Spaces:
Running
on
Zero
Running
on
Zero
Update demo
Browse files
app.py
CHANGED
|
@@ -94,4 +94,386 @@ except ImportError:
|
|
| 94 |
else:
|
| 95 |
# Build stage may not see a GPU on HF Spaces: compile a cross-arch set
|
| 96 |
env["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6;8.9;9.0+PTX"
|
| 97 |
-
except
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
else:
|
| 95 |
# Build stage may not see a GPU on HF Spaces: compile a cross-arch set
|
| 96 |
env["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6;8.9;9.0+PTX"
|
| 97 |
+
except Exception:
|
| 98 |
+
env["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6;8.9;9.0+PTX"
|
| 99 |
+
|
| 100 |
+
# (Optional) side-step allocator+NVML quirks in restrictive containers
|
| 101 |
+
env.setdefault("PYTORCH_NO_CUDA_MEMORY_CACHING", "1")
|
| 102 |
+
|
| 103 |
+
subprocess.check_call(
|
| 104 |
+
[sys.executable, "-m", "pip", "install",
|
| 105 |
+
"git+https://github.com/graphdeco-inria/diff-gaussian-rasterization"],
|
| 106 |
+
env=env,
|
| 107 |
+
)
|
| 108 |
+
import diff_gaussian_rasterization # noqa: F401
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
from gslrm.model.gaussians_renderer import render_turntable, imageseq2video
|
| 112 |
+
from mvdiffusion.pipelines.pipeline_mvdiffusion_unclip import StableUnCLIPImg2ImgPipeline
|
| 113 |
+
from utils_folder.face_utils import preprocess_image, preprocess_image_without_cropping
|
| 114 |
+
|
| 115 |
+
# HuggingFace repository configuration
|
| 116 |
+
HF_REPO_ID = "wlyu/OpenFaceLift"
|
| 117 |
+
|
| 118 |
+
def download_weights_from_hf() -> Path:
|
| 119 |
+
"""Download model weights from HuggingFace if not already present.
|
| 120 |
+
|
| 121 |
+
Returns:
|
| 122 |
+
Path to the downloaded repository
|
| 123 |
+
"""
|
| 124 |
+
workspace_dir = Path(__file__).parent
|
| 125 |
+
|
| 126 |
+
# Check if weights already exist locally
|
| 127 |
+
mvdiffusion_path = workspace_dir / "checkpoints/mvdiffusion/pipeckpts"
|
| 128 |
+
gslrm_path = workspace_dir / "checkpoints/gslrm/ckpt_0000000000021125.pt"
|
| 129 |
+
|
| 130 |
+
if mvdiffusion_path.exists() and gslrm_path.exists():
|
| 131 |
+
print("Using local model weights")
|
| 132 |
+
return workspace_dir
|
| 133 |
+
|
| 134 |
+
print(f"Downloading model weights from HuggingFace: {HF_REPO_ID}")
|
| 135 |
+
print("This may take a few minutes on first run...")
|
| 136 |
+
|
| 137 |
+
# Download to local directory
|
| 138 |
+
snapshot_download(
|
| 139 |
+
repo_id=HF_REPO_ID,
|
| 140 |
+
local_dir=str(workspace_dir / "checkpoints"),
|
| 141 |
+
local_dir_use_symlinks=False,
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
print("Model weights downloaded successfully!")
|
| 145 |
+
return workspace_dir
|
| 146 |
+
|
| 147 |
+
class FaceLiftPipeline:
|
| 148 |
+
"""Pipeline for FaceLift 3D head generation from single images."""
|
| 149 |
+
|
| 150 |
+
def __init__(self):
|
| 151 |
+
# Download weights from HuggingFace if needed
|
| 152 |
+
workspace_dir = download_weights_from_hf()
|
| 153 |
+
|
| 154 |
+
# Setup paths
|
| 155 |
+
self.output_dir = workspace_dir / "outputs"
|
| 156 |
+
self.examples_dir = workspace_dir / "examples"
|
| 157 |
+
self.output_dir.mkdir(exist_ok=True)
|
| 158 |
+
|
| 159 |
+
# Parameters
|
| 160 |
+
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 161 |
+
self.image_size = 512
|
| 162 |
+
self.camera_indices = [2, 1, 0, 5, 4, 3]
|
| 163 |
+
|
| 164 |
+
# Load models (keep on CPU for ZeroGPU compatibility)
|
| 165 |
+
print("Loading models...")
|
| 166 |
+
try:
|
| 167 |
+
self.mvdiffusion_pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained(
|
| 168 |
+
str(workspace_dir / "checkpoints/mvdiffusion/pipeckpts"),
|
| 169 |
+
torch_dtype=torch.float16,
|
| 170 |
+
)
|
| 171 |
+
# Don't move to device or enable xformers here - will be done in GPU-decorated function
|
| 172 |
+
self._models_on_gpu = False
|
| 173 |
+
|
| 174 |
+
with open(workspace_dir / "configs/gslrm.yaml", "r") as f:
|
| 175 |
+
config = edict(yaml.safe_load(f))
|
| 176 |
+
|
| 177 |
+
module_name, class_name = config.model.class_name.rsplit(".", 1)
|
| 178 |
+
module = __import__(module_name, fromlist=[class_name])
|
| 179 |
+
ModelClass = getattr(module, class_name)
|
| 180 |
+
|
| 181 |
+
self.gs_lrm_model = ModelClass(config)
|
| 182 |
+
checkpoint = torch.load(
|
| 183 |
+
workspace_dir / "checkpoints/gslrm/ckpt_0000000000021125.pt",
|
| 184 |
+
map_location="cpu"
|
| 185 |
+
)
|
| 186 |
+
# Filter out loss_calculator weights (training-only, not needed for inference)
|
| 187 |
+
state_dict = {k: v for k, v in checkpoint["model"].items()
|
| 188 |
+
if not k.startswith("loss_calculator.")}
|
| 189 |
+
self.gs_lrm_model.load_state_dict(state_dict)
|
| 190 |
+
# Keep on CPU initially - will move to GPU in decorated function
|
| 191 |
+
|
| 192 |
+
self.color_prompt_embedding = torch.load(
|
| 193 |
+
workspace_dir / "mvdiffusion/fixed_prompt_embeds_6view/clr_embeds.pt",
|
| 194 |
+
map_location="cpu"
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
with open(workspace_dir / "utils_folder/opencv_cameras.json", 'r') as f:
|
| 198 |
+
self.cameras_data = json.load(f)["frames"]
|
| 199 |
+
|
| 200 |
+
print("Models loaded successfully!")
|
| 201 |
+
except Exception as e:
|
| 202 |
+
print(f"Error loading models: {e}")
|
| 203 |
+
import traceback
|
| 204 |
+
traceback.print_exc()
|
| 205 |
+
raise
|
| 206 |
+
|
| 207 |
+
def _move_models_to_gpu(self):
|
| 208 |
+
"""Move models to GPU and enable optimizations. Called within @spaces.GPU context."""
|
| 209 |
+
if not self._models_on_gpu and torch.cuda.is_available():
|
| 210 |
+
print("Moving models to GPU...")
|
| 211 |
+
self.device = torch.device("cuda:0")
|
| 212 |
+
self.mvdiffusion_pipeline.to(self.device)
|
| 213 |
+
self.mvdiffusion_pipeline.unet.enable_xformers_memory_efficient_attention()
|
| 214 |
+
self.gs_lrm_model.to(self.device)
|
| 215 |
+
self.gs_lrm_model.eval() # Set to eval mode
|
| 216 |
+
self.color_prompt_embedding = self.color_prompt_embedding.to(self.device)
|
| 217 |
+
self._models_on_gpu = True
|
| 218 |
+
torch.cuda.empty_cache() # Clear cache after moving models
|
| 219 |
+
print("Models on GPU, xformers enabled!")
|
| 220 |
+
|
| 221 |
+
@spaces.GPU(duration=120)
|
| 222 |
+
def generate_3d_head(self, image_path, auto_crop=True, guidance_scale=3.0,
|
| 223 |
+
random_seed=4, num_steps=50):
|
| 224 |
+
"""Generate 3D head from single image."""
|
| 225 |
+
try:
|
| 226 |
+
# Move models to GPU now that we're in the GPU context
|
| 227 |
+
self._move_models_to_gpu()
|
| 228 |
+
# Setup output directory
|
| 229 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 230 |
+
output_dir = self.output_dir / timestamp
|
| 231 |
+
output_dir.mkdir(exist_ok=True)
|
| 232 |
+
|
| 233 |
+
# Preprocess input
|
| 234 |
+
original_img = np.array(Image.open(image_path))
|
| 235 |
+
input_image = preprocess_image(original_img) if auto_crop else \
|
| 236 |
+
preprocess_image_without_cropping(original_img)
|
| 237 |
+
|
| 238 |
+
if input_image.size != (self.image_size, self.image_size):
|
| 239 |
+
input_image = input_image.resize((self.image_size, self.image_size))
|
| 240 |
+
|
| 241 |
+
input_path = output_dir / "input.png"
|
| 242 |
+
input_image.save(input_path)
|
| 243 |
+
|
| 244 |
+
# Generate multi-view images
|
| 245 |
+
generator = torch.Generator(device=self.mvdiffusion_pipeline.unet.device)
|
| 246 |
+
generator.manual_seed(random_seed)
|
| 247 |
+
|
| 248 |
+
result = self.mvdiffusion_pipeline(
|
| 249 |
+
input_image, None,
|
| 250 |
+
prompt_embeds=self.color_prompt_embedding,
|
| 251 |
+
height=self.image_size,
|
| 252 |
+
width=self.image_size,
|
| 253 |
+
guidance_scale=guidance_scale,
|
| 254 |
+
num_images_per_prompt=1,
|
| 255 |
+
num_inference_steps=num_steps,
|
| 256 |
+
generator=generator,
|
| 257 |
+
eta=1.0,
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
selected_views = result.images[:6]
|
| 261 |
+
|
| 262 |
+
# Save multi-view composite
|
| 263 |
+
multiview_image = Image.new("RGB", (self.image_size * 6, self.image_size))
|
| 264 |
+
for i, view in enumerate(selected_views):
|
| 265 |
+
multiview_image.paste(view, (self.image_size * i, 0))
|
| 266 |
+
|
| 267 |
+
multiview_path = output_dir / "multiview.png"
|
| 268 |
+
multiview_image.save(multiview_path)
|
| 269 |
+
|
| 270 |
+
# Move diffusion model to CPU to free GPU memory for GS-LRM
|
| 271 |
+
print("Moving diffusion model to CPU to free memory...")
|
| 272 |
+
self.mvdiffusion_pipeline.to("cpu")
|
| 273 |
+
|
| 274 |
+
# Delete intermediate variables to free memory
|
| 275 |
+
del result, generator
|
| 276 |
+
torch.cuda.empty_cache()
|
| 277 |
+
torch.cuda.synchronize()
|
| 278 |
+
|
| 279 |
+
# Prepare 3D reconstruction input
|
| 280 |
+
view_arrays = [np.array(view) for view in selected_views]
|
| 281 |
+
lrm_input = torch.from_numpy(np.stack(view_arrays, axis=0)).float()
|
| 282 |
+
lrm_input = lrm_input[None].to(self.device) / 255.0
|
| 283 |
+
lrm_input = rearrange(lrm_input, "b v h w c -> b v c h w")
|
| 284 |
+
|
| 285 |
+
# Prepare camera parameters
|
| 286 |
+
selected_cameras = [self.cameras_data[i] for i in self.camera_indices]
|
| 287 |
+
fxfycxcy_list = [[c["fx"], c["fy"], c["cx"], c["cy"]] for c in selected_cameras]
|
| 288 |
+
c2w_list = [np.linalg.inv(np.array(c["w2c"])) for c in selected_cameras]
|
| 289 |
+
|
| 290 |
+
fxfycxcy = torch.from_numpy(np.stack(fxfycxcy_list, axis=0).astype(np.float32))
|
| 291 |
+
c2w = torch.from_numpy(np.stack(c2w_list, axis=0).astype(np.float32))
|
| 292 |
+
fxfycxcy = fxfycxcy[None].to(self.device)
|
| 293 |
+
c2w = c2w[None].to(self.device)
|
| 294 |
+
|
| 295 |
+
batch_indices = torch.stack([
|
| 296 |
+
torch.zeros(lrm_input.size(1)).long(),
|
| 297 |
+
torch.arange(lrm_input.size(1)).long(),
|
| 298 |
+
], dim=-1)[None].to(self.device)
|
| 299 |
+
|
| 300 |
+
batch = edict({
|
| 301 |
+
"image": lrm_input,
|
| 302 |
+
"c2w": c2w,
|
| 303 |
+
"fxfycxcy": fxfycxcy,
|
| 304 |
+
"index": batch_indices,
|
| 305 |
+
})
|
| 306 |
+
|
| 307 |
+
# Ensure GS-LRM model is on GPU
|
| 308 |
+
if next(self.gs_lrm_model.parameters()).device.type == "cpu":
|
| 309 |
+
print("Moving GS-LRM model to GPU...")
|
| 310 |
+
self.gs_lrm_model.to(self.device)
|
| 311 |
+
torch.cuda.empty_cache()
|
| 312 |
+
|
| 313 |
+
# Final memory cleanup before reconstruction
|
| 314 |
+
torch.cuda.empty_cache()
|
| 315 |
+
|
| 316 |
+
# Run 3D reconstruction
|
| 317 |
+
with torch.no_grad(), torch.autocast(enabled=True, device_type="cuda", dtype=torch.float16):
|
| 318 |
+
result = self.gs_lrm_model.forward(batch, create_visual=False, split_data=True)
|
| 319 |
+
|
| 320 |
+
comp_image = result.render[0].unsqueeze(0).detach()
|
| 321 |
+
gaussians = result.gaussians[0]
|
| 322 |
+
|
| 323 |
+
# Clear CUDA cache after reconstruction
|
| 324 |
+
torch.cuda.empty_cache()
|
| 325 |
+
|
| 326 |
+
# Save filtered gaussians
|
| 327 |
+
filtered_gaussians = gaussians.apply_all_filters(
|
| 328 |
+
cam_origins=None,
|
| 329 |
+
opacity_thres=0.04,
|
| 330 |
+
scaling_thres=0.2,
|
| 331 |
+
floater_thres=0.75,
|
| 332 |
+
crop_bbx=[-0.91, 0.91, -0.91, 0.91, -1.0, 1.0],
|
| 333 |
+
nearfar_percent=(0.0001, 1.0),
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
ply_path = output_dir / "gaussians.ply"
|
| 337 |
+
filtered_gaussians.save_ply(str(ply_path))
|
| 338 |
+
|
| 339 |
+
# Save output image
|
| 340 |
+
comp_image = rearrange(comp_image, "x v c h w -> (x h) (v w) c")
|
| 341 |
+
comp_image = (comp_image.cpu().numpy() * 255.0).clip(0, 255).astype(np.uint8)
|
| 342 |
+
output_path = output_dir / "output.png"
|
| 343 |
+
Image.fromarray(comp_image).save(output_path)
|
| 344 |
+
|
| 345 |
+
# Generate turntable video
|
| 346 |
+
turntable_resolution = 512
|
| 347 |
+
num_turntable_views = 180
|
| 348 |
+
turntable_frames = render_turntable(gaussians, rendering_resolution=turntable_resolution,
|
| 349 |
+
num_views=num_turntable_views)
|
| 350 |
+
turntable_frames = rearrange(turntable_frames, "h (v w) c -> v h w c", v=num_turntable_views)
|
| 351 |
+
turntable_frames = np.ascontiguousarray(turntable_frames)
|
| 352 |
+
|
| 353 |
+
turntable_path = output_dir / "turntable.mp4"
|
| 354 |
+
imageseq2video(turntable_frames, str(turntable_path), fps=30)
|
| 355 |
+
|
| 356 |
+
# Final CUDA cache clear
|
| 357 |
+
torch.cuda.empty_cache()
|
| 358 |
+
|
| 359 |
+
return str(input_path), str(multiview_path), str(output_path), \
|
| 360 |
+
str(turntable_path), str(ply_path)
|
| 361 |
+
|
| 362 |
+
except Exception as e:
|
| 363 |
+
import traceback
|
| 364 |
+
error_details = traceback.format_exc()
|
| 365 |
+
print(f"Error details:\n{error_details}")
|
| 366 |
+
raise gr.Error(f"Generation failed: {str(e)}")
|
| 367 |
+
|
| 368 |
+
# -----------------------------
|
| 369 |
+
# gsplat.js viewer (Option A)
|
| 370 |
+
# -----------------------------
|
| 371 |
+
GSPLAT_HEAD = """
|
| 372 |
+
<script type="module">
|
| 373 |
+
import * as SPLAT from "https://cdn.jsdelivr.net/npm/gsplat@1.2.9/+esm";
|
| 374 |
+
let renderer, scene, camera, controls;
|
| 375 |
+
|
| 376 |
+
function ensureViewer() {
|
| 377 |
+
if (renderer) return;
|
| 378 |
+
const container = document.getElementById("splat-container");
|
| 379 |
+
renderer = new SPLAT.WebGLRenderer();
|
| 380 |
+
container.appendChild(renderer.canvas);
|
| 381 |
+
scene = new SPLAT.Scene();
|
| 382 |
+
camera = new SPLAT.Camera();
|
| 383 |
+
controls = new SPLAT.OrbitControls(camera, renderer.canvas);
|
| 384 |
+
const loop = () => { controls.update(); renderer.render(scene, camera); requestAnimationFrame(loop); };
|
| 385 |
+
requestAnimationFrame(loop);
|
| 386 |
+
}
|
| 387 |
+
|
| 388 |
+
async function loadSplat(url) {
|
| 389 |
+
ensureViewer();
|
| 390 |
+
// clear previous
|
| 391 |
+
scene.children.length = 0;
|
| 392 |
+
await SPLAT.Loader.LoadAsync(url, scene, ()=>{});
|
| 393 |
+
}
|
| 394 |
+
|
| 395 |
+
// Expose callable function for Gradio
|
| 396 |
+
window.__load_splat__ = loadSplat;
|
| 397 |
+
</script>
|
| 398 |
+
"""
|
| 399 |
+
|
| 400 |
+
def main():
|
| 401 |
+
"""Run the FaceLift application with an embedded gsplat.js viewer and per-session files."""
|
| 402 |
+
pipeline = FaceLiftPipeline()
|
| 403 |
+
|
| 404 |
+
# Prepare examples (same as before)
|
| 405 |
+
examples = []
|
| 406 |
+
if pipeline.examples_dir.exists():
|
| 407 |
+
examples = [[str(f), True, 3.0, 4, 50] for f in sorted(pipeline.examples_dir.iterdir())
|
| 408 |
+
if f.suffix.lower() in {'.png', '.jpg', '.jpeg'}]
|
| 409 |
+
|
| 410 |
+
with gr.Blocks(head=GSPLAT_HEAD, title="FaceLift: Single Image 3D Face Reconstruction") as demo:
|
| 411 |
+
session = gr.State()
|
| 412 |
+
|
| 413 |
+
# Light GC + session init
|
| 414 |
+
def _init_session():
|
| 415 |
+
cleanup_old_sessions()
|
| 416 |
+
return new_session_id()
|
| 417 |
+
|
| 418 |
+
# After generation: copy ply into per-session folder and return viewer URL
|
| 419 |
+
def _prep_viewer_url(ply_path: str, session_id: str) -> str:
|
| 420 |
+
if not ply_path or not os.path.exists(ply_path):
|
| 421 |
+
return ""
|
| 422 |
+
return copy_to_session_and_get_url(ply_path, session_id)
|
| 423 |
+
|
| 424 |
+
gr.Markdown("## FaceLift: Single Image 3D Face Reconstruction\nTurn a single portrait image into a 3D head model and preview it interactively.")
|
| 425 |
+
with gr.Row():
|
| 426 |
+
with gr.Column(scale=1):
|
| 427 |
+
in_image = gr.Image(type="filepath", label="Input Portrait Image")
|
| 428 |
+
auto_crop = gr.Checkbox(value=True, label="Auto Cropping")
|
| 429 |
+
guidance = gr.Slider(1.0, 10.0, 3.0, step=0.1, label="Guidance Scale")
|
| 430 |
+
seed = gr.Number(value=4, label="Random Seed")
|
| 431 |
+
steps = gr.Slider(10, 100, 50, step=5, label="Generation Steps")
|
| 432 |
+
run_btn = gr.Button("Generate 3D Head", variant="primary")
|
| 433 |
+
|
| 434 |
+
# Examples (match input signature)
|
| 435 |
+
if examples:
|
| 436 |
+
gr.Examples(
|
| 437 |
+
examples=examples,
|
| 438 |
+
inputs=[in_image, auto_crop, guidance, seed, steps],
|
| 439 |
+
examples_per_page=8,
|
| 440 |
+
)
|
| 441 |
+
|
| 442 |
+
with gr.Column(scale=1):
|
| 443 |
+
out_proc = gr.Image(label="Processed Input")
|
| 444 |
+
out_multi = gr.Image(label="Multi-view Generation")
|
| 445 |
+
out_recon = gr.Image(label="3D Reconstruction")
|
| 446 |
+
out_video = gr.PlayableVideo(label="Turntable Animation")
|
| 447 |
+
out_ply = gr.File(label="3D Model (.ply)")
|
| 448 |
+
|
| 449 |
+
gr.Markdown("### Interactive Gaussian Splat Viewer")
|
| 450 |
+
with gr.Row():
|
| 451 |
+
url_box = gr.Textbox(label="Scene URL (auto-filled)", interactive=False)
|
| 452 |
+
viewer = gr.HTML("<div id='splat-container' style='width:100%;height:640px'></div>")
|
| 453 |
+
reload_btn = gr.Button("Reload Viewer")
|
| 454 |
+
|
| 455 |
+
# Initialize per-browser session
|
| 456 |
+
demo.load(fn=_init_session, inputs=None, outputs=session)
|
| 457 |
+
|
| 458 |
+
# Chain: run → show outputs → prepare viewer URL → load viewer (JS)
|
| 459 |
+
run_btn.click(
|
| 460 |
+
fn=pipeline.generate_3d_head,
|
| 461 |
+
inputs=[in_image, auto_crop, guidance, seed, steps],
|
| 462 |
+
outputs=[out_proc, out_multi, out_recon, out_video, out_ply],
|
| 463 |
+
).then(
|
| 464 |
+
fn=_prep_viewer_url,
|
| 465 |
+
inputs=[out_ply, session],
|
| 466 |
+
outputs=url_box,
|
| 467 |
+
).then(
|
| 468 |
+
fn=None, inputs=url_box, outputs=None,
|
| 469 |
+
js="(url)=>window.__load_splat__(url)"
|
| 470 |
+
)
|
| 471 |
+
|
| 472 |
+
# Manual reload if needed
|
| 473 |
+
reload_btn.click(fn=None, inputs=url_box, outputs=None, js="(url)=>window.__load_splat__(url)")
|
| 474 |
+
|
| 475 |
+
demo.queue(max_size=10)
|
| 476 |
+
demo.launch(share=True, server_name="0.0.0.0", server_port=7860, show_error=True)
|
| 477 |
+
|
| 478 |
+
if __name__ == "__main__":
|
| 479 |
+
main()
|