
| 408 |
+
|
| 409 |
+
return AttnUpBlock2D(
|
| 410 |
+
num_layers=num_layers,
|
| 411 |
+
in_channels=in_channels,
|
| 412 |
+
out_channels=out_channels,
|
| 413 |
+
prev_output_channel=prev_output_channel,
|
| 414 |
+
temb_channels=temb_channels,
|
| 415 |
+
resnet_eps=resnet_eps,
|
| 416 |
+
resnet_act_fn=resnet_act_fn,
|
| 417 |
+
resnet_groups=resnet_groups,
|
| 418 |
+
attention_head_dim=attention_head_dim,
|
| 419 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 420 |
+
upsample_type=upsample_type,
|
| 421 |
+
)
|
| 422 |
+
elif up_block_type == "SkipUpBlock2D":
|
| 423 |
+
return SkipUpBlock2D(
|
| 424 |
+
num_layers=num_layers,
|
| 425 |
+
in_channels=in_channels,
|
| 426 |
+
out_channels=out_channels,
|
| 427 |
+
prev_output_channel=prev_output_channel,
|
| 428 |
+
temb_channels=temb_channels,
|
| 429 |
+
add_upsample=add_upsample,
|
| 430 |
+
resnet_eps=resnet_eps,
|
| 431 |
+
resnet_act_fn=resnet_act_fn,
|
| 432 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 433 |
+
)
|
| 434 |
+
elif up_block_type == "AttnSkipUpBlock2D":
|
| 435 |
+
return AttnSkipUpBlock2D(
|
| 436 |
+
num_layers=num_layers,
|
| 437 |
+
in_channels=in_channels,
|
| 438 |
+
out_channels=out_channels,
|
| 439 |
+
prev_output_channel=prev_output_channel,
|
| 440 |
+
temb_channels=temb_channels,
|
| 441 |
+
add_upsample=add_upsample,
|
| 442 |
+
resnet_eps=resnet_eps,
|
| 443 |
+
resnet_act_fn=resnet_act_fn,
|
| 444 |
+
attention_head_dim=attention_head_dim,
|
| 445 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 446 |
+
)
|
| 447 |
+
elif up_block_type == "UpDecoderBlock2D":
|
| 448 |
+
return UpDecoderBlock2D(
|
| 449 |
+
num_layers=num_layers,
|
| 450 |
+
in_channels=in_channels,
|
| 451 |
+
out_channels=out_channels,
|
| 452 |
+
add_upsample=add_upsample,
|
| 453 |
+
resnet_eps=resnet_eps,
|
| 454 |
+
resnet_act_fn=resnet_act_fn,
|
| 455 |
+
resnet_groups=resnet_groups,
|
| 456 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 457 |
+
temb_channels=temb_channels,
|
| 458 |
+
)
|
| 459 |
+
elif up_block_type == "AttnUpDecoderBlock2D":
|
| 460 |
+
return AttnUpDecoderBlock2D(
|
| 461 |
+
num_layers=num_layers,
|
| 462 |
+
in_channels=in_channels,
|
| 463 |
+
out_channels=out_channels,
|
| 464 |
+
add_upsample=add_upsample,
|
| 465 |
+
resnet_eps=resnet_eps,
|
| 466 |
+
resnet_act_fn=resnet_act_fn,
|
| 467 |
+
resnet_groups=resnet_groups,
|
| 468 |
+
attention_head_dim=attention_head_dim,
|
| 469 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 470 |
+
temb_channels=temb_channels,
|
| 471 |
+
)
|
| 472 |
+
elif up_block_type == "KUpBlock2D":
|
| 473 |
+
return KUpBlock2D(
|
| 474 |
+
num_layers=num_layers,
|
| 475 |
+
in_channels=in_channels,
|
| 476 |
+
out_channels=out_channels,
|
| 477 |
+
temb_channels=temb_channels,
|
| 478 |
+
add_upsample=add_upsample,
|
| 479 |
+
resnet_eps=resnet_eps,
|
| 480 |
+
resnet_act_fn=resnet_act_fn,
|
| 481 |
+
)
|
| 482 |
+
elif up_block_type == "KCrossAttnUpBlock2D":
|
| 483 |
+
return KCrossAttnUpBlock2D(
|
| 484 |
+
num_layers=num_layers,
|
| 485 |
+
in_channels=in_channels,
|
| 486 |
+
out_channels=out_channels,
|
| 487 |
+
temb_channels=temb_channels,
|
| 488 |
+
add_upsample=add_upsample,
|
| 489 |
+
resnet_eps=resnet_eps,
|
| 490 |
+
resnet_act_fn=resnet_act_fn,
|
| 491 |
+
cross_attention_dim=cross_attention_dim,
|
| 492 |
+
attention_head_dim=attention_head_dim,
|
| 493 |
+
)
|
| 494 |
+
|
| 495 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
| 496 |
+
|
| 497 |
+
|
| 498 |
+
class UNetMidBlockMV2DCrossAttn(nn.Module):
|
| 499 |
+
def __init__(
|
| 500 |
+
self,
|
| 501 |
+
in_channels: int,
|
| 502 |
+
temb_channels: int,
|
| 503 |
+
dropout: float = 0.0,
|
| 504 |
+
num_layers: int = 1,
|
| 505 |
+
transformer_layers_per_block: int = 1,
|
| 506 |
+
resnet_eps: float = 1e-6,
|
| 507 |
+
resnet_time_scale_shift: str = "default",
|
| 508 |
+
resnet_act_fn: str = "swish",
|
| 509 |
+
resnet_groups: int = 32,
|
| 510 |
+
resnet_pre_norm: bool = True,
|
| 511 |
+
num_attention_heads=1,
|
| 512 |
+
output_scale_factor=1.0,
|
| 513 |
+
cross_attention_dim=1280,
|
| 514 |
+
dual_cross_attention=False,
|
| 515 |
+
use_linear_projection=False,
|
| 516 |
+
upcast_attention=False,
|
| 517 |
+
num_views: int = 1,
|
| 518 |
+
cd_attention_last: bool = False,
|
| 519 |
+
cd_attention_mid: bool = False,
|
| 520 |
+
multiview_attention: bool = True,
|
| 521 |
+
sparse_mv_attention: bool = False,
|
| 522 |
+
selfattn_block: str = "custom",
|
| 523 |
+
):
|
| 524 |
+
super().__init__()
|
| 525 |
+
|
| 526 |
+
self.has_cross_attention = True
|
| 527 |
+
self.num_attention_heads = num_attention_heads
|
| 528 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
| 529 |
+
if selfattn_block == "custom":
|
| 530 |
+
from .transformer_mv2d_image import TransformerMV2DModel
|
| 531 |
+
else:
|
| 532 |
+
raise NotImplementedError
|
| 533 |
+
|
| 534 |
+
# there is always at least one resnet
|
| 535 |
+
resnets = [
|
| 536 |
+
ResnetBlock2D(
|
| 537 |
+
in_channels=in_channels,
|
| 538 |
+
out_channels=in_channels,
|
| 539 |
+
temb_channels=temb_channels,
|
| 540 |
+
eps=resnet_eps,
|
| 541 |
+
groups=resnet_groups,
|
| 542 |
+
dropout=dropout,
|
| 543 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 544 |
+
non_linearity=resnet_act_fn,
|
| 545 |
+
output_scale_factor=output_scale_factor,
|
| 546 |
+
pre_norm=resnet_pre_norm,
|
| 547 |
+
)
|
| 548 |
+
]
|
| 549 |
+
attentions = []
|
| 550 |
+
|
| 551 |
+
for _ in range(num_layers):
|
| 552 |
+
if not dual_cross_attention:
|
| 553 |
+
attentions.append(
|
| 554 |
+
TransformerMV2DModel(
|
| 555 |
+
num_attention_heads,
|
| 556 |
+
in_channels // num_attention_heads,
|
| 557 |
+
in_channels=in_channels,
|
| 558 |
+
num_layers=transformer_layers_per_block,
|
| 559 |
+
cross_attention_dim=cross_attention_dim,
|
| 560 |
+
norm_num_groups=resnet_groups,
|
| 561 |
+
use_linear_projection=use_linear_projection,
|
| 562 |
+
upcast_attention=upcast_attention,
|
| 563 |
+
num_views=num_views,
|
| 564 |
+
cd_attention_last=cd_attention_last,
|
| 565 |
+
cd_attention_mid=cd_attention_mid,
|
| 566 |
+
multiview_attention=multiview_attention,
|
| 567 |
+
sparse_mv_attention=sparse_mv_attention,
|
| 568 |
+
)
|
| 569 |
+
)
|
| 570 |
+
else:
|
| 571 |
+
raise NotImplementedError
|
| 572 |
+
resnets.append(
|
| 573 |
+
ResnetBlock2D(
|
| 574 |
+
in_channels=in_channels,
|
| 575 |
+
out_channels=in_channels,
|
| 576 |
+
temb_channels=temb_channels,
|
| 577 |
+
eps=resnet_eps,
|
| 578 |
+
groups=resnet_groups,
|
| 579 |
+
dropout=dropout,
|
| 580 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 581 |
+
non_linearity=resnet_act_fn,
|
| 582 |
+
output_scale_factor=output_scale_factor,
|
| 583 |
+
pre_norm=resnet_pre_norm,
|
| 584 |
+
)
|
| 585 |
+
)
|
| 586 |
+
|
| 587 |
+
self.attentions = nn.ModuleList(attentions)
|
| 588 |
+
self.resnets = nn.ModuleList(resnets)
|
| 589 |
+
|
| 590 |
+
def forward(
|
| 591 |
+
self,
|
| 592 |
+
hidden_states: torch.FloatTensor,
|
| 593 |
+
temb: Optional[torch.FloatTensor] = None,
|
| 594 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 595 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 596 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 597 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 598 |
+
) -> torch.FloatTensor:
|
| 599 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
| 600 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
| 601 |
+
hidden_states = attn(
|
| 602 |
+
hidden_states,
|
| 603 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 604 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 605 |
+
attention_mask=attention_mask,
|
| 606 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 607 |
+
return_dict=False,
|
| 608 |
+
)[0]
|
| 609 |
+
hidden_states = resnet(hidden_states, temb)
|
| 610 |
+
|
| 611 |
+
return hidden_states
|
| 612 |
+
|
| 613 |
+
|
| 614 |
+
class CrossAttnUpBlockMV2D(nn.Module):
|
| 615 |
+
def __init__(
|
| 616 |
+
self,
|
| 617 |
+
in_channels: int,
|
| 618 |
+
out_channels: int,
|
| 619 |
+
prev_output_channel: int,
|
| 620 |
+
temb_channels: int,
|
| 621 |
+
dropout: float = 0.0,
|
| 622 |
+
num_layers: int = 1,
|
| 623 |
+
transformer_layers_per_block: int = 1,
|
| 624 |
+
resnet_eps: float = 1e-6,
|
| 625 |
+
resnet_time_scale_shift: str = "default",
|
| 626 |
+
resnet_act_fn: str = "swish",
|
| 627 |
+
resnet_groups: int = 32,
|
| 628 |
+
resnet_pre_norm: bool = True,
|
| 629 |
+
num_attention_heads=1,
|
| 630 |
+
cross_attention_dim=1280,
|
| 631 |
+
output_scale_factor=1.0,
|
| 632 |
+
add_upsample=True,
|
| 633 |
+
dual_cross_attention=False,
|
| 634 |
+
use_linear_projection=False,
|
| 635 |
+
only_cross_attention=False,
|
| 636 |
+
upcast_attention=False,
|
| 637 |
+
num_views: int = 1,
|
| 638 |
+
cd_attention_last: bool = False,
|
| 639 |
+
cd_attention_mid: bool = False,
|
| 640 |
+
multiview_attention: bool = True,
|
| 641 |
+
sparse_mv_attention: bool = False,
|
| 642 |
+
selfattn_block: str = "custom",
|
| 643 |
+
):
|
| 644 |
+
super().__init__()
|
| 645 |
+
resnets = []
|
| 646 |
+
attentions = []
|
| 647 |
+
|
| 648 |
+
self.has_cross_attention = True
|
| 649 |
+
self.num_attention_heads = num_attention_heads
|
| 650 |
+
|
| 651 |
+
if selfattn_block == "custom":
|
| 652 |
+
from .transformer_mv2d_image import TransformerMV2DModel
|
| 653 |
+
else:
|
| 654 |
+
raise NotImplementedError
|
| 655 |
+
|
| 656 |
+
for i in range(num_layers):
|
| 657 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
| 658 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 659 |
+
|
| 660 |
+
resnets.append(
|
| 661 |
+
ResnetBlock2D(
|
| 662 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
| 663 |
+
out_channels=out_channels,
|
| 664 |
+
temb_channels=temb_channels,
|
| 665 |
+
eps=resnet_eps,
|
| 666 |
+
groups=resnet_groups,
|
| 667 |
+
dropout=dropout,
|
| 668 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 669 |
+
non_linearity=resnet_act_fn,
|
| 670 |
+
output_scale_factor=output_scale_factor,
|
| 671 |
+
pre_norm=resnet_pre_norm,
|
| 672 |
+
)
|
| 673 |
+
)
|
| 674 |
+
if not dual_cross_attention:
|
| 675 |
+
attentions.append(
|
| 676 |
+
TransformerMV2DModel(
|
| 677 |
+
num_attention_heads,
|
| 678 |
+
out_channels // num_attention_heads,
|
| 679 |
+
in_channels=out_channels,
|
| 680 |
+
num_layers=transformer_layers_per_block,
|
| 681 |
+
cross_attention_dim=cross_attention_dim,
|
| 682 |
+
norm_num_groups=resnet_groups,
|
| 683 |
+
use_linear_projection=use_linear_projection,
|
| 684 |
+
only_cross_attention=only_cross_attention,
|
| 685 |
+
upcast_attention=upcast_attention,
|
| 686 |
+
num_views=num_views,
|
| 687 |
+
cd_attention_last=cd_attention_last,
|
| 688 |
+
cd_attention_mid=cd_attention_mid,
|
| 689 |
+
multiview_attention=multiview_attention,
|
| 690 |
+
sparse_mv_attention=sparse_mv_attention,
|
| 691 |
+
)
|
| 692 |
+
)
|
| 693 |
+
else:
|
| 694 |
+
raise NotImplementedError
|
| 695 |
+
self.attentions = nn.ModuleList(attentions)
|
| 696 |
+
self.resnets = nn.ModuleList(resnets)
|
| 697 |
+
|
| 698 |
+
if add_upsample:
|
| 699 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
| 700 |
+
else:
|
| 701 |
+
self.upsamplers = None
|
| 702 |
+
|
| 703 |
+
self.gradient_checkpointing = False
|
| 704 |
+
|
| 705 |
+
def forward(
|
| 706 |
+
self,
|
| 707 |
+
hidden_states: torch.FloatTensor,
|
| 708 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
| 709 |
+
temb: Optional[torch.FloatTensor] = None,
|
| 710 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 711 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 712 |
+
upsample_size: Optional[int] = None,
|
| 713 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 714 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 715 |
+
):
|
| 716 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
| 717 |
+
# pop res hidden states
|
| 718 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 719 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 720 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 721 |
+
|
| 722 |
+
if self.training and self.gradient_checkpointing:
|
| 723 |
+
|
| 724 |
+
def create_custom_forward(module, return_dict=None):
|
| 725 |
+
def custom_forward(*inputs):
|
| 726 |
+
if return_dict is not None and return_dict is not False:
|
| 727 |
+
return module(*inputs, return_dict=return_dict)
|
| 728 |
+
else:
|
| 729 |
+
return module(*inputs)
|
| 730 |
+
|
| 731 |
+
return custom_forward
|
| 732 |
+
|
| 733 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 734 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 735 |
+
create_custom_forward(resnet),
|
| 736 |
+
hidden_states,
|
| 737 |
+
temb,
|
| 738 |
+
**ckpt_kwargs,
|
| 739 |
+
)
|
| 740 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 741 |
+
create_custom_forward(attn, return_dict=False),
|
| 742 |
+
hidden_states,
|
| 743 |
+
encoder_hidden_states,
|
| 744 |
+
None, # timestep
|
| 745 |
+
None, # class_labels
|
| 746 |
+
cross_attention_kwargs,
|
| 747 |
+
attention_mask,
|
| 748 |
+
encoder_attention_mask,
|
| 749 |
+
**ckpt_kwargs,
|
| 750 |
+
)[0]
|
| 751 |
+
else:
|
| 752 |
+
hidden_states = resnet(hidden_states, temb)
|
| 753 |
+
hidden_states = attn(
|
| 754 |
+
hidden_states,
|
| 755 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 756 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 757 |
+
attention_mask=attention_mask,
|
| 758 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 759 |
+
return_dict=False,
|
| 760 |
+
)[0]
|
| 761 |
+
|
| 762 |
+
if self.upsamplers is not None:
|
| 763 |
+
for upsampler in self.upsamplers:
|
| 764 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
| 765 |
+
|
| 766 |
+
return hidden_states
|
| 767 |
+
|
| 768 |
+
|
| 769 |
+
class CrossAttnDownBlockMV2D(nn.Module):
|
| 770 |
+
def __init__(
|
| 771 |
+
self,
|
| 772 |
+
in_channels: int,
|
| 773 |
+
out_channels: int,
|
| 774 |
+
temb_channels: int,
|
| 775 |
+
dropout: float = 0.0,
|
| 776 |
+
num_layers: int = 1,
|
| 777 |
+
transformer_layers_per_block: int = 1,
|
| 778 |
+
resnet_eps: float = 1e-6,
|
| 779 |
+
resnet_time_scale_shift: str = "default",
|
| 780 |
+
resnet_act_fn: str = "swish",
|
| 781 |
+
resnet_groups: int = 32,
|
| 782 |
+
resnet_pre_norm: bool = True,
|
| 783 |
+
num_attention_heads=1,
|
| 784 |
+
cross_attention_dim=1280,
|
| 785 |
+
output_scale_factor=1.0,
|
| 786 |
+
downsample_padding=1,
|
| 787 |
+
add_downsample=True,
|
| 788 |
+
dual_cross_attention=False,
|
| 789 |
+
use_linear_projection=False,
|
| 790 |
+
only_cross_attention=False,
|
| 791 |
+
upcast_attention=False,
|
| 792 |
+
num_views: int = 1,
|
| 793 |
+
cd_attention_last: bool = False,
|
| 794 |
+
cd_attention_mid: bool = False,
|
| 795 |
+
multiview_attention: bool = True,
|
| 796 |
+
sparse_mv_attention: bool = False,
|
| 797 |
+
selfattn_block: str = "custom",
|
| 798 |
+
):
|
| 799 |
+
super().__init__()
|
| 800 |
+
resnets = []
|
| 801 |
+
attentions = []
|
| 802 |
+
|
| 803 |
+
self.has_cross_attention = True
|
| 804 |
+
self.num_attention_heads = num_attention_heads
|
| 805 |
+
if selfattn_block == "custom":
|
| 806 |
+
from .transformer_mv2d_image import TransformerMV2DModel
|
| 807 |
+
else:
|
| 808 |
+
raise NotImplementedError
|
| 809 |
+
|
| 810 |
+
for i in range(num_layers):
|
| 811 |
+
in_channels = in_channels if i == 0 else out_channels
|
| 812 |
+
resnets.append(
|
| 813 |
+
ResnetBlock2D(
|
| 814 |
+
in_channels=in_channels,
|
| 815 |
+
out_channels=out_channels,
|
| 816 |
+
temb_channels=temb_channels,
|
| 817 |
+
eps=resnet_eps,
|
| 818 |
+
groups=resnet_groups,
|
| 819 |
+
dropout=dropout,
|
| 820 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 821 |
+
non_linearity=resnet_act_fn,
|
| 822 |
+
output_scale_factor=output_scale_factor,
|
| 823 |
+
pre_norm=resnet_pre_norm,
|
| 824 |
+
)
|
| 825 |
+
)
|
| 826 |
+
if not dual_cross_attention:
|
| 827 |
+
attentions.append(
|
| 828 |
+
TransformerMV2DModel(
|
| 829 |
+
num_attention_heads,
|
| 830 |
+
out_channels // num_attention_heads,
|
| 831 |
+
in_channels=out_channels,
|
| 832 |
+
num_layers=transformer_layers_per_block,
|
| 833 |
+
cross_attention_dim=cross_attention_dim,
|
| 834 |
+
norm_num_groups=resnet_groups,
|
| 835 |
+
use_linear_projection=use_linear_projection,
|
| 836 |
+
only_cross_attention=only_cross_attention,
|
| 837 |
+
upcast_attention=upcast_attention,
|
| 838 |
+
num_views=num_views,
|
| 839 |
+
cd_attention_last=cd_attention_last,
|
| 840 |
+
cd_attention_mid=cd_attention_mid,
|
| 841 |
+
multiview_attention=multiview_attention,
|
| 842 |
+
sparse_mv_attention=sparse_mv_attention,
|
| 843 |
+
)
|
| 844 |
+
)
|
| 845 |
+
else:
|
| 846 |
+
raise NotImplementedError
|
| 847 |
+
self.attentions = nn.ModuleList(attentions)
|
| 848 |
+
self.resnets = nn.ModuleList(resnets)
|
| 849 |
+
|
| 850 |
+
if add_downsample:
|
| 851 |
+
self.downsamplers = nn.ModuleList(
|
| 852 |
+
[
|
| 853 |
+
Downsample2D(
|
| 854 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
| 855 |
+
)
|
| 856 |
+
]
|
| 857 |
+
)
|
| 858 |
+
else:
|
| 859 |
+
self.downsamplers = None
|
| 860 |
+
|
| 861 |
+
self.gradient_checkpointing = False
|
| 862 |
+
|
| 863 |
+
def forward(
|
| 864 |
+
self,
|
| 865 |
+
hidden_states: torch.FloatTensor,
|
| 866 |
+
temb: Optional[torch.FloatTensor] = None,
|
| 867 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 868 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 869 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 870 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 871 |
+
additional_residuals=None,
|
| 872 |
+
):
|
| 873 |
+
output_states = ()
|
| 874 |
+
|
| 875 |
+
blocks = list(zip(self.resnets, self.attentions))
|
| 876 |
+
|
| 877 |
+
for i, (resnet, attn) in enumerate(blocks):
|
| 878 |
+
if self.training and self.gradient_checkpointing:
|
| 879 |
+
|
| 880 |
+
def create_custom_forward(module, return_dict=None):
|
| 881 |
+
def custom_forward(*inputs):
|
| 882 |
+
if return_dict is not None and return_dict is not False:
|
| 883 |
+
print("return_dict: ", return_dict)
|
| 884 |
+
return module(*inputs, return_dict=return_dict)
|
| 885 |
+
else:
|
| 886 |
+
return module(*inputs)
|
| 887 |
+
|
| 888 |
+
return custom_forward
|
| 889 |
+
|
| 890 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 891 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 892 |
+
create_custom_forward(resnet),
|
| 893 |
+
hidden_states,
|
| 894 |
+
temb,
|
| 895 |
+
**ckpt_kwargs,
|
| 896 |
+
)
|
| 897 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 898 |
+
create_custom_forward(attn, return_dict=False),
|
| 899 |
+
hidden_states,
|
| 900 |
+
encoder_hidden_states,
|
| 901 |
+
None, # timestep
|
| 902 |
+
None, # class_labels
|
| 903 |
+
cross_attention_kwargs,
|
| 904 |
+
attention_mask,
|
| 905 |
+
encoder_attention_mask,
|
| 906 |
+
**ckpt_kwargs,
|
| 907 |
+
)[0]
|
| 908 |
+
else:
|
| 909 |
+
hidden_states = resnet(hidden_states, temb)
|
| 910 |
+
hidden_states = attn(
|
| 911 |
+
hidden_states,
|
| 912 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 913 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 914 |
+
attention_mask=attention_mask,
|
| 915 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 916 |
+
return_dict=False,
|
| 917 |
+
)[0]
|
| 918 |
+
|
| 919 |
+
# apply additional residuals to the output of the last pair of resnet and attention blocks
|
| 920 |
+
if i == len(blocks) - 1 and additional_residuals is not None:
|
| 921 |
+
hidden_states = hidden_states + additional_residuals
|
| 922 |
+
|
| 923 |
+
output_states = output_states + (hidden_states,)
|
| 924 |
+
|
| 925 |
+
if self.downsamplers is not None:
|
| 926 |
+
for downsampler in self.downsamplers:
|
| 927 |
+
hidden_states = downsampler(hidden_states)
|
| 928 |
+
|
| 929 |
+
output_states = output_states + (hidden_states,)
|
| 930 |
+
|
| 931 |
+
return hidden_states, output_states
|
| 932 |
+
|
mvdiffusion/models/unet_mv2d_condition.py
ADDED
|
@@ -0,0 +1,1568 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from dataclasses import dataclass
|
| 15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 16 |
+
import os
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn as nn
|
| 20 |
+
import torch.utils.checkpoint
|
| 21 |
+
|
| 22 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 23 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
| 24 |
+
from diffusers.utils import BaseOutput, logging
|
| 25 |
+
from diffusers.models.activations import get_activation
|
| 26 |
+
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
|
| 27 |
+
from diffusers.models.embeddings import (
|
| 28 |
+
GaussianFourierProjection,
|
| 29 |
+
ImageHintTimeEmbedding,
|
| 30 |
+
ImageProjection,
|
| 31 |
+
ImageTimeEmbedding,
|
| 32 |
+
TextImageProjection,
|
| 33 |
+
TextImageTimeEmbedding,
|
| 34 |
+
TextTimeEmbedding,
|
| 35 |
+
TimestepEmbedding,
|
| 36 |
+
Timesteps,
|
| 37 |
+
)
|
| 38 |
+
from diffusers.models.modeling_utils import ModelMixin, load_state_dict, _load_state_dict_into_model
|
| 39 |
+
from diffusers.models.unets.unet_2d_blocks import (
|
| 40 |
+
CrossAttnDownBlock2D,
|
| 41 |
+
CrossAttnUpBlock2D,
|
| 42 |
+
DownBlock2D,
|
| 43 |
+
UNetMidBlock2DCrossAttn,
|
| 44 |
+
UNetMidBlock2DSimpleCrossAttn,
|
| 45 |
+
UpBlock2D,
|
| 46 |
+
)
|
| 47 |
+
from diffusers.utils import (
|
| 48 |
+
CONFIG_NAME,
|
| 49 |
+
FLAX_WEIGHTS_NAME,
|
| 50 |
+
SAFETENSORS_WEIGHTS_NAME,
|
| 51 |
+
WEIGHTS_NAME,
|
| 52 |
+
_add_variant,
|
| 53 |
+
_get_model_file,
|
| 54 |
+
deprecate,
|
| 55 |
+
is_torch_version,
|
| 56 |
+
logging,
|
| 57 |
+
)
|
| 58 |
+
from diffusers.utils.import_utils import is_accelerate_available
|
| 59 |
+
from diffusers.utils.hub_utils import HF_HUB_OFFLINE
|
| 60 |
+
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
|
| 61 |
+
DIFFUSERS_CACHE = HUGGINGFACE_HUB_CACHE
|
| 62 |
+
|
| 63 |
+
from diffusers import __version__
|
| 64 |
+
from .unet_mv2d_blocks import (
|
| 65 |
+
CrossAttnDownBlockMV2D,
|
| 66 |
+
CrossAttnUpBlockMV2D,
|
| 67 |
+
UNetMidBlockMV2DCrossAttn,
|
| 68 |
+
get_down_block,
|
| 69 |
+
get_up_block,
|
| 70 |
+
)
|
| 71 |
+
from einops import rearrange, repeat
|
| 72 |
+
|
| 73 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
@dataclass
|
| 77 |
+
class UNetMV2DConditionOutput(BaseOutput):
|
| 78 |
+
"""
|
| 79 |
+
The output of [`UNet2DConditionModel`].
|
| 80 |
+
|
| 81 |
+
Args:
|
| 82 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 83 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
| 84 |
+
"""
|
| 85 |
+
|
| 86 |
+
sample: torch.FloatTensor = None
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
class ResidualBlock(nn.Module):
|
| 90 |
+
def __init__(self, dim):
|
| 91 |
+
super(ResidualBlock, self).__init__()
|
| 92 |
+
self.linear1 = nn.Linear(dim, dim)
|
| 93 |
+
self.activation = nn.SiLU()
|
| 94 |
+
self.linear2 = nn.Linear(dim, dim)
|
| 95 |
+
|
| 96 |
+
def forward(self, x):
|
| 97 |
+
identity = x
|
| 98 |
+
out = self.linear1(x)
|
| 99 |
+
out = self.activation(out)
|
| 100 |
+
out = self.linear2(out)
|
| 101 |
+
out += identity
|
| 102 |
+
out = self.activation(out)
|
| 103 |
+
return out
|
| 104 |
+
|
| 105 |
+
class ResidualLiner(nn.Module):
|
| 106 |
+
def __init__(self, in_features, out_features, dim, act=None, num_block=1):
|
| 107 |
+
super(ResidualLiner, self).__init__()
|
| 108 |
+
self.linear_in = nn.Sequential(nn.Linear(in_features, dim), nn.SiLU())
|
| 109 |
+
|
| 110 |
+
blocks = nn.ModuleList()
|
| 111 |
+
for _ in range(num_block):
|
| 112 |
+
blocks.append(ResidualBlock(dim))
|
| 113 |
+
self.blocks = blocks
|
| 114 |
+
|
| 115 |
+
self.linear_out = nn.Linear(dim, out_features)
|
| 116 |
+
self.act = act
|
| 117 |
+
|
| 118 |
+
def forward(self, x):
|
| 119 |
+
out = self.linear_in(x)
|
| 120 |
+
for block in self.blocks:
|
| 121 |
+
out = block(out)
|
| 122 |
+
out = self.linear_out(out)
|
| 123 |
+
if self.act is not None:
|
| 124 |
+
out = self.act(out)
|
| 125 |
+
return out
|
| 126 |
+
|
| 127 |
+
class BasicConvBlock(nn.Module):
|
| 128 |
+
def __init__(self, in_channels, out_channels, stride=1):
|
| 129 |
+
super(BasicConvBlock, self).__init__()
|
| 130 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
|
| 131 |
+
self.norm1 = nn.GroupNorm(num_groups=8, num_channels=in_channels, affine=True)
|
| 132 |
+
self.act = nn.SiLU()
|
| 133 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
|
| 134 |
+
self.norm2 = nn.GroupNorm(num_groups=8, num_channels=in_channels, affine=True)
|
| 135 |
+
self.downsample = nn.Sequential()
|
| 136 |
+
if stride != 1 or in_channels != out_channels:
|
| 137 |
+
self.downsample = nn.Sequential(
|
| 138 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
|
| 139 |
+
nn.GroupNorm(num_groups=8, num_channels=in_channels, affine=True)
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
def forward(self, x):
|
| 143 |
+
identity = x
|
| 144 |
+
out = self.conv1(x)
|
| 145 |
+
out = self.norm1(out)
|
| 146 |
+
out = self.act(out)
|
| 147 |
+
out = self.conv2(out)
|
| 148 |
+
out = self.norm2(out)
|
| 149 |
+
out += self.downsample(identity)
|
| 150 |
+
out = self.act(out)
|
| 151 |
+
return out
|
| 152 |
+
|
| 153 |
+
class UNetMV2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
| 154 |
+
r"""
|
| 155 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
| 156 |
+
shaped output.
|
| 157 |
+
|
| 158 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
| 159 |
+
for all models (such as downloading or saving).
|
| 160 |
+
|
| 161 |
+
Parameters:
|
| 162 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
| 163 |
+
Height and width of input/output sample.
|
| 164 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
| 165 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
| 166 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
| 167 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
| 168 |
+
Whether to flip the sin to cos in the time embedding.
|
| 169 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
| 170 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
| 171 |
+
The tuple of downsample blocks to use.
|
| 172 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
| 173 |
+
Block type for middle of UNet, it can be either `UNetMidBlock2DCrossAttn` or
|
| 174 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
| 175 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
| 176 |
+
The tuple of upsample blocks to use.
|
| 177 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
| 178 |
+
Whether to include self-attention in the basic transformer blocks, see
|
| 179 |
+
[`~models.attention.BasicTransformerBlock`].
|
| 180 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
| 181 |
+
The tuple of output channels for each block.
|
| 182 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
| 183 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
| 184 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
| 185 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
| 186 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
| 187 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
| 188 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
| 189 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
| 190 |
+
The dimension of the cross attention features.
|
| 191 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
| 192 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
| 193 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
| 194 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
| 195 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
| 196 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
| 197 |
+
dimension to `cross_attention_dim`.
|
| 198 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
| 199 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
| 200 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
| 201 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
| 202 |
+
num_attention_heads (`int`, *optional*):
|
| 203 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
| 204 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
| 205 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
| 206 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
| 207 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
| 208 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
| 209 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
| 210 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
| 211 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
| 212 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
| 213 |
+
Dimension for the timestep embeddings.
|
| 214 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
| 215 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
| 216 |
+
class conditioning with `class_embed_type` equal to `None`.
|
| 217 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
| 218 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
| 219 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
| 220 |
+
An optional override for the dimension of the projected time embedding.
|
| 221 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
| 222 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
| 223 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
| 224 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
| 225 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
| 226 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
| 227 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
| 228 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
| 229 |
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
| 230 |
+
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
| 231 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
| 232 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
| 233 |
+
embeddings with the class embeddings.
|
| 234 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
| 235 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
| 236 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
| 237 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
| 238 |
+
otherwise.
|
| 239 |
+
"""
|
| 240 |
+
|
| 241 |
+
_supports_gradient_checkpointing = True
|
| 242 |
+
|
| 243 |
+
@register_to_config
|
| 244 |
+
def __init__(
|
| 245 |
+
self,
|
| 246 |
+
sample_size: Optional[int] = None,
|
| 247 |
+
in_channels: int = 4,
|
| 248 |
+
out_channels: int = 4,
|
| 249 |
+
center_input_sample: bool = False,
|
| 250 |
+
flip_sin_to_cos: bool = True,
|
| 251 |
+
freq_shift: int = 0,
|
| 252 |
+
down_block_types: Tuple[str] = (
|
| 253 |
+
"CrossAttnDownBlockMV2D",
|
| 254 |
+
"CrossAttnDownBlockMV2D",
|
| 255 |
+
"CrossAttnDownBlockMV2D",
|
| 256 |
+
"DownBlock2D",
|
| 257 |
+
),
|
| 258 |
+
mid_block_type: Optional[str] = "UNetMidBlockMV2DCrossAttn",
|
| 259 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlockMV2D", "CrossAttnUpBlockMV2D", "CrossAttnUpBlockMV2D"),
|
| 260 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
| 261 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
| 262 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
| 263 |
+
downsample_padding: int = 1,
|
| 264 |
+
mid_block_scale_factor: float = 1,
|
| 265 |
+
act_fn: str = "silu",
|
| 266 |
+
norm_num_groups: Optional[int] = 32,
|
| 267 |
+
norm_eps: float = 1e-5,
|
| 268 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
| 269 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
| 270 |
+
encoder_hid_dim: Optional[int] = None,
|
| 271 |
+
encoder_hid_dim_type: Optional[str] = None,
|
| 272 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
| 273 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
| 274 |
+
dual_cross_attention: bool = False,
|
| 275 |
+
use_linear_projection: bool = False,
|
| 276 |
+
class_embed_type: Optional[str] = None,
|
| 277 |
+
addition_embed_type: Optional[str] = None,
|
| 278 |
+
addition_time_embed_dim: Optional[int] = None,
|
| 279 |
+
num_class_embeds: Optional[int] = None,
|
| 280 |
+
upcast_attention: bool = False,
|
| 281 |
+
resnet_time_scale_shift: str = "default",
|
| 282 |
+
resnet_skip_time_act: bool = False,
|
| 283 |
+
resnet_out_scale_factor: int = 1.0,
|
| 284 |
+
time_embedding_type: str = "positional",
|
| 285 |
+
time_embedding_dim: Optional[int] = None,
|
| 286 |
+
time_embedding_act_fn: Optional[str] = None,
|
| 287 |
+
timestep_post_act: Optional[str] = None,
|
| 288 |
+
time_cond_proj_dim: Optional[int] = None,
|
| 289 |
+
conv_in_kernel: int = 3,
|
| 290 |
+
conv_out_kernel: int = 3,
|
| 291 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
| 292 |
+
class_embeddings_concat: bool = False,
|
| 293 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
| 294 |
+
cross_attention_norm: Optional[str] = None,
|
| 295 |
+
addition_embed_type_num_heads=64,
|
| 296 |
+
num_views: int = 1,
|
| 297 |
+
cd_attention_last: bool = False,
|
| 298 |
+
cd_attention_mid: bool = False,
|
| 299 |
+
multiview_attention: bool = True,
|
| 300 |
+
sparse_mv_attention: bool = False,
|
| 301 |
+
selfattn_block: str = "custom",
|
| 302 |
+
addition_downsample: bool = False,
|
| 303 |
+
addition_channels: Optional[Tuple[int]] = (1280, 1280, 1280),
|
| 304 |
+
):
|
| 305 |
+
super().__init__()
|
| 306 |
+
|
| 307 |
+
self.sample_size = sample_size
|
| 308 |
+
self.num_views = num_views
|
| 309 |
+
|
| 310 |
+
if num_attention_heads is not None:
|
| 311 |
+
raise ValueError(
|
| 312 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
| 316 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
| 317 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
| 318 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
| 319 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
| 320 |
+
# which is why we correct for the naming here.
|
| 321 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
| 322 |
+
|
| 323 |
+
# Check inputs
|
| 324 |
+
if len(down_block_types) != len(up_block_types):
|
| 325 |
+
raise ValueError(
|
| 326 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
if len(block_out_channels) != len(down_block_types):
|
| 330 |
+
raise ValueError(
|
| 331 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
| 335 |
+
raise ValueError(
|
| 336 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
| 337 |
+
)
|
| 338 |
+
|
| 339 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
| 340 |
+
raise ValueError(
|
| 341 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
| 345 |
+
raise ValueError(
|
| 346 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
| 350 |
+
raise ValueError(
|
| 351 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
| 355 |
+
raise ValueError(
|
| 356 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
# input
|
| 360 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
| 361 |
+
self.conv_in = nn.Conv2d(
|
| 362 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
| 363 |
+
)
|
| 364 |
+
|
| 365 |
+
# time
|
| 366 |
+
if time_embedding_type == "fourier":
|
| 367 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
| 368 |
+
if time_embed_dim % 2 != 0:
|
| 369 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
| 370 |
+
self.time_proj = GaussianFourierProjection(
|
| 371 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
| 372 |
+
)
|
| 373 |
+
timestep_input_dim = time_embed_dim
|
| 374 |
+
elif time_embedding_type == "positional":
|
| 375 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
| 376 |
+
|
| 377 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
| 378 |
+
timestep_input_dim = block_out_channels[0]
|
| 379 |
+
else:
|
| 380 |
+
raise ValueError(
|
| 381 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
| 382 |
+
)
|
| 383 |
+
|
| 384 |
+
self.time_embedding = TimestepEmbedding(
|
| 385 |
+
timestep_input_dim,
|
| 386 |
+
time_embed_dim,
|
| 387 |
+
act_fn=act_fn,
|
| 388 |
+
post_act_fn=timestep_post_act,
|
| 389 |
+
cond_proj_dim=time_cond_proj_dim,
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
| 393 |
+
encoder_hid_dim_type = "text_proj"
|
| 394 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
| 395 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
| 396 |
+
|
| 397 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
| 398 |
+
raise ValueError(
|
| 399 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
| 400 |
+
)
|
| 401 |
+
|
| 402 |
+
if encoder_hid_dim_type == "text_proj":
|
| 403 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
| 404 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
| 405 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
| 406 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
| 407 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
| 408 |
+
self.encoder_hid_proj = TextImageProjection(
|
| 409 |
+
text_embed_dim=encoder_hid_dim,
|
| 410 |
+
image_embed_dim=cross_attention_dim,
|
| 411 |
+
cross_attention_dim=cross_attention_dim,
|
| 412 |
+
)
|
| 413 |
+
elif encoder_hid_dim_type == "image_proj":
|
| 414 |
+
# Kandinsky 2.2
|
| 415 |
+
self.encoder_hid_proj = ImageProjection(
|
| 416 |
+
image_embed_dim=encoder_hid_dim,
|
| 417 |
+
cross_attention_dim=cross_attention_dim,
|
| 418 |
+
)
|
| 419 |
+
elif encoder_hid_dim_type is not None:
|
| 420 |
+
raise ValueError(
|
| 421 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
| 422 |
+
)
|
| 423 |
+
else:
|
| 424 |
+
self.encoder_hid_proj = None
|
| 425 |
+
|
| 426 |
+
# class embedding
|
| 427 |
+
if class_embed_type is None and num_class_embeds is not None:
|
| 428 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
| 429 |
+
elif class_embed_type == "timestep":
|
| 430 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
| 431 |
+
elif class_embed_type == "identity":
|
| 432 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
| 433 |
+
elif class_embed_type == "projection":
|
| 434 |
+
if projection_class_embeddings_input_dim is None:
|
| 435 |
+
raise ValueError(
|
| 436 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
| 437 |
+
)
|
| 438 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
| 439 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
| 440 |
+
# 2. it projects from an arbitrary input dimension.
|
| 441 |
+
#
|
| 442 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
| 443 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
| 444 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
| 445 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
| 446 |
+
elif class_embed_type == "simple_projection":
|
| 447 |
+
if projection_class_embeddings_input_dim is None:
|
| 448 |
+
raise ValueError(
|
| 449 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
| 450 |
+
)
|
| 451 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
| 452 |
+
else:
|
| 453 |
+
self.class_embedding = None
|
| 454 |
+
|
| 455 |
+
if addition_embed_type == "text":
|
| 456 |
+
if encoder_hid_dim is not None:
|
| 457 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
| 458 |
+
else:
|
| 459 |
+
text_time_embedding_from_dim = cross_attention_dim
|
| 460 |
+
|
| 461 |
+
self.add_embedding = TextTimeEmbedding(
|
| 462 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
| 463 |
+
)
|
| 464 |
+
elif addition_embed_type == "text_image":
|
| 465 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
| 466 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
| 467 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
| 468 |
+
self.add_embedding = TextImageTimeEmbedding(
|
| 469 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
| 470 |
+
)
|
| 471 |
+
elif addition_embed_type == "text_time":
|
| 472 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
| 473 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
| 474 |
+
elif addition_embed_type == "image":
|
| 475 |
+
# Kandinsky 2.2
|
| 476 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
| 477 |
+
elif addition_embed_type == "image_hint":
|
| 478 |
+
# Kandinsky 2.2 ControlNet
|
| 479 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
| 480 |
+
elif addition_embed_type is not None:
|
| 481 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
| 482 |
+
|
| 483 |
+
if time_embedding_act_fn is None:
|
| 484 |
+
self.time_embed_act = None
|
| 485 |
+
else:
|
| 486 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
| 487 |
+
|
| 488 |
+
self.down_blocks = nn.ModuleList([])
|
| 489 |
+
self.up_blocks = nn.ModuleList([])
|
| 490 |
+
|
| 491 |
+
if isinstance(only_cross_attention, bool):
|
| 492 |
+
if mid_block_only_cross_attention is None:
|
| 493 |
+
mid_block_only_cross_attention = only_cross_attention
|
| 494 |
+
|
| 495 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
| 496 |
+
|
| 497 |
+
if mid_block_only_cross_attention is None:
|
| 498 |
+
mid_block_only_cross_attention = False
|
| 499 |
+
|
| 500 |
+
if isinstance(num_attention_heads, int):
|
| 501 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
| 502 |
+
|
| 503 |
+
if isinstance(attention_head_dim, int):
|
| 504 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
| 505 |
+
|
| 506 |
+
if isinstance(cross_attention_dim, int):
|
| 507 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
| 508 |
+
|
| 509 |
+
if isinstance(layers_per_block, int):
|
| 510 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
| 511 |
+
|
| 512 |
+
if isinstance(transformer_layers_per_block, int):
|
| 513 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
| 514 |
+
|
| 515 |
+
if class_embeddings_concat:
|
| 516 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
| 517 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
| 518 |
+
# regular time embeddings
|
| 519 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
| 520 |
+
else:
|
| 521 |
+
blocks_time_embed_dim = time_embed_dim
|
| 522 |
+
|
| 523 |
+
# down
|
| 524 |
+
output_channel = block_out_channels[0]
|
| 525 |
+
for i, down_block_type in enumerate(down_block_types):
|
| 526 |
+
input_channel = output_channel
|
| 527 |
+
output_channel = block_out_channels[i]
|
| 528 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 529 |
+
|
| 530 |
+
down_block = get_down_block(
|
| 531 |
+
down_block_type,
|
| 532 |
+
num_layers=layers_per_block[i],
|
| 533 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
| 534 |
+
in_channels=input_channel,
|
| 535 |
+
out_channels=output_channel,
|
| 536 |
+
temb_channels=blocks_time_embed_dim,
|
| 537 |
+
add_downsample=not is_final_block,
|
| 538 |
+
resnet_eps=norm_eps,
|
| 539 |
+
resnet_act_fn=act_fn,
|
| 540 |
+
resnet_groups=norm_num_groups,
|
| 541 |
+
cross_attention_dim=cross_attention_dim[i],
|
| 542 |
+
num_attention_heads=num_attention_heads[i],
|
| 543 |
+
downsample_padding=downsample_padding,
|
| 544 |
+
dual_cross_attention=dual_cross_attention,
|
| 545 |
+
use_linear_projection=use_linear_projection,
|
| 546 |
+
only_cross_attention=only_cross_attention[i],
|
| 547 |
+
upcast_attention=upcast_attention,
|
| 548 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 549 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
| 550 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
| 551 |
+
cross_attention_norm=cross_attention_norm,
|
| 552 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
| 553 |
+
num_views=num_views,
|
| 554 |
+
cd_attention_last=cd_attention_last,
|
| 555 |
+
cd_attention_mid=cd_attention_mid,
|
| 556 |
+
multiview_attention=multiview_attention,
|
| 557 |
+
sparse_mv_attention=sparse_mv_attention,
|
| 558 |
+
selfattn_block=selfattn_block,
|
| 559 |
+
)
|
| 560 |
+
self.down_blocks.append(down_block)
|
| 561 |
+
|
| 562 |
+
# mid
|
| 563 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
| 564 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
| 565 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
| 566 |
+
in_channels=block_out_channels[-1],
|
| 567 |
+
temb_channels=blocks_time_embed_dim,
|
| 568 |
+
resnet_eps=norm_eps,
|
| 569 |
+
resnet_act_fn=act_fn,
|
| 570 |
+
output_scale_factor=mid_block_scale_factor,
|
| 571 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 572 |
+
cross_attention_dim=cross_attention_dim[-1],
|
| 573 |
+
num_attention_heads=num_attention_heads[-1],
|
| 574 |
+
resnet_groups=norm_num_groups,
|
| 575 |
+
dual_cross_attention=dual_cross_attention,
|
| 576 |
+
use_linear_projection=use_linear_projection,
|
| 577 |
+
upcast_attention=upcast_attention,
|
| 578 |
+
)
|
| 579 |
+
# custom MV2D attention block
|
| 580 |
+
elif mid_block_type == "UNetMidBlockMV2DCrossAttn":
|
| 581 |
+
self.mid_block = UNetMidBlockMV2DCrossAttn(
|
| 582 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
| 583 |
+
in_channels=block_out_channels[-1],
|
| 584 |
+
temb_channels=blocks_time_embed_dim,
|
| 585 |
+
resnet_eps=norm_eps,
|
| 586 |
+
resnet_act_fn=act_fn,
|
| 587 |
+
output_scale_factor=mid_block_scale_factor,
|
| 588 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 589 |
+
cross_attention_dim=cross_attention_dim[-1],
|
| 590 |
+
num_attention_heads=num_attention_heads[-1],
|
| 591 |
+
resnet_groups=norm_num_groups,
|
| 592 |
+
dual_cross_attention=dual_cross_attention,
|
| 593 |
+
use_linear_projection=use_linear_projection,
|
| 594 |
+
upcast_attention=upcast_attention,
|
| 595 |
+
num_views=num_views,
|
| 596 |
+
cd_attention_last=cd_attention_last,
|
| 597 |
+
cd_attention_mid=cd_attention_mid,
|
| 598 |
+
multiview_attention=multiview_attention,
|
| 599 |
+
sparse_mv_attention=sparse_mv_attention,
|
| 600 |
+
selfattn_block=selfattn_block,
|
| 601 |
+
)
|
| 602 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
| 603 |
+
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
| 604 |
+
in_channels=block_out_channels[-1],
|
| 605 |
+
temb_channels=blocks_time_embed_dim,
|
| 606 |
+
resnet_eps=norm_eps,
|
| 607 |
+
resnet_act_fn=act_fn,
|
| 608 |
+
output_scale_factor=mid_block_scale_factor,
|
| 609 |
+
cross_attention_dim=cross_attention_dim[-1],
|
| 610 |
+
attention_head_dim=attention_head_dim[-1],
|
| 611 |
+
resnet_groups=norm_num_groups,
|
| 612 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 613 |
+
skip_time_act=resnet_skip_time_act,
|
| 614 |
+
only_cross_attention=mid_block_only_cross_attention,
|
| 615 |
+
cross_attention_norm=cross_attention_norm,
|
| 616 |
+
)
|
| 617 |
+
elif mid_block_type is None:
|
| 618 |
+
self.mid_block = None
|
| 619 |
+
else:
|
| 620 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
| 621 |
+
|
| 622 |
+
self.addition_downsample = addition_downsample
|
| 623 |
+
if self.addition_downsample:
|
| 624 |
+
inc = block_out_channels[-1]
|
| 625 |
+
self.downsample = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
| 626 |
+
self.conv_block = nn.ModuleList()
|
| 627 |
+
self.conv_block.append(BasicConvBlock(inc, addition_channels[0], stride=1))
|
| 628 |
+
for dim_ in addition_channels[1:-1]:
|
| 629 |
+
self.conv_block.append(BasicConvBlock(dim_, dim_, stride=1))
|
| 630 |
+
self.conv_block.append(BasicConvBlock(dim_, inc))
|
| 631 |
+
self.addition_conv_out = nn.Conv2d(inc, inc, kernel_size=1, bias=False)
|
| 632 |
+
nn.init.zeros_(self.addition_conv_out.weight.data)
|
| 633 |
+
self.addition_act_out = nn.SiLU()
|
| 634 |
+
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
|
| 635 |
+
|
| 636 |
+
# count how many layers upsample the images
|
| 637 |
+
self.num_upsamplers = 0
|
| 638 |
+
|
| 639 |
+
# up
|
| 640 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
| 641 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
| 642 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
| 643 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
| 644 |
+
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
| 645 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
| 646 |
+
|
| 647 |
+
output_channel = reversed_block_out_channels[0]
|
| 648 |
+
for i, up_block_type in enumerate(up_block_types):
|
| 649 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 650 |
+
|
| 651 |
+
prev_output_channel = output_channel
|
| 652 |
+
output_channel = reversed_block_out_channels[i]
|
| 653 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
| 654 |
+
|
| 655 |
+
# add upsample block for all BUT final layer
|
| 656 |
+
if not is_final_block:
|
| 657 |
+
add_upsample = True
|
| 658 |
+
self.num_upsamplers += 1
|
| 659 |
+
else:
|
| 660 |
+
add_upsample = False
|
| 661 |
+
|
| 662 |
+
up_block = get_up_block(
|
| 663 |
+
up_block_type,
|
| 664 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
| 665 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
| 666 |
+
in_channels=input_channel,
|
| 667 |
+
out_channels=output_channel,
|
| 668 |
+
prev_output_channel=prev_output_channel,
|
| 669 |
+
temb_channels=blocks_time_embed_dim,
|
| 670 |
+
add_upsample=add_upsample,
|
| 671 |
+
resnet_eps=norm_eps,
|
| 672 |
+
resnet_act_fn=act_fn,
|
| 673 |
+
resnet_groups=norm_num_groups,
|
| 674 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
| 675 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
| 676 |
+
dual_cross_attention=dual_cross_attention,
|
| 677 |
+
use_linear_projection=use_linear_projection,
|
| 678 |
+
only_cross_attention=only_cross_attention[i],
|
| 679 |
+
upcast_attention=upcast_attention,
|
| 680 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 681 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
| 682 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
| 683 |
+
cross_attention_norm=cross_attention_norm,
|
| 684 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
| 685 |
+
num_views=num_views,
|
| 686 |
+
cd_attention_last=cd_attention_last,
|
| 687 |
+
cd_attention_mid=cd_attention_mid,
|
| 688 |
+
multiview_attention=multiview_attention,
|
| 689 |
+
sparse_mv_attention=sparse_mv_attention,
|
| 690 |
+
selfattn_block=selfattn_block,
|
| 691 |
+
)
|
| 692 |
+
self.up_blocks.append(up_block)
|
| 693 |
+
prev_output_channel = output_channel
|
| 694 |
+
|
| 695 |
+
# out
|
| 696 |
+
if norm_num_groups is not None:
|
| 697 |
+
self.conv_norm_out = nn.GroupNorm(
|
| 698 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
| 699 |
+
)
|
| 700 |
+
|
| 701 |
+
self.conv_act = get_activation(act_fn)
|
| 702 |
+
|
| 703 |
+
else:
|
| 704 |
+
self.conv_norm_out = None
|
| 705 |
+
self.conv_act = None
|
| 706 |
+
|
| 707 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
| 708 |
+
self.conv_out = nn.Conv2d(
|
| 709 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
| 710 |
+
)
|
| 711 |
+
|
| 712 |
+
@property
|
| 713 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 714 |
+
r"""
|
| 715 |
+
Returns:
|
| 716 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 717 |
+
indexed by its weight name.
|
| 718 |
+
"""
|
| 719 |
+
# set recursively
|
| 720 |
+
processors = {}
|
| 721 |
+
|
| 722 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 723 |
+
if hasattr(module, "set_processor"):
|
| 724 |
+
processors[f"{name}.processor"] = module.processor
|
| 725 |
+
|
| 726 |
+
for sub_name, child in module.named_children():
|
| 727 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 728 |
+
|
| 729 |
+
return processors
|
| 730 |
+
|
| 731 |
+
for name, module in self.named_children():
|
| 732 |
+
fn_recursive_add_processors(name, module, processors)
|
| 733 |
+
|
| 734 |
+
return processors
|
| 735 |
+
|
| 736 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 737 |
+
r"""
|
| 738 |
+
Sets the attention processor to use to compute attention.
|
| 739 |
+
|
| 740 |
+
Parameters:
|
| 741 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 742 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 743 |
+
for **all** `Attention` layers.
|
| 744 |
+
|
| 745 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 746 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 747 |
+
|
| 748 |
+
"""
|
| 749 |
+
count = len(self.attn_processors.keys())
|
| 750 |
+
|
| 751 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 752 |
+
raise ValueError(
|
| 753 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 754 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 755 |
+
)
|
| 756 |
+
|
| 757 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 758 |
+
if hasattr(module, "set_processor"):
|
| 759 |
+
if not isinstance(processor, dict):
|
| 760 |
+
module.set_processor(processor)
|
| 761 |
+
else:
|
| 762 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 763 |
+
|
| 764 |
+
for sub_name, child in module.named_children():
|
| 765 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 766 |
+
|
| 767 |
+
for name, module in self.named_children():
|
| 768 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 769 |
+
|
| 770 |
+
def set_default_attn_processor(self):
|
| 771 |
+
"""
|
| 772 |
+
Disables custom attention processors and sets the default attention implementation.
|
| 773 |
+
"""
|
| 774 |
+
self.set_attn_processor(AttnProcessor())
|
| 775 |
+
|
| 776 |
+
def set_attention_slice(self, slice_size):
|
| 777 |
+
r"""
|
| 778 |
+
Enable sliced attention computation.
|
| 779 |
+
|
| 780 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
| 781 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
| 782 |
+
|
| 783 |
+
Args:
|
| 784 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
| 785 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
| 786 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
| 787 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
| 788 |
+
must be a multiple of `slice_size`.
|
| 789 |
+
"""
|
| 790 |
+
sliceable_head_dims = []
|
| 791 |
+
|
| 792 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
| 793 |
+
if hasattr(module, "set_attention_slice"):
|
| 794 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
| 795 |
+
|
| 796 |
+
for child in module.children():
|
| 797 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
| 798 |
+
|
| 799 |
+
# retrieve number of attention layers
|
| 800 |
+
for module in self.children():
|
| 801 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
| 802 |
+
|
| 803 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
| 804 |
+
|
| 805 |
+
if slice_size == "auto":
|
| 806 |
+
# half the attention head size is usually a good trade-off between
|
| 807 |
+
# speed and memory
|
| 808 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
| 809 |
+
elif slice_size == "max":
|
| 810 |
+
# make smallest slice possible
|
| 811 |
+
slice_size = num_sliceable_layers * [1]
|
| 812 |
+
|
| 813 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
| 814 |
+
|
| 815 |
+
if len(slice_size) != len(sliceable_head_dims):
|
| 816 |
+
raise ValueError(
|
| 817 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
| 818 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
| 819 |
+
)
|
| 820 |
+
|
| 821 |
+
for i in range(len(slice_size)):
|
| 822 |
+
size = slice_size[i]
|
| 823 |
+
dim = sliceable_head_dims[i]
|
| 824 |
+
if size is not None and size > dim:
|
| 825 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
| 826 |
+
|
| 827 |
+
# Recursively walk through all the children.
|
| 828 |
+
# Any children which exposes the set_attention_slice method
|
| 829 |
+
# gets the message
|
| 830 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
| 831 |
+
if hasattr(module, "set_attention_slice"):
|
| 832 |
+
module.set_attention_slice(slice_size.pop())
|
| 833 |
+
|
| 834 |
+
for child in module.children():
|
| 835 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
| 836 |
+
|
| 837 |
+
reversed_slice_size = list(reversed(slice_size))
|
| 838 |
+
for module in self.children():
|
| 839 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
| 840 |
+
|
| 841 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 842 |
+
if isinstance(module, (CrossAttnDownBlock2D, CrossAttnDownBlockMV2D, DownBlock2D, CrossAttnUpBlock2D, CrossAttnUpBlockMV2D, UpBlock2D)):
|
| 843 |
+
module.gradient_checkpointing = value
|
| 844 |
+
|
| 845 |
+
def forward(
|
| 846 |
+
self,
|
| 847 |
+
sample: torch.FloatTensor,
|
| 848 |
+
timestep: Union[torch.Tensor, float, int],
|
| 849 |
+
encoder_hidden_states: torch.Tensor = None,
|
| 850 |
+
class_labels: Optional[torch.Tensor] = None,
|
| 851 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
| 852 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 853 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 854 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
| 855 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
| 856 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
| 857 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 858 |
+
return_dict: bool = True,
|
| 859 |
+
vis_max_min: bool = False,
|
| 860 |
+
) -> Union[UNetMV2DConditionOutput, Tuple]:
|
| 861 |
+
r"""
|
| 862 |
+
The [`UNet2DConditionModel`] forward method.
|
| 863 |
+
|
| 864 |
+
Args:
|
| 865 |
+
sample (`torch.FloatTensor`):
|
| 866 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
| 867 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
| 868 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
| 869 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
| 870 |
+
encoder_attention_mask (`torch.Tensor`):
|
| 871 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
| 872 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
| 873 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
| 874 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 875 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
| 876 |
+
tuple.
|
| 877 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 878 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
| 879 |
+
added_cond_kwargs: (`dict`, *optional*):
|
| 880 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
| 881 |
+
are passed along to the UNet blocks.
|
| 882 |
+
|
| 883 |
+
Returns:
|
| 884 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
| 885 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
| 886 |
+
a `tuple` is returned where the first element is the sample tensor.
|
| 887 |
+
"""
|
| 888 |
+
record_max_min = {}
|
| 889 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
| 890 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
| 891 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
| 892 |
+
# on the fly if necessary.
|
| 893 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
| 894 |
+
|
| 895 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
| 896 |
+
forward_upsample_size = False
|
| 897 |
+
upsample_size = None
|
| 898 |
+
|
| 899 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
| 900 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
| 901 |
+
forward_upsample_size = True
|
| 902 |
+
|
| 903 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
| 904 |
+
# expects mask of shape:
|
| 905 |
+
# [batch, key_tokens]
|
| 906 |
+
# adds singleton query_tokens dimension:
|
| 907 |
+
# [batch, 1, key_tokens]
|
| 908 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
| 909 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
| 910 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
| 911 |
+
if attention_mask is not None:
|
| 912 |
+
# assume that mask is expressed as:
|
| 913 |
+
# (1 = keep, 0 = discard)
|
| 914 |
+
# convert mask into a bias that can be added to attention scores:
|
| 915 |
+
# (keep = +0, discard = -10000.0)
|
| 916 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
| 917 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 918 |
+
|
| 919 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
| 920 |
+
if encoder_attention_mask is not None:
|
| 921 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
| 922 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
| 923 |
+
|
| 924 |
+
# 0. center input if necessary
|
| 925 |
+
if self.config.center_input_sample:
|
| 926 |
+
sample = 2 * sample - 1.0
|
| 927 |
+
# 1. time
|
| 928 |
+
timesteps = timestep
|
| 929 |
+
if not torch.is_tensor(timesteps):
|
| 930 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
| 931 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
| 932 |
+
is_mps = sample.device.type == "mps"
|
| 933 |
+
if isinstance(timestep, float):
|
| 934 |
+
dtype = torch.float32 if is_mps else torch.float64
|
| 935 |
+
else:
|
| 936 |
+
dtype = torch.int32 if is_mps else torch.int64
|
| 937 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
| 938 |
+
elif len(timesteps.shape) == 0:
|
| 939 |
+
timesteps = timesteps[None].to(sample.device)
|
| 940 |
+
|
| 941 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 942 |
+
timesteps = timesteps.expand(sample.shape[0])
|
| 943 |
+
|
| 944 |
+
t_emb = self.time_proj(timesteps)
|
| 945 |
+
|
| 946 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
| 947 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 948 |
+
# there might be better ways to encapsulate this.
|
| 949 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
| 950 |
+
|
| 951 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
| 952 |
+
aug_emb = None
|
| 953 |
+
if self.class_embedding is not None:
|
| 954 |
+
if class_labels is None:
|
| 955 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
| 956 |
+
|
| 957 |
+
if self.config.class_embed_type == "timestep":
|
| 958 |
+
class_labels = self.time_proj(class_labels)
|
| 959 |
+
|
| 960 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
| 961 |
+
# there might be better ways to encapsulate this.
|
| 962 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
| 963 |
+
|
| 964 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
| 965 |
+
if self.config.class_embeddings_concat:
|
| 966 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
| 967 |
+
else:
|
| 968 |
+
emb = emb + class_emb
|
| 969 |
+
|
| 970 |
+
if self.config.addition_embed_type == "text":
|
| 971 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
| 972 |
+
elif self.config.addition_embed_type == "text_image":
|
| 973 |
+
# Kandinsky 2.1 - style
|
| 974 |
+
if "image_embeds" not in added_cond_kwargs:
|
| 975 |
+
raise ValueError(
|
| 976 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
| 977 |
+
)
|
| 978 |
+
|
| 979 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
| 980 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
| 981 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
| 982 |
+
elif self.config.addition_embed_type == "text_time":
|
| 983 |
+
# SDXL - style
|
| 984 |
+
if "text_embeds" not in added_cond_kwargs:
|
| 985 |
+
raise ValueError(
|
| 986 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
| 987 |
+
)
|
| 988 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
| 989 |
+
if "time_ids" not in added_cond_kwargs:
|
| 990 |
+
raise ValueError(
|
| 991 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
| 992 |
+
)
|
| 993 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
| 994 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
| 995 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
| 996 |
+
|
| 997 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
| 998 |
+
add_embeds = add_embeds.to(emb.dtype)
|
| 999 |
+
aug_emb = self.add_embedding(add_embeds)
|
| 1000 |
+
elif self.config.addition_embed_type == "image":
|
| 1001 |
+
# Kandinsky 2.2 - style
|
| 1002 |
+
if "image_embeds" not in added_cond_kwargs:
|
| 1003 |
+
raise ValueError(
|
| 1004 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
| 1005 |
+
)
|
| 1006 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
| 1007 |
+
aug_emb = self.add_embedding(image_embs)
|
| 1008 |
+
elif self.config.addition_embed_type == "image_hint":
|
| 1009 |
+
# Kandinsky 2.2 - style
|
| 1010 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
| 1011 |
+
raise ValueError(
|
| 1012 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
| 1013 |
+
)
|
| 1014 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
| 1015 |
+
hint = added_cond_kwargs.get("hint")
|
| 1016 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
| 1017 |
+
sample = torch.cat([sample, hint], dim=1)
|
| 1018 |
+
|
| 1019 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
| 1020 |
+
emb_pre_act = emb
|
| 1021 |
+
if self.time_embed_act is not None:
|
| 1022 |
+
emb = self.time_embed_act(emb)
|
| 1023 |
+
|
| 1024 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
| 1025 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
| 1026 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
| 1027 |
+
# Kadinsky 2.1 - style
|
| 1028 |
+
if "image_embeds" not in added_cond_kwargs:
|
| 1029 |
+
raise ValueError(
|
| 1030 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
| 1031 |
+
)
|
| 1032 |
+
|
| 1033 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
| 1034 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
| 1035 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
| 1036 |
+
# Kandinsky 2.2 - style
|
| 1037 |
+
if "image_embeds" not in added_cond_kwargs:
|
| 1038 |
+
raise ValueError(
|
| 1039 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
| 1040 |
+
)
|
| 1041 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
| 1042 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
| 1043 |
+
# 2. pre-process
|
| 1044 |
+
sample = self.conv_in(sample)
|
| 1045 |
+
# 3. down
|
| 1046 |
+
|
| 1047 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
| 1048 |
+
is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None
|
| 1049 |
+
|
| 1050 |
+
down_block_res_samples = (sample,)
|
| 1051 |
+
for i, downsample_block in enumerate(self.down_blocks):
|
| 1052 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
| 1053 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
| 1054 |
+
additional_residuals = {}
|
| 1055 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
| 1056 |
+
additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0)
|
| 1057 |
+
|
| 1058 |
+
sample, res_samples = downsample_block(
|
| 1059 |
+
hidden_states=sample,
|
| 1060 |
+
temb=emb,
|
| 1061 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1062 |
+
attention_mask=attention_mask,
|
| 1063 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1064 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1065 |
+
**additional_residuals,
|
| 1066 |
+
)
|
| 1067 |
+
else:
|
| 1068 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
| 1069 |
+
|
| 1070 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
| 1071 |
+
sample += down_block_additional_residuals.pop(0)
|
| 1072 |
+
|
| 1073 |
+
down_block_res_samples += res_samples
|
| 1074 |
+
|
| 1075 |
+
if is_controlnet:
|
| 1076 |
+
new_down_block_res_samples = ()
|
| 1077 |
+
|
| 1078 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
| 1079 |
+
down_block_res_samples, down_block_additional_residuals
|
| 1080 |
+
):
|
| 1081 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
| 1082 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
| 1083 |
+
|
| 1084 |
+
down_block_res_samples = new_down_block_res_samples
|
| 1085 |
+
|
| 1086 |
+
if self.addition_downsample:
|
| 1087 |
+
global_sample = sample
|
| 1088 |
+
global_sample = self.downsample(global_sample)
|
| 1089 |
+
for layer in self.conv_block:
|
| 1090 |
+
global_sample = layer(global_sample)
|
| 1091 |
+
global_sample = self.addition_act_out(self.addition_conv_out(global_sample))
|
| 1092 |
+
global_sample = self.upsample(global_sample)
|
| 1093 |
+
# 4. mid
|
| 1094 |
+
if self.mid_block is not None:
|
| 1095 |
+
sample = self.mid_block(
|
| 1096 |
+
sample,
|
| 1097 |
+
emb,
|
| 1098 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1099 |
+
attention_mask=attention_mask,
|
| 1100 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1101 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1102 |
+
)
|
| 1103 |
+
|
| 1104 |
+
if is_controlnet:
|
| 1105 |
+
sample = sample + mid_block_additional_residual
|
| 1106 |
+
|
| 1107 |
+
if self.addition_downsample:
|
| 1108 |
+
sample = sample + global_sample
|
| 1109 |
+
|
| 1110 |
+
# 5. up
|
| 1111 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
| 1112 |
+
is_final_block = i == len(self.up_blocks) - 1
|
| 1113 |
+
|
| 1114 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
| 1115 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
| 1116 |
+
|
| 1117 |
+
# if we have not reached the final block and need to forward the
|
| 1118 |
+
# upsample size, we do it here
|
| 1119 |
+
if not is_final_block and forward_upsample_size:
|
| 1120 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
| 1121 |
+
|
| 1122 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
| 1123 |
+
sample = upsample_block(
|
| 1124 |
+
hidden_states=sample,
|
| 1125 |
+
temb=emb,
|
| 1126 |
+
res_hidden_states_tuple=res_samples,
|
| 1127 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1128 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1129 |
+
upsample_size=upsample_size,
|
| 1130 |
+
attention_mask=attention_mask,
|
| 1131 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1132 |
+
)
|
| 1133 |
+
else:
|
| 1134 |
+
sample = upsample_block(
|
| 1135 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
| 1136 |
+
)
|
| 1137 |
+
if torch.isnan(sample).any() or torch.isinf(sample).any():
|
| 1138 |
+
print("NAN in sample, stop training.")
|
| 1139 |
+
exit()
|
| 1140 |
+
# 6. post-process
|
| 1141 |
+
if self.conv_norm_out:
|
| 1142 |
+
sample = self.conv_norm_out(sample)
|
| 1143 |
+
sample = self.conv_act(sample)
|
| 1144 |
+
sample = self.conv_out(sample)
|
| 1145 |
+
if not return_dict:
|
| 1146 |
+
return sample
|
| 1147 |
+
return UNetMV2DConditionOutput(sample=sample)
|
| 1148 |
+
|
| 1149 |
+
|
| 1150 |
+
@classmethod
|
| 1151 |
+
def from_pretrained_2d(
|
| 1152 |
+
cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
| 1153 |
+
num_views: int, sample_size: int,
|
| 1154 |
+
zero_init_conv_in: bool = True,
|
| 1155 |
+
cd_attention_last: bool = False,
|
| 1156 |
+
cd_attention_mid: bool = False, multiview_attention: bool = True,
|
| 1157 |
+
sparse_mv_attention: bool = False, selfattn_block: str = 'custom',
|
| 1158 |
+
in_channels: int = 8, out_channels: int = 4, unclip: bool = False,
|
| 1159 |
+
init_mvattn_with_selfattn: bool= False, addition_downsample: bool = False,
|
| 1160 |
+
**kwargs
|
| 1161 |
+
):
|
| 1162 |
+
r"""
|
| 1163 |
+
Instantiate a pretrained PyTorch model from a pretrained model configuration.
|
| 1164 |
+
|
| 1165 |
+
The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To
|
| 1166 |
+
train the model, set it back in training mode with `model.train()`.
|
| 1167 |
+
|
| 1168 |
+
Parameters:
|
| 1169 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
|
| 1170 |
+
Can be either:
|
| 1171 |
+
|
| 1172 |
+
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
| 1173 |
+
the Hub.
|
| 1174 |
+
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
| 1175 |
+
with [`~ModelMixin.save_pretrained`].
|
| 1176 |
+
|
| 1177 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
| 1178 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
| 1179 |
+
is not used.
|
| 1180 |
+
torch_dtype (`str` or `torch.dtype`, *optional*):
|
| 1181 |
+
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
|
| 1182 |
+
dtype is automatically derived from the model's weights.
|
| 1183 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
| 1184 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
| 1185 |
+
cached versions if they exist.
|
| 1186 |
+
|
| 1187 |
+
proxies (`Dict[str, str]`, *optional*):
|
| 1188 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
| 1189 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
| 1190 |
+
output_loading_info (`bool`, *optional*, defaults to `False`):
|
| 1191 |
+
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
| 1192 |
+
local_files_only(`bool`, *optional*, defaults to `False`):
|
| 1193 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
| 1194 |
+
won't be downloaded from the Hub.
|
| 1195 |
+
use_auth_token (`str` or *bool*, *optional*):
|
| 1196 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
| 1197 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
| 1198 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
| 1199 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
| 1200 |
+
allowed by Git.
|
| 1201 |
+
from_flax (`bool`, *optional*, defaults to `False`):
|
| 1202 |
+
Load the model weights from a Flax checkpoint save file.
|
| 1203 |
+
subfolder (`str`, *optional*, defaults to `""`):
|
| 1204 |
+
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
| 1205 |
+
mirror (`str`, *optional*):
|
| 1206 |
+
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
|
| 1207 |
+
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
|
| 1208 |
+
information.
|
| 1209 |
+
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
|
| 1210 |
+
A map that specifies where each submodule should go. It doesn't need to be defined for each
|
| 1211 |
+
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
|
| 1212 |
+
same device.
|
| 1213 |
+
|
| 1214 |
+
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
|
| 1215 |
+
more information about each option see [designing a device
|
| 1216 |
+
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
|
| 1217 |
+
max_memory (`Dict`, *optional*):
|
| 1218 |
+
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
|
| 1219 |
+
each GPU and the available CPU RAM if unset.
|
| 1220 |
+
offload_folder (`str` or `os.PathLike`, *optional*):
|
| 1221 |
+
The path to offload weights if `device_map` contains the value `"disk"`.
|
| 1222 |
+
offload_state_dict (`bool`, *optional*):
|
| 1223 |
+
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
|
| 1224 |
+
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
|
| 1225 |
+
when there is some disk offload.
|
| 1226 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
| 1227 |
+
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
| 1228 |
+
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
| 1229 |
+
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
| 1230 |
+
argument to `True` will raise an error.
|
| 1231 |
+
variant (`str`, *optional*):
|
| 1232 |
+
Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when
|
| 1233 |
+
loading `from_flax`.
|
| 1234 |
+
use_safetensors (`bool`, *optional*, defaults to `None`):
|
| 1235 |
+
If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the
|
| 1236 |
+
`safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors`
|
| 1237 |
+
weights. If set to `False`, `safetensors` weights are not loaded.
|
| 1238 |
+
|
| 1239 |
+
<Tip>
|
| 1240 |
+
|
| 1241 |
+
To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
|
| 1242 |
+
`huggingface-cli login`. You can also activate the special
|
| 1243 |
+
["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
|
| 1244 |
+
firewalled environment.
|
| 1245 |
+
|
| 1246 |
+
</Tip>
|
| 1247 |
+
|
| 1248 |
+
Example:
|
| 1249 |
+
|
| 1250 |
+
```py
|
| 1251 |
+
from diffusers import UNet2DConditionModel
|
| 1252 |
+
|
| 1253 |
+
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
|
| 1254 |
+
```
|
| 1255 |
+
|
| 1256 |
+
If you get the error message below, you need to finetune the weights for your downstream task:
|
| 1257 |
+
|
| 1258 |
+
```bash
|
| 1259 |
+
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
|
| 1260 |
+
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
|
| 1261 |
+
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
| 1262 |
+
```
|
| 1263 |
+
"""
|
| 1264 |
+
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
| 1265 |
+
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
|
| 1266 |
+
force_download = kwargs.pop("force_download", False)
|
| 1267 |
+
from_flax = kwargs.pop("from_flax", False)
|
| 1268 |
+
resume_download = kwargs.pop("resume_download", False)
|
| 1269 |
+
proxies = kwargs.pop("proxies", None)
|
| 1270 |
+
output_loading_info = kwargs.pop("output_loading_info", False)
|
| 1271 |
+
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
|
| 1272 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
| 1273 |
+
revision = kwargs.pop("revision", None)
|
| 1274 |
+
torch_dtype = kwargs.pop("torch_dtype", None)
|
| 1275 |
+
subfolder = kwargs.pop("subfolder", None)
|
| 1276 |
+
device_map = kwargs.pop("device_map", None)
|
| 1277 |
+
max_memory = kwargs.pop("max_memory", None)
|
| 1278 |
+
offload_folder = kwargs.pop("offload_folder", None)
|
| 1279 |
+
offload_state_dict = kwargs.pop("offload_state_dict", False)
|
| 1280 |
+
variant = kwargs.pop("variant", None)
|
| 1281 |
+
use_safetensors = kwargs.pop("use_safetensors", None)
|
| 1282 |
+
|
| 1283 |
+
if use_safetensors:
|
| 1284 |
+
raise ValueError(
|
| 1285 |
+
"`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetensors"
|
| 1286 |
+
)
|
| 1287 |
+
|
| 1288 |
+
allow_pickle = False
|
| 1289 |
+
if use_safetensors is None:
|
| 1290 |
+
use_safetensors = True
|
| 1291 |
+
allow_pickle = True
|
| 1292 |
+
|
| 1293 |
+
if device_map is not None and not is_accelerate_available():
|
| 1294 |
+
raise NotImplementedError(
|
| 1295 |
+
"Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
|
| 1296 |
+
" `device_map=None`. You can install accelerate with `pip install accelerate`."
|
| 1297 |
+
)
|
| 1298 |
+
|
| 1299 |
+
# Check if we can handle device_map and dispatching the weights
|
| 1300 |
+
if device_map is not None and not is_torch_version(">=", "1.9.0"):
|
| 1301 |
+
raise NotImplementedError(
|
| 1302 |
+
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
| 1303 |
+
" `device_map=None`."
|
| 1304 |
+
)
|
| 1305 |
+
|
| 1306 |
+
# Load config if we don't provide a configuration
|
| 1307 |
+
config_path = pretrained_model_name_or_path
|
| 1308 |
+
|
| 1309 |
+
user_agent = {
|
| 1310 |
+
"diffusers": __version__,
|
| 1311 |
+
"file_type": "model",
|
| 1312 |
+
"framework": "pytorch",
|
| 1313 |
+
}
|
| 1314 |
+
|
| 1315 |
+
# load config
|
| 1316 |
+
config, unused_kwargs, commit_hash = cls.load_config(
|
| 1317 |
+
config_path,
|
| 1318 |
+
cache_dir=cache_dir,
|
| 1319 |
+
return_unused_kwargs=True,
|
| 1320 |
+
return_commit_hash=True,
|
| 1321 |
+
force_download=force_download,
|
| 1322 |
+
resume_download=resume_download,
|
| 1323 |
+
proxies=proxies,
|
| 1324 |
+
local_files_only=local_files_only,
|
| 1325 |
+
use_auth_token=use_auth_token,
|
| 1326 |
+
revision=revision,
|
| 1327 |
+
subfolder=subfolder,
|
| 1328 |
+
device_map=device_map,
|
| 1329 |
+
max_memory=max_memory,
|
| 1330 |
+
offload_folder=offload_folder,
|
| 1331 |
+
offload_state_dict=offload_state_dict,
|
| 1332 |
+
user_agent=user_agent,
|
| 1333 |
+
**kwargs,
|
| 1334 |
+
)
|
| 1335 |
+
|
| 1336 |
+
# modify config
|
| 1337 |
+
config["_class_name"] = cls.__name__
|
| 1338 |
+
config['in_channels'] = in_channels
|
| 1339 |
+
config['out_channels'] = out_channels
|
| 1340 |
+
config['sample_size'] = sample_size # training resolution
|
| 1341 |
+
config['num_views'] = num_views
|
| 1342 |
+
config['cd_attention_last'] = cd_attention_last
|
| 1343 |
+
config['cd_attention_mid'] = cd_attention_mid
|
| 1344 |
+
config['multiview_attention'] = multiview_attention
|
| 1345 |
+
config['sparse_mv_attention'] = sparse_mv_attention
|
| 1346 |
+
config['selfattn_block'] = selfattn_block
|
| 1347 |
+
config["down_block_types"] = [
|
| 1348 |
+
"CrossAttnDownBlockMV2D",
|
| 1349 |
+
"CrossAttnDownBlockMV2D",
|
| 1350 |
+
"CrossAttnDownBlockMV2D",
|
| 1351 |
+
"DownBlock2D"
|
| 1352 |
+
]
|
| 1353 |
+
config['mid_block_type'] = "UNetMidBlockMV2DCrossAttn"
|
| 1354 |
+
config["up_block_types"] = [
|
| 1355 |
+
"UpBlock2D",
|
| 1356 |
+
"CrossAttnUpBlockMV2D",
|
| 1357 |
+
"CrossAttnUpBlockMV2D",
|
| 1358 |
+
"CrossAttnUpBlockMV2D"
|
| 1359 |
+
]
|
| 1360 |
+
|
| 1361 |
+
config['addition_downsample'] = addition_downsample
|
| 1362 |
+
# load model
|
| 1363 |
+
model_file = None
|
| 1364 |
+
if from_flax:
|
| 1365 |
+
raise NotImplementedError
|
| 1366 |
+
else:
|
| 1367 |
+
if use_safetensors:
|
| 1368 |
+
try:
|
| 1369 |
+
model_file = _get_model_file(
|
| 1370 |
+
pretrained_model_name_or_path,
|
| 1371 |
+
weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
|
| 1372 |
+
cache_dir=cache_dir,
|
| 1373 |
+
force_download=force_download,
|
| 1374 |
+
proxies=proxies,
|
| 1375 |
+
local_files_only=local_files_only,
|
| 1376 |
+
use_auth_token=use_auth_token,
|
| 1377 |
+
revision=revision,
|
| 1378 |
+
subfolder=subfolder,
|
| 1379 |
+
user_agent=user_agent,
|
| 1380 |
+
commit_hash=commit_hash,
|
| 1381 |
+
)
|
| 1382 |
+
except IOError as e:
|
| 1383 |
+
if not allow_pickle:
|
| 1384 |
+
raise e
|
| 1385 |
+
pass
|
| 1386 |
+
if model_file is None:
|
| 1387 |
+
model_file = _get_model_file(
|
| 1388 |
+
pretrained_model_name_or_path,
|
| 1389 |
+
weights_name=_add_variant(WEIGHTS_NAME, variant),
|
| 1390 |
+
cache_dir=cache_dir,
|
| 1391 |
+
force_download=force_download,
|
| 1392 |
+
proxies=proxies,
|
| 1393 |
+
local_files_only=local_files_only,
|
| 1394 |
+
use_auth_token=use_auth_token,
|
| 1395 |
+
revision=revision,
|
| 1396 |
+
subfolder=subfolder,
|
| 1397 |
+
user_agent=user_agent,
|
| 1398 |
+
commit_hash=commit_hash,
|
| 1399 |
+
)
|
| 1400 |
+
|
| 1401 |
+
model = cls.from_config(config, **unused_kwargs)
|
| 1402 |
+
import copy
|
| 1403 |
+
state_dict_pretrain = load_state_dict(model_file, variant=variant)
|
| 1404 |
+
state_dict = copy.deepcopy(state_dict_pretrain)
|
| 1405 |
+
|
| 1406 |
+
if init_mvattn_with_selfattn:
|
| 1407 |
+
for key in state_dict_pretrain:
|
| 1408 |
+
if 'attn1' in key:
|
| 1409 |
+
key_mv = key.replace('attn1', 'attn_mv')
|
| 1410 |
+
state_dict[key_mv] = state_dict_pretrain[key]
|
| 1411 |
+
if 'to_out.0.weight' in key:
|
| 1412 |
+
nn.init.zeros_(state_dict[key_mv].data)
|
| 1413 |
+
if 'transformer_blocks' in key and 'norm1' in key: # in case that initialize the norm layer in resnet block
|
| 1414 |
+
key_mv = key.replace('norm1', 'norm_mv')
|
| 1415 |
+
state_dict[key_mv] = state_dict_pretrain[key]
|
| 1416 |
+
# del state_dict_pretrain
|
| 1417 |
+
|
| 1418 |
+
model._convert_deprecated_attention_blocks(state_dict)
|
| 1419 |
+
|
| 1420 |
+
conv_in_weight = state_dict['conv_in.weight']
|
| 1421 |
+
conv_out_weight = state_dict['conv_out.weight']
|
| 1422 |
+
model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model_2d(
|
| 1423 |
+
model,
|
| 1424 |
+
state_dict,
|
| 1425 |
+
model_file,
|
| 1426 |
+
pretrained_model_name_or_path,
|
| 1427 |
+
ignore_mismatched_sizes=True,
|
| 1428 |
+
)
|
| 1429 |
+
if any([key == 'conv_in.weight' for key, _, _ in mismatched_keys]):
|
| 1430 |
+
# initialize from the original SD structure
|
| 1431 |
+
model.conv_in.weight.data[:,:4] = conv_in_weight
|
| 1432 |
+
|
| 1433 |
+
# whether to place all zero to new layers?
|
| 1434 |
+
if zero_init_conv_in:
|
| 1435 |
+
model.conv_in.weight.data[:,4:] = 0.
|
| 1436 |
+
|
| 1437 |
+
if any([key == 'conv_out.weight' for key, _, _ in mismatched_keys]):
|
| 1438 |
+
# initialize from the original SD structure
|
| 1439 |
+
model.conv_out.weight.data[:,:4] = conv_out_weight
|
| 1440 |
+
if out_channels == 8: # copy for the last 4 channels
|
| 1441 |
+
model.conv_out.weight.data[:, 4:] = conv_out_weight
|
| 1442 |
+
|
| 1443 |
+
loading_info = {
|
| 1444 |
+
"missing_keys": missing_keys,
|
| 1445 |
+
"unexpected_keys": unexpected_keys,
|
| 1446 |
+
"mismatched_keys": mismatched_keys,
|
| 1447 |
+
"error_msgs": error_msgs,
|
| 1448 |
+
}
|
| 1449 |
+
|
| 1450 |
+
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
|
| 1451 |
+
raise ValueError(
|
| 1452 |
+
f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
|
| 1453 |
+
)
|
| 1454 |
+
elif torch_dtype is not None:
|
| 1455 |
+
model = model.to(torch_dtype)
|
| 1456 |
+
|
| 1457 |
+
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
|
| 1458 |
+
|
| 1459 |
+
# Set model in evaluation mode to deactivate DropOut modules by default
|
| 1460 |
+
model.eval()
|
| 1461 |
+
if output_loading_info:
|
| 1462 |
+
return model, loading_info
|
| 1463 |
+
return model
|
| 1464 |
+
|
| 1465 |
+
@classmethod
|
| 1466 |
+
def _load_pretrained_model_2d(
|
| 1467 |
+
cls,
|
| 1468 |
+
model,
|
| 1469 |
+
state_dict,
|
| 1470 |
+
resolved_archive_file,
|
| 1471 |
+
pretrained_model_name_or_path,
|
| 1472 |
+
ignore_mismatched_sizes=False,
|
| 1473 |
+
):
|
| 1474 |
+
# Retrieve missing & unexpected_keys
|
| 1475 |
+
model_state_dict = model.state_dict()
|
| 1476 |
+
loaded_keys = list(state_dict.keys())
|
| 1477 |
+
|
| 1478 |
+
expected_keys = list(model_state_dict.keys())
|
| 1479 |
+
|
| 1480 |
+
original_loaded_keys = loaded_keys
|
| 1481 |
+
|
| 1482 |
+
missing_keys = list(set(expected_keys) - set(loaded_keys))
|
| 1483 |
+
unexpected_keys = list(set(loaded_keys) - set(expected_keys))
|
| 1484 |
+
|
| 1485 |
+
# Make sure we are able to load base models as well as derived models (with heads)
|
| 1486 |
+
model_to_load = model
|
| 1487 |
+
|
| 1488 |
+
def _find_mismatched_keys(
|
| 1489 |
+
state_dict,
|
| 1490 |
+
model_state_dict,
|
| 1491 |
+
loaded_keys,
|
| 1492 |
+
ignore_mismatched_sizes,
|
| 1493 |
+
):
|
| 1494 |
+
mismatched_keys = []
|
| 1495 |
+
if ignore_mismatched_sizes:
|
| 1496 |
+
for checkpoint_key in loaded_keys:
|
| 1497 |
+
model_key = checkpoint_key
|
| 1498 |
+
|
| 1499 |
+
if (
|
| 1500 |
+
model_key in model_state_dict
|
| 1501 |
+
and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
|
| 1502 |
+
):
|
| 1503 |
+
mismatched_keys.append(
|
| 1504 |
+
(checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
|
| 1505 |
+
)
|
| 1506 |
+
del state_dict[checkpoint_key]
|
| 1507 |
+
return mismatched_keys
|
| 1508 |
+
|
| 1509 |
+
if state_dict is not None:
|
| 1510 |
+
# Whole checkpoint
|
| 1511 |
+
mismatched_keys = _find_mismatched_keys(
|
| 1512 |
+
state_dict,
|
| 1513 |
+
model_state_dict,
|
| 1514 |
+
original_loaded_keys,
|
| 1515 |
+
ignore_mismatched_sizes,
|
| 1516 |
+
)
|
| 1517 |
+
error_msgs = _load_state_dict_into_model(model_to_load, state_dict)
|
| 1518 |
+
|
| 1519 |
+
if len(error_msgs) > 0:
|
| 1520 |
+
error_msg = "\n\t".join(error_msgs)
|
| 1521 |
+
if "size mismatch" in error_msg:
|
| 1522 |
+
error_msg += (
|
| 1523 |
+
"\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
|
| 1524 |
+
)
|
| 1525 |
+
raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")
|
| 1526 |
+
|
| 1527 |
+
if len(unexpected_keys) > 0:
|
| 1528 |
+
logger.warning(
|
| 1529 |
+
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
|
| 1530 |
+
f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
|
| 1531 |
+
f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task"
|
| 1532 |
+
" or with another architecture (e.g. initializing a BertForSequenceClassification model from a"
|
| 1533 |
+
" BertForPreTraining model).\n- This IS NOT expected if you are initializing"
|
| 1534 |
+
f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly"
|
| 1535 |
+
" identical (initializing a BertForSequenceClassification model from a"
|
| 1536 |
+
" BertForSequenceClassification model)."
|
| 1537 |
+
)
|
| 1538 |
+
else:
|
| 1539 |
+
logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
|
| 1540 |
+
if len(missing_keys) > 0:
|
| 1541 |
+
logger.warning(
|
| 1542 |
+
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
|
| 1543 |
+
f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
|
| 1544 |
+
" TRAIN this model on a down-stream task to be able to use it for predictions and inference."
|
| 1545 |
+
)
|
| 1546 |
+
elif len(mismatched_keys) == 0:
|
| 1547 |
+
logger.info(
|
| 1548 |
+
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
|
| 1549 |
+
f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the"
|
| 1550 |
+
f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions"
|
| 1551 |
+
" without further training."
|
| 1552 |
+
)
|
| 1553 |
+
if len(mismatched_keys) > 0:
|
| 1554 |
+
mismatched_warning = "\n".join(
|
| 1555 |
+
[
|
| 1556 |
+
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
|
| 1557 |
+
for key, shape1, shape2 in mismatched_keys
|
| 1558 |
+
]
|
| 1559 |
+
)
|
| 1560 |
+
logger.warning(
|
| 1561 |
+
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
|
| 1562 |
+
f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
|
| 1563 |
+
f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be"
|
| 1564 |
+
" able to use it for predictions and inference."
|
| 1565 |
+
)
|
| 1566 |
+
|
| 1567 |
+
return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs
|
| 1568 |
+
|
mvdiffusion/pipelines/__init__.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (C) 2025, FaceLift Research Group
|
| 2 |
+
# https://github.com/weijielyu/FaceLift
|
| 3 |
+
#
|
| 4 |
+
# This software is free for non-commercial, research and evaluation use
|
| 5 |
+
# under the terms of the LICENSE.md file.
|
| 6 |
+
#
|
| 7 |
+
# For inquiries contact: wlyu3@ucmerced.edu
|
| 8 |
+
|
mvdiffusion/pipelines/pipeline_mvdiffusion_unclip.py
ADDED
|
@@ -0,0 +1,627 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (C) 2025, FaceLift Research Group
|
| 2 |
+
# https://github.com/weijielyu/FaceLift
|
| 3 |
+
#
|
| 4 |
+
# This software is free for non-commercial, research and evaluation use
|
| 5 |
+
# under the terms of the LICENSE.md file.
|
| 6 |
+
#
|
| 7 |
+
# Modified from https://github.com/pengHTYX/Era3D/blob/main/mvdiffusion/pipelines/pipeline_mvdiffusion_unclip.py
|
| 8 |
+
#
|
| 9 |
+
# For inquiries contact: wlyu3@ucmerced.edu
|
| 10 |
+
|
| 11 |
+
import inspect
|
| 12 |
+
import warnings
|
| 13 |
+
from typing import Callable, List, Optional, Union, Dict, Any
|
| 14 |
+
import PIL
|
| 15 |
+
import torch
|
| 16 |
+
from packaging import version
|
| 17 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, CLIPFeatureExtractor, CLIPTokenizer, CLIPTextModel
|
| 18 |
+
from diffusers.utils.import_utils import is_accelerate_available
|
| 19 |
+
from diffusers.configuration_utils import FrozenDict
|
| 20 |
+
from diffusers.image_processor import VaeImageProcessor
|
| 21 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 22 |
+
from diffusers.models.embeddings import get_timestep_embedding
|
| 23 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
| 24 |
+
from diffusers.utils import deprecate, logging
|
| 25 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 26 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
| 27 |
+
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
|
| 28 |
+
import os
|
| 29 |
+
import torchvision.transforms.functional as TF
|
| 30 |
+
from einops import rearrange
|
| 31 |
+
logger = logging.get_logger(__name__)
|
| 32 |
+
|
| 33 |
+
class StableUnCLIPImg2ImgPipeline(DiffusionPipeline):
|
| 34 |
+
"""
|
| 35 |
+
Pipeline for text-guided image to image generation using stable unCLIP.
|
| 36 |
+
|
| 37 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
| 38 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
| 42 |
+
Feature extractor for image pre-processing before being encoded.
|
| 43 |
+
image_encoder ([`CLIPVisionModelWithProjection`]):
|
| 44 |
+
CLIP vision model for encoding images.
|
| 45 |
+
image_normalizer ([`StableUnCLIPImageNormalizer`]):
|
| 46 |
+
Used to normalize the predicted image embeddings before the noise is applied and un-normalize the image
|
| 47 |
+
embeddings after the noise has been applied.
|
| 48 |
+
image_noising_scheduler ([`KarrasDiffusionSchedulers`]):
|
| 49 |
+
Noise schedule for adding noise to the predicted image embeddings. The amount of noise to add is determined
|
| 50 |
+
by `noise_level` in `StableUnCLIPPipeline.__call__`.
|
| 51 |
+
tokenizer (`CLIPTokenizer`):
|
| 52 |
+
Tokenizer of class
|
| 53 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
| 54 |
+
text_encoder ([`CLIPTextModel`]):
|
| 55 |
+
Frozen text-encoder.
|
| 56 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
| 57 |
+
scheduler ([`KarrasDiffusionSchedulers`]):
|
| 58 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
|
| 59 |
+
vae ([`AutoencoderKL`]):
|
| 60 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
| 61 |
+
"""
|
| 62 |
+
# image encoding components
|
| 63 |
+
feature_extractor: CLIPFeatureExtractor
|
| 64 |
+
image_encoder: CLIPVisionModelWithProjection
|
| 65 |
+
# image noising components
|
| 66 |
+
image_normalizer: StableUnCLIPImageNormalizer
|
| 67 |
+
image_noising_scheduler: KarrasDiffusionSchedulers
|
| 68 |
+
# regular denoising components
|
| 69 |
+
tokenizer: CLIPTokenizer
|
| 70 |
+
text_encoder: CLIPTextModel
|
| 71 |
+
unet: UNet2DConditionModel
|
| 72 |
+
scheduler: KarrasDiffusionSchedulers
|
| 73 |
+
vae: AutoencoderKL
|
| 74 |
+
|
| 75 |
+
def __init__(
|
| 76 |
+
self,
|
| 77 |
+
# image encoding components
|
| 78 |
+
feature_extractor: CLIPFeatureExtractor,
|
| 79 |
+
image_encoder: CLIPVisionModelWithProjection,
|
| 80 |
+
# image noising components
|
| 81 |
+
image_normalizer: StableUnCLIPImageNormalizer,
|
| 82 |
+
image_noising_scheduler: KarrasDiffusionSchedulers,
|
| 83 |
+
# regular denoising components
|
| 84 |
+
tokenizer: CLIPTokenizer,
|
| 85 |
+
text_encoder: CLIPTextModel,
|
| 86 |
+
unet: UNet2DConditionModel,
|
| 87 |
+
scheduler: KarrasDiffusionSchedulers,
|
| 88 |
+
# vae
|
| 89 |
+
vae: AutoencoderKL,
|
| 90 |
+
num_views: int = 6,
|
| 91 |
+
):
|
| 92 |
+
super().__init__()
|
| 93 |
+
|
| 94 |
+
self.register_modules(
|
| 95 |
+
feature_extractor=feature_extractor,
|
| 96 |
+
image_encoder=image_encoder,
|
| 97 |
+
image_normalizer=image_normalizer,
|
| 98 |
+
image_noising_scheduler=image_noising_scheduler,
|
| 99 |
+
tokenizer=tokenizer,
|
| 100 |
+
text_encoder=text_encoder,
|
| 101 |
+
unet=unet,
|
| 102 |
+
scheduler=scheduler,
|
| 103 |
+
vae=vae,
|
| 104 |
+
)
|
| 105 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 106 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 107 |
+
self.num_views: int = num_views
|
| 108 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
| 109 |
+
def enable_vae_slicing(self):
|
| 110 |
+
r"""
|
| 111 |
+
Enable sliced VAE decoding.
|
| 112 |
+
|
| 113 |
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
| 114 |
+
steps. This is useful to save some memory and allow larger batch sizes.
|
| 115 |
+
"""
|
| 116 |
+
self.vae.enable_slicing()
|
| 117 |
+
|
| 118 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
| 119 |
+
def disable_vae_slicing(self):
|
| 120 |
+
r"""
|
| 121 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
| 122 |
+
computing decoding in one step.
|
| 123 |
+
"""
|
| 124 |
+
self.vae.disable_slicing()
|
| 125 |
+
|
| 126 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
| 127 |
+
r"""
|
| 128 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's
|
| 129 |
+
models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only
|
| 130 |
+
when their specific submodule has its `forward` method called.
|
| 131 |
+
"""
|
| 132 |
+
if is_accelerate_available():
|
| 133 |
+
from accelerate import cpu_offload
|
| 134 |
+
else:
|
| 135 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
| 136 |
+
|
| 137 |
+
device = torch.device(f"cuda:{gpu_id}")
|
| 138 |
+
|
| 139 |
+
# TODO: self.image_normalizer.{scale,unscale} are not covered by the offload hooks, so they fails if added to the list
|
| 140 |
+
models = [
|
| 141 |
+
self.image_encoder,
|
| 142 |
+
self.text_encoder,
|
| 143 |
+
self.unet,
|
| 144 |
+
self.vae,
|
| 145 |
+
]
|
| 146 |
+
for cpu_offloaded_model in models:
|
| 147 |
+
if cpu_offloaded_model is not None:
|
| 148 |
+
cpu_offload(cpu_offloaded_model, device)
|
| 149 |
+
|
| 150 |
+
@property
|
| 151 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
| 152 |
+
def _execution_device(self):
|
| 153 |
+
r"""
|
| 154 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
| 155 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
| 156 |
+
hooks.
|
| 157 |
+
"""
|
| 158 |
+
if not hasattr(self.unet, "_hf_hook"):
|
| 159 |
+
return self.device
|
| 160 |
+
for module in self.unet.modules():
|
| 161 |
+
if (
|
| 162 |
+
hasattr(module, "_hf_hook")
|
| 163 |
+
and hasattr(module._hf_hook, "execution_device")
|
| 164 |
+
and module._hf_hook.execution_device is not None
|
| 165 |
+
):
|
| 166 |
+
return torch.device(module._hf_hook.execution_device)
|
| 167 |
+
return self.device
|
| 168 |
+
|
| 169 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
| 170 |
+
def _encode_prompt(
|
| 171 |
+
self,
|
| 172 |
+
prompt,
|
| 173 |
+
device,
|
| 174 |
+
num_images_per_prompt,
|
| 175 |
+
do_classifier_free_guidance,
|
| 176 |
+
negative_prompt=None,
|
| 177 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 178 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 179 |
+
lora_scale: Optional[float] = None,
|
| 180 |
+
):
|
| 181 |
+
r"""
|
| 182 |
+
Encodes the prompt into text encoder hidden states.
|
| 183 |
+
|
| 184 |
+
Args:
|
| 185 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 186 |
+
prompt to be encoded
|
| 187 |
+
device: (`torch.device`):
|
| 188 |
+
torch device
|
| 189 |
+
num_images_per_prompt (`int`):
|
| 190 |
+
number of images that should be generated per prompt
|
| 191 |
+
do_classifier_free_guidance (`bool`):
|
| 192 |
+
whether to use classifier free guidance or not
|
| 193 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 194 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 195 |
+
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
| 196 |
+
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
| 197 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 198 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 199 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 200 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 201 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 202 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 203 |
+
argument.
|
| 204 |
+
"""
|
| 205 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
| 206 |
+
|
| 207 |
+
if do_classifier_free_guidance:
|
| 208 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 209 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 210 |
+
# to avoid doing two forward passes
|
| 211 |
+
# normal_prompt_embeds, color_prompt_embeds = torch.chunk(prompt_embeds, 2, dim=0)
|
| 212 |
+
color_prompt_embeds = prompt_embeds
|
| 213 |
+
|
| 214 |
+
prompt_embeds = torch.cat([color_prompt_embeds, color_prompt_embeds], 0)
|
| 215 |
+
|
| 216 |
+
return prompt_embeds
|
| 217 |
+
|
| 218 |
+
def _encode_image(
|
| 219 |
+
self,
|
| 220 |
+
image_pil,
|
| 221 |
+
device,
|
| 222 |
+
num_images_per_prompt,
|
| 223 |
+
do_classifier_free_guidance,
|
| 224 |
+
noise_level: int=0,
|
| 225 |
+
generator: Optional[torch.Generator] = None
|
| 226 |
+
):
|
| 227 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
| 228 |
+
# ______________________________clip image embedding______________________________
|
| 229 |
+
image = self.feature_extractor(images=image_pil, return_tensors="pt").pixel_values
|
| 230 |
+
image = image.to(device=device, dtype=dtype)
|
| 231 |
+
image_embeds = self.image_encoder(image).image_embeds
|
| 232 |
+
|
| 233 |
+
image_embeds = self.noise_image_embeddings(
|
| 234 |
+
image_embeds=image_embeds,
|
| 235 |
+
noise_level=noise_level,
|
| 236 |
+
generator=generator,
|
| 237 |
+
)
|
| 238 |
+
# duplicate image embeddings for each generation per prompt, using mps friendly method
|
| 239 |
+
# image_embeds = image_embeds.unsqueeze(1)
|
| 240 |
+
# note: the condition input is same
|
| 241 |
+
image_embeds = image_embeds.repeat(num_images_per_prompt, 1)
|
| 242 |
+
|
| 243 |
+
if do_classifier_free_guidance:
|
| 244 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 245 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 246 |
+
# to avoid doing two forward passes
|
| 247 |
+
negative_prompt_embeds = torch.zeros_like(image_embeds)
|
| 248 |
+
image_embeds = torch.cat([negative_prompt_embeds, image_embeds])
|
| 249 |
+
|
| 250 |
+
# _____________________________vae input latents__________________________________________________
|
| 251 |
+
image_pt = torch.stack([TF.to_tensor(img) for img in image_pil], dim=0).to(device)
|
| 252 |
+
image_pt = image_pt * 2.0 - 1.0
|
| 253 |
+
###### Fix [RuntimeError: Input type (float) and bias type (c10::Half) should be the same] ######
|
| 254 |
+
image_pt = image_pt.to(torch.float16)
|
| 255 |
+
###### Fix [RuntimeError: Input type (float) and bias type (c10::Half) should be the same] ######
|
| 256 |
+
image_latents = self.vae.encode(image_pt).latent_dist.mode() * self.vae.config.scaling_factor
|
| 257 |
+
# Note: repeat differently from official pipelines
|
| 258 |
+
image_latents = image_latents.repeat(num_images_per_prompt, 1, 1, 1)
|
| 259 |
+
|
| 260 |
+
if do_classifier_free_guidance:
|
| 261 |
+
image_latents = torch.cat([torch.zeros_like(image_latents), image_latents])
|
| 262 |
+
|
| 263 |
+
return image_embeds, image_latents
|
| 264 |
+
|
| 265 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
| 266 |
+
def decode_latents(self, latents):
|
| 267 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
| 268 |
+
image = self.vae.decode(latents).sample
|
| 269 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
| 270 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
| 271 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
| 272 |
+
return image
|
| 273 |
+
|
| 274 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
| 275 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
| 276 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 277 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
| 278 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
| 279 |
+
# and should be between [0, 1]
|
| 280 |
+
|
| 281 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 282 |
+
extra_step_kwargs = {}
|
| 283 |
+
if accepts_eta:
|
| 284 |
+
extra_step_kwargs["eta"] = eta
|
| 285 |
+
|
| 286 |
+
# check if the scheduler accepts generator
|
| 287 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 288 |
+
if accepts_generator:
|
| 289 |
+
extra_step_kwargs["generator"] = generator
|
| 290 |
+
return extra_step_kwargs
|
| 291 |
+
|
| 292 |
+
def check_inputs(
|
| 293 |
+
self,
|
| 294 |
+
prompt,
|
| 295 |
+
image,
|
| 296 |
+
height,
|
| 297 |
+
width,
|
| 298 |
+
callback_steps,
|
| 299 |
+
noise_level,
|
| 300 |
+
):
|
| 301 |
+
if height % 8 != 0 or width % 8 != 0:
|
| 302 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
| 303 |
+
|
| 304 |
+
if (callback_steps is None) or (
|
| 305 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
| 306 |
+
):
|
| 307 |
+
raise ValueError(
|
| 308 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
| 309 |
+
f" {type(callback_steps)}."
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
| 313 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
if noise_level < 0 or noise_level >= self.image_noising_scheduler.config.num_train_timesteps:
|
| 317 |
+
raise ValueError(
|
| 318 |
+
f"`noise_level` must be between 0 and {self.image_noising_scheduler.config.num_train_timesteps - 1}, inclusive."
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
| 322 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
| 323 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
| 324 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 325 |
+
raise ValueError(
|
| 326 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 327 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
if latents is None:
|
| 331 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 332 |
+
else:
|
| 333 |
+
latents = latents.to(device)
|
| 334 |
+
|
| 335 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 336 |
+
latents = latents * self.scheduler.init_noise_sigma
|
| 337 |
+
return latents
|
| 338 |
+
|
| 339 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_unclip.StableUnCLIPPipeline.noise_image_embeddings
|
| 340 |
+
def noise_image_embeddings(
|
| 341 |
+
self,
|
| 342 |
+
image_embeds: torch.Tensor,
|
| 343 |
+
noise_level: int,
|
| 344 |
+
noise: Optional[torch.FloatTensor] = None,
|
| 345 |
+
generator: Optional[torch.Generator] = None,
|
| 346 |
+
):
|
| 347 |
+
"""
|
| 348 |
+
Add noise to the image embeddings. The amount of noise is controlled by a `noise_level` input. A higher
|
| 349 |
+
`noise_level` increases the variance in the final un-noised images.
|
| 350 |
+
|
| 351 |
+
The noise is applied in two ways
|
| 352 |
+
1. A noise schedule is applied directly to the embeddings
|
| 353 |
+
2. A vector of sinusoidal time embeddings are appended to the output.
|
| 354 |
+
|
| 355 |
+
In both cases, the amount of noise is controlled by the same `noise_level`.
|
| 356 |
+
|
| 357 |
+
The embeddings are normalized before the noise is applied and un-normalized after the noise is applied.
|
| 358 |
+
"""
|
| 359 |
+
if noise is None:
|
| 360 |
+
noise = randn_tensor(
|
| 361 |
+
image_embeds.shape, generator=generator, device=image_embeds.device, dtype=image_embeds.dtype
|
| 362 |
+
)
|
| 363 |
+
|
| 364 |
+
noise_level = torch.tensor([noise_level] * image_embeds.shape[0], device=image_embeds.device)
|
| 365 |
+
|
| 366 |
+
image_embeds = self.image_normalizer.scale(image_embeds)
|
| 367 |
+
|
| 368 |
+
image_embeds = self.image_noising_scheduler.add_noise(image_embeds, timesteps=noise_level, noise=noise)
|
| 369 |
+
|
| 370 |
+
image_embeds = self.image_normalizer.unscale(image_embeds)
|
| 371 |
+
|
| 372 |
+
noise_level = get_timestep_embedding(
|
| 373 |
+
timesteps=noise_level, embedding_dim=image_embeds.shape[-1], flip_sin_to_cos=True, downscale_freq_shift=0
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
# `get_timestep_embeddings` does not contain any weights and will always return f32 tensors,
|
| 377 |
+
# but we might actually be running in fp16. so we need to cast here.
|
| 378 |
+
# there might be better ways to encapsulate this.
|
| 379 |
+
noise_level = noise_level.to(image_embeds.dtype)
|
| 380 |
+
|
| 381 |
+
image_embeds = torch.cat((image_embeds, noise_level), 1)
|
| 382 |
+
|
| 383 |
+
return image_embeds
|
| 384 |
+
|
| 385 |
+
@torch.no_grad()
|
| 386 |
+
# @replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 387 |
+
def __call__(
|
| 388 |
+
self,
|
| 389 |
+
image: Union[torch.FloatTensor, PIL.Image.Image],
|
| 390 |
+
prompt: Union[str, List[str]],
|
| 391 |
+
prompt_embeds: torch.FloatTensor = None,
|
| 392 |
+
height: Optional[int] = None,
|
| 393 |
+
width: Optional[int] = None,
|
| 394 |
+
num_inference_steps: int = 20,
|
| 395 |
+
guidance_scale: float = 10,
|
| 396 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 397 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 398 |
+
eta: float = 0.0,
|
| 399 |
+
generator: Optional[torch.Generator] = None,
|
| 400 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 401 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 402 |
+
output_type: Optional[str] = "pil",
|
| 403 |
+
return_dict: bool = True,
|
| 404 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 405 |
+
callback_steps: int = 1,
|
| 406 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 407 |
+
noise_level: int = 0,
|
| 408 |
+
image_embeds: Optional[torch.FloatTensor] = None,
|
| 409 |
+
gt_img_in: Optional[torch.FloatTensor] = None,
|
| 410 |
+
):
|
| 411 |
+
r"""
|
| 412 |
+
Function invoked when calling the pipeline for generation.
|
| 413 |
+
|
| 414 |
+
Args:
|
| 415 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 416 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
| 417 |
+
instead.
|
| 418 |
+
image (`torch.FloatTensor` or `PIL.Image.Image`):
|
| 419 |
+
`Image`, or tensor representing an image batch. The image will be encoded to its CLIP embedding which
|
| 420 |
+
the unet will be conditioned on. Note that the image is _not_ encoded by the vae and then used as the
|
| 421 |
+
latents in the denoising process such as in the standard stable diffusion text guided image variation
|
| 422 |
+
process.
|
| 423 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 424 |
+
The height in pixels of the generated image.
|
| 425 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 426 |
+
The width in pixels of the generated image.
|
| 427 |
+
num_inference_steps (`int`, *optional*, defaults to 20):
|
| 428 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 429 |
+
expense of slower inference.
|
| 430 |
+
guidance_scale (`float`, *optional*, defaults to 10.0):
|
| 431 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 432 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 433 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 434 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 435 |
+
usually at the expense of lower image quality.
|
| 436 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 437 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 438 |
+
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
| 439 |
+
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
| 440 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 441 |
+
The number of images to generate per prompt.
|
| 442 |
+
eta (`float`, *optional*, defaults to 0.0):
|
| 443 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 444 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 445 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 446 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 447 |
+
to make generation deterministic.
|
| 448 |
+
latents (`torch.FloatTensor`, *optional*):
|
| 449 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 450 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 451 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
| 452 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 453 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 454 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 455 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 456 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 457 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 458 |
+
argument.
|
| 459 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 460 |
+
The output format of the generate image. Choose between
|
| 461 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 462 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 463 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 464 |
+
plain tuple.
|
| 465 |
+
callback (`Callable`, *optional*):
|
| 466 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
| 467 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
| 468 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
| 469 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 470 |
+
called at every step.
|
| 471 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 472 |
+
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
|
| 473 |
+
`self.processor` in
|
| 474 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
| 475 |
+
noise_level (`int`, *optional*, defaults to `0`):
|
| 476 |
+
The amount of noise to add to the image embeddings. A higher `noise_level` increases the variance in
|
| 477 |
+
the final un-noised images. See `StableUnCLIPPipeline.noise_image_embeddings` for details.
|
| 478 |
+
image_embeds (`torch.FloatTensor`, *optional*):
|
| 479 |
+
Pre-generated CLIP embeddings to condition the unet on. Note that these are not latents to be used in
|
| 480 |
+
the denoising process. If you want to provide pre-generated latents, pass them to `__call__` as
|
| 481 |
+
`latents`.
|
| 482 |
+
|
| 483 |
+
Examples:
|
| 484 |
+
|
| 485 |
+
Returns:
|
| 486 |
+
[`~pipelines.ImagePipelineOutput`] or `tuple`: [`~ pipeline_utils.ImagePipelineOutput`] if `return_dict` is
|
| 487 |
+
True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images.
|
| 488 |
+
"""
|
| 489 |
+
# 0. Default height and width to unet
|
| 490 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 491 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
| 492 |
+
|
| 493 |
+
# 1. Check inputs. Raise error if not correct
|
| 494 |
+
self.check_inputs(
|
| 495 |
+
prompt=prompt,
|
| 496 |
+
image=image,
|
| 497 |
+
height=height,
|
| 498 |
+
width=width,
|
| 499 |
+
callback_steps=callback_steps,
|
| 500 |
+
noise_level=noise_level
|
| 501 |
+
)
|
| 502 |
+
|
| 503 |
+
# 2. Define call parameters
|
| 504 |
+
if isinstance(image, list):
|
| 505 |
+
batch_size = len(image)
|
| 506 |
+
elif isinstance(image, torch.Tensor):
|
| 507 |
+
batch_size = image.shape[0]
|
| 508 |
+
assert batch_size >= self.num_views and batch_size % self.num_views == 0
|
| 509 |
+
elif isinstance(image, PIL.Image.Image):
|
| 510 |
+
image = [image]*self.num_views
|
| 511 |
+
batch_size = self.num_views
|
| 512 |
+
|
| 513 |
+
if isinstance(prompt, str):
|
| 514 |
+
prompt = [prompt] * self.num_views
|
| 515 |
+
|
| 516 |
+
device = self._execution_device
|
| 517 |
+
|
| 518 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 519 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 520 |
+
# corresponds to doing no classifier free guidance.
|
| 521 |
+
do_classifier_free_guidance = guidance_scale != 1.0
|
| 522 |
+
|
| 523 |
+
# 3. Encode input prompt
|
| 524 |
+
text_encoder_lora_scale = (
|
| 525 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
| 526 |
+
)
|
| 527 |
+
prompt_embeds = self._encode_prompt(
|
| 528 |
+
prompt=prompt,
|
| 529 |
+
device=device,
|
| 530 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 531 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 532 |
+
negative_prompt=negative_prompt,
|
| 533 |
+
prompt_embeds=prompt_embeds,
|
| 534 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 535 |
+
lora_scale=text_encoder_lora_scale,
|
| 536 |
+
)
|
| 537 |
+
|
| 538 |
+
|
| 539 |
+
# 4. Encoder input image
|
| 540 |
+
if isinstance(image, list):
|
| 541 |
+
image_pil = image
|
| 542 |
+
elif isinstance(image, torch.Tensor):
|
| 543 |
+
image_pil = [TF.to_pil_image(image[i]) for i in range(image.shape[0])]
|
| 544 |
+
noise_level = torch.tensor([noise_level], device=device)
|
| 545 |
+
image_embeds, image_latents = self._encode_image(
|
| 546 |
+
image_pil=image_pil,
|
| 547 |
+
device=device,
|
| 548 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 549 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 550 |
+
noise_level=noise_level,
|
| 551 |
+
generator=generator,
|
| 552 |
+
)
|
| 553 |
+
|
| 554 |
+
# 5. Prepare timesteps
|
| 555 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 556 |
+
timesteps = self.scheduler.timesteps
|
| 557 |
+
|
| 558 |
+
# 6. Prepare latent variables
|
| 559 |
+
num_channels_latents = self.unet.config.out_channels
|
| 560 |
+
if gt_img_in is not None:
|
| 561 |
+
latents = gt_img_in * self.scheduler.init_noise_sigma
|
| 562 |
+
else:
|
| 563 |
+
latents = self.prepare_latents(
|
| 564 |
+
batch_size=batch_size,
|
| 565 |
+
num_channels_latents=num_channels_latents,
|
| 566 |
+
height=height,
|
| 567 |
+
width=width,
|
| 568 |
+
dtype=prompt_embeds.dtype,
|
| 569 |
+
device=device,
|
| 570 |
+
generator=generator,
|
| 571 |
+
latents=latents,
|
| 572 |
+
)
|
| 573 |
+
|
| 574 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 575 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 576 |
+
|
| 577 |
+
eles, focals = [], []
|
| 578 |
+
# 8. Denoising loop
|
| 579 |
+
for i, t in enumerate(self.progress_bar(timesteps)):
|
| 580 |
+
if do_classifier_free_guidance:
|
| 581 |
+
latent_model_input = torch.cat([latents, latents], 0)
|
| 582 |
+
else:
|
| 583 |
+
latent_model_input = latents
|
| 584 |
+
latent_model_input = torch.cat([
|
| 585 |
+
latent_model_input, image_latents
|
| 586 |
+
], dim=1)
|
| 587 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 588 |
+
|
| 589 |
+
# predict the noise residual
|
| 590 |
+
unet_out = self.unet(
|
| 591 |
+
latent_model_input,
|
| 592 |
+
t,
|
| 593 |
+
encoder_hidden_states=prompt_embeds,
|
| 594 |
+
class_labels=image_embeds,
|
| 595 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 596 |
+
return_dict=False)
|
| 597 |
+
|
| 598 |
+
noise_pred = unet_out
|
| 599 |
+
|
| 600 |
+
# perform guidance
|
| 601 |
+
if do_classifier_free_guidance:
|
| 602 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 603 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 604 |
+
|
| 605 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 606 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
| 607 |
+
|
| 608 |
+
if callback is not None and i % callback_steps == 0:
|
| 609 |
+
callback(i, t, latents)
|
| 610 |
+
|
| 611 |
+
# 9. Post-processing
|
| 612 |
+
if not output_type == "latent":
|
| 613 |
+
if num_channels_latents == 8:
|
| 614 |
+
latents = torch.cat([latents[:, :4], latents[:, 4:]], dim=0)
|
| 615 |
+
with torch.no_grad():
|
| 616 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
| 617 |
+
else:
|
| 618 |
+
image = latents
|
| 619 |
+
|
| 620 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 621 |
+
|
| 622 |
+
# Offload last model to CPU
|
| 623 |
+
# if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
| 624 |
+
# self.final_offload_hook.offload()
|
| 625 |
+
if not return_dict:
|
| 626 |
+
return (image, )
|
| 627 |
+
return ImagePipelineOutput(images=image)
|
requirements.txt
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Core dependencies
|
| 2 |
+
torch>=2.0.0
|
| 3 |
+
torchvision>=0.15.0
|
| 4 |
+
numpy>=1.24.0
|
| 5 |
+
pillow>=9.5.0
|
| 6 |
+
|
| 7 |
+
# Deep learning frameworks
|
| 8 |
+
diffusers>=0.27.0
|
| 9 |
+
transformers>=4.30.0
|
| 10 |
+
accelerate>=0.20.0
|
| 11 |
+
|
| 12 |
+
# Image processing
|
| 13 |
+
opencv-python>=4.8.0
|
| 14 |
+
rembg>=2.0.50
|
| 15 |
+
facenet-pytorch>=2.5.3
|
| 16 |
+
|
| 17 |
+
# 3D and rendering
|
| 18 |
+
diff-gaussian-rasterization
|
| 19 |
+
einops>=0.7.0
|
| 20 |
+
plyfile>=0.9
|
| 21 |
+
|
| 22 |
+
# Utilities
|
| 23 |
+
easydict>=1.10
|
| 24 |
+
pyyaml>=6.0
|
| 25 |
+
lpips>=0.1.4
|
| 26 |
+
huggingface-hub>=0.19.0
|
| 27 |
+
|
| 28 |
+
# Video processing
|
| 29 |
+
videoio>=0.2.0
|
| 30 |
+
|
| 31 |
+
# Gradio for UI
|
| 32 |
+
gradio>=5.0.0
|
| 33 |
+
|
| 34 |
+
# Optional performance
|
| 35 |
+
xformers>=0.0.20
|
| 36 |
+
|
utils_folder/__init__.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (C) 2025, FaceLift Research Group
|
| 2 |
+
# https://github.com/weijielyu/FaceLift
|
| 3 |
+
#
|
| 4 |
+
# This software is free for non-commercial, research and evaluation use
|
| 5 |
+
# under the terms of the LICENSE.md file.
|
| 6 |
+
#
|
| 7 |
+
# For inquiries contact: wlyu3@ucmerced.edu
|
| 8 |
+
|
utils_folder/face_utils.py
ADDED
|
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (C) 2025, FaceLift Research Group
|
| 2 |
+
# https://github.com/weijielyu/FaceLift
|
| 3 |
+
#
|
| 4 |
+
# This software is free for non-commercial, research and evaluation use
|
| 5 |
+
# under the terms of the LICENSE.md file.
|
| 6 |
+
#
|
| 7 |
+
# For inquiries contact: wlyu3@ucmerced.edu
|
| 8 |
+
|
| 9 |
+
"""
|
| 10 |
+
Face detection and cropping utilities for 3D face reconstruction.
|
| 11 |
+
|
| 12 |
+
This module provides functions for face detection, cropping, and preprocessing
|
| 13 |
+
to align faces with training data specifications.
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
from typing import Tuple, Optional, Dict, Any
|
| 17 |
+
import numpy as np
|
| 18 |
+
import torch
|
| 19 |
+
from PIL import Image
|
| 20 |
+
from facenet_pytorch import MTCNN
|
| 21 |
+
from rembg import remove
|
| 22 |
+
|
| 23 |
+
# Training set face parameters (derived from training data statistics)
|
| 24 |
+
TRAINING_SET_FACE_SIZE = 194.2749650813705
|
| 25 |
+
TRAINING_SET_FACE_CENTER = [251.83270369057132, 280.0133630862363]
|
| 26 |
+
|
| 27 |
+
# Public constants for external use
|
| 28 |
+
FACE_SIZE = TRAINING_SET_FACE_SIZE
|
| 29 |
+
FACE_CENTER = TRAINING_SET_FACE_CENTER
|
| 30 |
+
DEFAULT_BACKGROUND_COLOR = (255, 255, 255)
|
| 31 |
+
DEFAULT_IMG_SIZE = 512
|
| 32 |
+
|
| 33 |
+
# Device setup
|
| 34 |
+
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 35 |
+
|
| 36 |
+
# Default face detector instance
|
| 37 |
+
FACE_DETECTOR = MTCNN(
|
| 38 |
+
image_size=512,
|
| 39 |
+
margin=0,
|
| 40 |
+
min_face_size=20,
|
| 41 |
+
thresholds=[0.6, 0.7, 0.7],
|
| 42 |
+
factor=0.709,
|
| 43 |
+
post_process=True,
|
| 44 |
+
device=DEVICE
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
def select_face(detected_bounding_boxes: Optional[np.ndarray], confidence_scores: Optional[np.ndarray]) -> Optional[np.ndarray]:
|
| 48 |
+
"""
|
| 49 |
+
Select the largest face from detected faces with confidence above threshold.
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
detected_bounding_boxes: Detected bounding boxes in xyxy format
|
| 53 |
+
confidence_scores: Detection confidence probabilities
|
| 54 |
+
|
| 55 |
+
Returns:
|
| 56 |
+
Selected bounding box or None if no suitable face found
|
| 57 |
+
"""
|
| 58 |
+
if detected_bounding_boxes is None or confidence_scores is None:
|
| 59 |
+
return None
|
| 60 |
+
|
| 61 |
+
# Filter faces with confidence > 0.8
|
| 62 |
+
high_confidence_faces = [
|
| 63 |
+
detected_bounding_boxes[i] for i in range(len(detected_bounding_boxes))
|
| 64 |
+
if confidence_scores[i] > 0.8
|
| 65 |
+
]
|
| 66 |
+
|
| 67 |
+
if not high_confidence_faces:
|
| 68 |
+
return None
|
| 69 |
+
|
| 70 |
+
# Return the largest face (by area)
|
| 71 |
+
return max(high_confidence_faces, key=lambda bbox: (bbox[3] - bbox[1]) * (bbox[2] - bbox[0]))
|
| 72 |
+
|
| 73 |
+
def crop_face(
|
| 74 |
+
input_image_array: np.ndarray,
|
| 75 |
+
face_detector: MTCNN = FACE_DETECTOR,
|
| 76 |
+
target_face_size: float = FACE_SIZE,
|
| 77 |
+
target_face_center: list = FACE_CENTER,
|
| 78 |
+
output_image_size: int = 512,
|
| 79 |
+
background_color: Tuple[int, int, int] = (255, 255, 255)
|
| 80 |
+
) -> Tuple[Image.Image, Dict[str, Any]]:
|
| 81 |
+
"""
|
| 82 |
+
Crop and align face in image to match training data specifications.
|
| 83 |
+
|
| 84 |
+
Args:
|
| 85 |
+
input_image_array: Input image as numpy array (H, W, C)
|
| 86 |
+
face_detector: MTCNN face detector instance
|
| 87 |
+
target_face_size: Target face size from training data
|
| 88 |
+
target_face_center: Target face center from training data
|
| 89 |
+
output_image_size: Output image size
|
| 90 |
+
background_color: Background color for padding
|
| 91 |
+
|
| 92 |
+
Returns:
|
| 93 |
+
Tuple of (cropped_image, crop_parameters)
|
| 94 |
+
|
| 95 |
+
Raises:
|
| 96 |
+
ValueError: If no face is detected in the image
|
| 97 |
+
"""
|
| 98 |
+
image_height, image_width, _ = input_image_array.shape
|
| 99 |
+
|
| 100 |
+
# Handle RGBA images by compositing with background color
|
| 101 |
+
if input_image_array.shape[2] == 4:
|
| 102 |
+
rgba_pil_image = Image.fromarray(input_image_array)
|
| 103 |
+
background_image = Image.new("RGB", rgba_pil_image.size, background_color)
|
| 104 |
+
rgb_composite_image = Image.alpha_composite(background_image.convert("RGBA"), rgba_pil_image).convert("RGB")
|
| 105 |
+
processed_image_array = np.array(rgb_composite_image)
|
| 106 |
+
else:
|
| 107 |
+
processed_image_array = input_image_array[:, :, :3] # Ensure RGB format
|
| 108 |
+
|
| 109 |
+
# Detect and select face
|
| 110 |
+
detected_bounding_boxes, confidence_scores = face_detector.detect(processed_image_array)
|
| 111 |
+
selected_face_bbox = select_face(detected_bounding_boxes, confidence_scores)
|
| 112 |
+
if selected_face_bbox is None:
|
| 113 |
+
raise ValueError("No face detected in the image")
|
| 114 |
+
|
| 115 |
+
# Calculate detected face properties
|
| 116 |
+
detected_face_size = 0.5 * (selected_face_bbox[2] - selected_face_bbox[0] + selected_face_bbox[3] - selected_face_bbox[1])
|
| 117 |
+
detected_face_center = (
|
| 118 |
+
0.5 * (selected_face_bbox[0] + selected_face_bbox[2]),
|
| 119 |
+
0.5 * (selected_face_bbox[1] + selected_face_bbox[3])
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
# Scale image to match training face size
|
| 123 |
+
scale_ratio = target_face_size / detected_face_size
|
| 124 |
+
scaled_width, scaled_height = int(image_width * scale_ratio), int(image_height * scale_ratio)
|
| 125 |
+
scaled_pil_image = Image.fromarray(processed_image_array).resize((scaled_width, scaled_height))
|
| 126 |
+
scaled_face_center = (
|
| 127 |
+
int(detected_face_center[0] * scale_ratio),
|
| 128 |
+
int(detected_face_center[1] * scale_ratio)
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
# Create output image with background
|
| 132 |
+
output_image = Image.new("RGB", (output_image_size, output_image_size), color=background_color)
|
| 133 |
+
|
| 134 |
+
# Calculate alignment offsets
|
| 135 |
+
horizontal_offset = target_face_center[0] - scaled_face_center[0]
|
| 136 |
+
vertical_offset = target_face_center[1] - scaled_face_center[1]
|
| 137 |
+
|
| 138 |
+
# Calculate crop boundaries
|
| 139 |
+
crop_left_boundary = int(max(0, -horizontal_offset))
|
| 140 |
+
crop_top_boundary = int(max(0, -vertical_offset))
|
| 141 |
+
crop_right_boundary = int(min(scaled_width, output_image_size - horizontal_offset))
|
| 142 |
+
crop_bottom_boundary = int(min(scaled_height, output_image_size - vertical_offset))
|
| 143 |
+
|
| 144 |
+
# Crop and paste
|
| 145 |
+
cropped_face_image = scaled_pil_image.crop((crop_left_boundary, crop_top_boundary, crop_right_boundary, crop_bottom_boundary))
|
| 146 |
+
paste_coordinates = (int(max(0, horizontal_offset)), int(max(0, vertical_offset)))
|
| 147 |
+
output_image.paste(cropped_face_image, paste_coordinates)
|
| 148 |
+
|
| 149 |
+
crop_parameters = {
|
| 150 |
+
'resize_ratio': scale_ratio,
|
| 151 |
+
'x_offset_left': horizontal_offset,
|
| 152 |
+
'y_offset_top': vertical_offset,
|
| 153 |
+
}
|
| 154 |
+
|
| 155 |
+
return output_image, crop_parameters
|
| 156 |
+
|
| 157 |
+
def prepare_foreground_with_rembg(input_image_array: np.ndarray) -> np.ndarray:
|
| 158 |
+
"""
|
| 159 |
+
Prepare foreground image using rembg for background removal.
|
| 160 |
+
|
| 161 |
+
Args:
|
| 162 |
+
input_image_array: Input image as numpy array (H, W, C)
|
| 163 |
+
|
| 164 |
+
Returns:
|
| 165 |
+
RGBA image as numpy array with background removed
|
| 166 |
+
"""
|
| 167 |
+
pil_image = Image.fromarray(input_image_array)
|
| 168 |
+
background_removed_image = remove(pil_image)
|
| 169 |
+
processed_image_array = np.array(background_removed_image)
|
| 170 |
+
|
| 171 |
+
# Ensure RGBA format
|
| 172 |
+
if processed_image_array.shape[2] == 4:
|
| 173 |
+
return processed_image_array
|
| 174 |
+
elif processed_image_array.shape[2] == 3:
|
| 175 |
+
height, width = processed_image_array.shape[:2]
|
| 176 |
+
alpha_channel = np.full((height, width), 255, dtype=np.uint8)
|
| 177 |
+
rgba_image = np.zeros((height, width, 4), dtype=np.uint8)
|
| 178 |
+
rgba_image[:, :, :3] = processed_image_array
|
| 179 |
+
rgba_image[:, :, 3] = alpha_channel
|
| 180 |
+
return rgba_image
|
| 181 |
+
|
| 182 |
+
return processed_image_array
|
| 183 |
+
|
| 184 |
+
def preprocess_image(
|
| 185 |
+
original_image_array: np.ndarray,
|
| 186 |
+
target_image_size: int = DEFAULT_IMG_SIZE,
|
| 187 |
+
background_color: Tuple[int, int, int] = DEFAULT_BACKGROUND_COLOR
|
| 188 |
+
) -> Image.Image:
|
| 189 |
+
"""
|
| 190 |
+
Preprocess image with background removal and face cropping.
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
original_image_array: Input image as numpy array
|
| 194 |
+
target_image_size: Target image size
|
| 195 |
+
background_color: Background color for compositing
|
| 196 |
+
|
| 197 |
+
Returns:
|
| 198 |
+
Processed PIL Image
|
| 199 |
+
"""
|
| 200 |
+
processed_image_array = prepare_foreground_with_rembg(original_image_array)
|
| 201 |
+
|
| 202 |
+
# Convert RGBA to RGB with specified background
|
| 203 |
+
if processed_image_array.shape[2] == 4:
|
| 204 |
+
rgba_pil_image = Image.fromarray(processed_image_array)
|
| 205 |
+
background_image = Image.new("RGB", rgba_pil_image.size, background_color)
|
| 206 |
+
rgb_composite_image = Image.alpha_composite(background_image.convert("RGBA"), rgba_pil_image).convert("RGB")
|
| 207 |
+
processed_image_array = np.array(rgb_composite_image)
|
| 208 |
+
|
| 209 |
+
cropped_image, crop_parameters = crop_face(
|
| 210 |
+
processed_image_array,
|
| 211 |
+
FACE_DETECTOR,
|
| 212 |
+
FACE_SIZE,
|
| 213 |
+
FACE_CENTER,
|
| 214 |
+
target_image_size,
|
| 215 |
+
background_color
|
| 216 |
+
)
|
| 217 |
+
return cropped_image
|
| 218 |
+
|
| 219 |
+
def preprocess_image_without_cropping(
|
| 220 |
+
original_image_array: np.ndarray,
|
| 221 |
+
target_image_size: int = DEFAULT_IMG_SIZE,
|
| 222 |
+
background_color: Tuple[int, int, int] = DEFAULT_BACKGROUND_COLOR
|
| 223 |
+
) -> Image.Image:
|
| 224 |
+
"""
|
| 225 |
+
Preprocess image with background removal, without face cropping.
|
| 226 |
+
|
| 227 |
+
Args:
|
| 228 |
+
original_image_array: Input image as numpy array
|
| 229 |
+
target_image_size: Target image size
|
| 230 |
+
background_color: Background color for compositing
|
| 231 |
+
|
| 232 |
+
Returns:
|
| 233 |
+
Processed PIL Image
|
| 234 |
+
"""
|
| 235 |
+
processed_image_array = prepare_foreground_with_rembg(original_image_array)
|
| 236 |
+
|
| 237 |
+
resized_image = Image.fromarray(processed_image_array).resize((target_image_size, target_image_size))
|
| 238 |
+
background_image = Image.new("RGBA", (target_image_size, target_image_size), background_color)
|
| 239 |
+
composite_image = Image.alpha_composite(background_image, resized_image).convert("RGB")
|
| 240 |
+
return composite_image
|
utils_folder/opencv_cameras.json
ADDED
|
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"id": "sample_000",
|
| 3 |
+
"frames": [
|
| 4 |
+
{
|
| 5 |
+
"w": 512,
|
| 6 |
+
"h": 512,
|
| 7 |
+
"fx": 548.9937744140625,
|
| 8 |
+
"fy": 548.9937744140625,
|
| 9 |
+
"cx": 256.0,
|
| 10 |
+
"cy": 256.0,
|
| 11 |
+
"w2c": [
|
| 12 |
+
[
|
| 13 |
+
7.549789865864094e-08,
|
| 14 |
+
-0.9999999999999908,
|
| 15 |
+
5.960464618088506e-08,
|
| 16 |
+
2.0384433030900552e-07
|
| 17 |
+
],
|
| 18 |
+
[
|
| 19 |
+
-7.549789676401702e-08,
|
| 20 |
+
-5.960465047532283e-08,
|
| 21 |
+
-0.9999999999999908,
|
| 22 |
+
-2.0384432486286618e-07
|
| 23 |
+
],
|
| 24 |
+
[
|
| 25 |
+
0.9999999999999885,
|
| 26 |
+
7.549789676401702e-08,
|
| 27 |
+
-7.549789865864095e-08,
|
| 28 |
+
2.7000000476836847
|
| 29 |
+
],
|
| 30 |
+
[
|
| 31 |
+
0.0,
|
| 32 |
+
0.0,
|
| 33 |
+
0.0,
|
| 34 |
+
1.0
|
| 35 |
+
]
|
| 36 |
+
],
|
| 37 |
+
"blender_camera_name": "lrm_cam.000",
|
| 38 |
+
"blender_camera_location": [
|
| 39 |
+
-2.7,
|
| 40 |
+
3.3065463576978537e-16,
|
| 41 |
+
0.0
|
| 42 |
+
]
|
| 43 |
+
},
|
| 44 |
+
{
|
| 45 |
+
"w": 512,
|
| 46 |
+
"h": 512,
|
| 47 |
+
"fx": 548.9937744140625,
|
| 48 |
+
"fy": 548.9937744140625,
|
| 49 |
+
"cx": 256.0,
|
| 50 |
+
"cy": 256.0,
|
| 51 |
+
"w2c": [
|
| 52 |
+
[
|
| 53 |
+
0.7071067932881387,
|
| 54 |
+
-0.7071067336835127,
|
| 55 |
+
-1.4907362623459278e-07,
|
| 56 |
+
1.137964524414734e-07
|
| 57 |
+
],
|
| 58 |
+
[
|
| 59 |
+
-1.5879604949837492e-07,
|
| 60 |
+
5.202588738731513e-08,
|
| 61 |
+
-0.999999999999972,
|
| 62 |
+
-2.0384434114916973e-07
|
| 63 |
+
],
|
| 64 |
+
[
|
| 65 |
+
0.7071067336835085,
|
| 66 |
+
0.7071067932881663,
|
| 67 |
+
-7.549790026365632e-08,
|
| 68 |
+
2.6999998777741223
|
| 69 |
+
],
|
| 70 |
+
[
|
| 71 |
+
0.0,
|
| 72 |
+
0.0,
|
| 73 |
+
0.0,
|
| 74 |
+
1.0
|
| 75 |
+
]
|
| 76 |
+
],
|
| 77 |
+
"blender_camera_name": "lrm_cam.001",
|
| 78 |
+
"blender_camera_location": [
|
| 79 |
+
-1.9091883092036788,
|
| 80 |
+
-1.9091883092036783,
|
| 81 |
+
0.0
|
| 82 |
+
]
|
| 83 |
+
},
|
| 84 |
+
{
|
| 85 |
+
"w": 512,
|
| 86 |
+
"h": 512,
|
| 87 |
+
"fx": 548.9937744140625,
|
| 88 |
+
"fy": 548.9937744140625,
|
| 89 |
+
"cx": 256.0,
|
| 90 |
+
"cy": 256.0,
|
| 91 |
+
"w2c": [
|
| 92 |
+
[
|
| 93 |
+
1.0,
|
| 94 |
+
-1.8369704112266414e-16,
|
| 95 |
+
-1.8716961953007326e-23,
|
| 96 |
+
-7.758078222293693e-23
|
| 97 |
+
],
|
| 98 |
+
[
|
| 99 |
+
-1.0687309218630199e-23,
|
| 100 |
+
4.371138828673784e-08,
|
| 101 |
+
-0.9999999999999981,
|
| 102 |
+
1.1802075045851359e-07
|
| 103 |
+
],
|
| 104 |
+
[
|
| 105 |
+
1.8369704112266542e-16,
|
| 106 |
+
0.999999999999998,
|
| 107 |
+
4.371138828673784e-08,
|
| 108 |
+
2.7000000476837105
|
| 109 |
+
],
|
| 110 |
+
[
|
| 111 |
+
0.0,
|
| 112 |
+
0.0,
|
| 113 |
+
0.0,
|
| 114 |
+
1.0
|
| 115 |
+
]
|
| 116 |
+
],
|
| 117 |
+
"blender_camera_name": "lrm_cam.002",
|
| 118 |
+
"blender_camera_location": [
|
| 119 |
+
-4.959819536546781e-16,
|
| 120 |
+
-2.7,
|
| 121 |
+
0.0
|
| 122 |
+
]
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"w": 512,
|
| 126 |
+
"h": 512,
|
| 127 |
+
"fx": 548.9937744140625,
|
| 128 |
+
"fy": 548.9937744140625,
|
| 129 |
+
"cx": 256.0,
|
| 130 |
+
"cy": 256.0,
|
| 131 |
+
"w2c": [
|
| 132 |
+
[
|
| 133 |
+
0.7071067932881387,
|
| 134 |
+
0.7071067336835127,
|
| 135 |
+
1.4907362623459278e-07,
|
| 136 |
+
-1.137964524414734e-07
|
| 137 |
+
],
|
| 138 |
+
[
|
| 139 |
+
1.5879604949837492e-07,
|
| 140 |
+
5.202588738731513e-08,
|
| 141 |
+
-0.999999999999972,
|
| 142 |
+
-2.0384434114916973e-07
|
| 143 |
+
],
|
| 144 |
+
[
|
| 145 |
+
-0.7071067336835085,
|
| 146 |
+
0.7071067932881663,
|
| 147 |
+
-7.549790026365632e-08,
|
| 148 |
+
2.6999998777741223
|
| 149 |
+
],
|
| 150 |
+
[
|
| 151 |
+
0.0,
|
| 152 |
+
0.0,
|
| 153 |
+
0.0,
|
| 154 |
+
1.0
|
| 155 |
+
]
|
| 156 |
+
],
|
| 157 |
+
"blender_camera_name": "lrm_cam.003",
|
| 158 |
+
"blender_camera_location": [
|
| 159 |
+
1.9091883092036779,
|
| 160 |
+
-1.9091883092036788,
|
| 161 |
+
0.0
|
| 162 |
+
]
|
| 163 |
+
},
|
| 164 |
+
{
|
| 165 |
+
"w": 512,
|
| 166 |
+
"h": 512,
|
| 167 |
+
"fx": 548.9937744140625,
|
| 168 |
+
"fy": 548.9937744140625,
|
| 169 |
+
"cx": 256.0,
|
| 170 |
+
"cy": 256.0,
|
| 171 |
+
"w2c": [
|
| 172 |
+
[
|
| 173 |
+
7.549790126404288e-08,
|
| 174 |
+
0.9999999999999943,
|
| 175 |
+
2.1254750082671866e-22,
|
| 176 |
+
-2.0384433701293624e-07
|
| 177 |
+
],
|
| 178 |
+
[
|
| 179 |
+
7.549790126404245e-08,
|
| 180 |
+
-5.699933095275168e-15,
|
| 181 |
+
-0.9999999999999943,
|
| 182 |
+
-2.0384433701293508e-07
|
| 183 |
+
],
|
| 184 |
+
[
|
| 185 |
+
-0.9999999999999885,
|
| 186 |
+
7.549790126404245e-08,
|
| 187 |
+
-7.549790126404288e-08,
|
| 188 |
+
2.7000000476836847
|
| 189 |
+
],
|
| 190 |
+
[
|
| 191 |
+
0.0,
|
| 192 |
+
0.0,
|
| 193 |
+
0.0,
|
| 194 |
+
1.0
|
| 195 |
+
]
|
| 196 |
+
],
|
| 197 |
+
"blender_camera_name": "lrm_cam.004",
|
| 198 |
+
"blender_camera_location": [
|
| 199 |
+
2.7,
|
| 200 |
+
0.0,
|
| 201 |
+
0.0
|
| 202 |
+
]
|
| 203 |
+
},
|
| 204 |
+
{
|
| 205 |
+
"w": 512,
|
| 206 |
+
"h": 512,
|
| 207 |
+
"fx": 548.9937744140625,
|
| 208 |
+
"fy": 548.9937744140625,
|
| 209 |
+
"cx": 256.0,
|
| 210 |
+
"cy": 256.0,
|
| 211 |
+
"w2c": [
|
| 212 |
+
[
|
| 213 |
+
-0.9999999999999847,
|
| 214 |
+
-8.74227798575314e-08,
|
| 215 |
+
8.742276618399183e-08,
|
| 216 |
+
2.360415099493051e-07
|
| 217 |
+
],
|
| 218 |
+
[
|
| 219 |
+
-8.742276564667607e-08,
|
| 220 |
+
-4.371139592947904e-08,
|
| 221 |
+
-0.9999999999999906,
|
| 222 |
+
1.1802077109391521e-07
|
| 223 |
+
],
|
| 224 |
+
[
|
| 225 |
+
8.742278039484591e-08,
|
| 226 |
+
-0.9999999999999905,
|
| 227 |
+
4.3711391302137594e-08,
|
| 228 |
+
2.70000004768369
|
| 229 |
+
],
|
| 230 |
+
[
|
| 231 |
+
0.0,
|
| 232 |
+
0.0,
|
| 233 |
+
0.0,
|
| 234 |
+
1.0
|
| 235 |
+
]
|
| 236 |
+
],
|
| 237 |
+
"blender_camera_name": "lrm_cam.005",
|
| 238 |
+
"blender_camera_location": [
|
| 239 |
+
1.6532731788489269e-16,
|
| 240 |
+
2.7,
|
| 241 |
+
0.0
|
| 242 |
+
]
|
| 243 |
+
}
|
| 244 |
+
]
|
| 245 |
+
}
|