Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,212 Bytes
893c559 420f9f6 f582ec6 893c559 f582ec6 51b7d19 f582ec6 8ae83f3 cd13388 8ae83f3 cd13388 89a18fc f582ec6 8ae83f3 f582ec6 8ae83f3 f582ec6 02619a8 f582ec6 cd13388 0160e18 cd13388 0160e18 cd13388 0160e18 cd13388 893c559 cd13388 0160e18 cd13388 0160e18 cd13388 893c559 cd13388 893c559 cd13388 893c559 cd13388 893c559 cd13388 893c559 cd13388 0160e18 cd13388 893c559 cd13388 893c559 cd13388 893c559 cd13388 893c559 cd13388 0160e18 cd13388 893c559 cd13388 893c559 cd13388 893c559 cd13388 893c559 67e83bd 893c559 cd13388 f582ec6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
from textwrap import indent
import spaces
import gradio as gr
import os
import json
import torch
import soundfile as sf
import numpy as np
from pathlib import Path
from transformers import AutoModel
from utils.llm_xiapi import get_time_info
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModel.from_pretrained("rookie9/PicoAudio2", trust_remote_code=True).to(device)
def is_tdc_format_valid(tdc_str):
try:
for event_onset in tdc_str.split('--'):
event, instance = event_onset.split('__')
for start_end in instance.split('_'):
start, end = start_end.split('-')
return True
except Exception:
return False
# Event handlers
def clear_json():
return "{}"
def convert_tdc_to_tcc(b_str):
events = b_str.split('--')
names = []
for e in events:
if '__' not in e:
continue
name, _ = e.split('__', 1)
name = name.replace('_', ' ')
names.append(name)
return ' and '.join(names)
def json_to_tdc(json_str):
"""Convert JSON data to final internal format: event1__s1-e1_s2-e2--event2__s1-e1"""
if not json_str or not json_str.strip():
return ""
try:
events_dict = json.loads(json_str)
except json.JSONDecodeError as e:
return f"Error: Invalid JSON format - {str(e)}"
if not isinstance(events_dict, dict):
return "Error: JSON should be a dictionary/object"
# Build final internal format
result = []
for event_name, time_segments in events_dict.items():
if not isinstance(time_segments, list):
continue
valid_segments = []
for segment in time_segments:
if isinstance(segment, list) and len(segment) >= 2:
start, end = segment[0], segment[1]
if start is not None and end is not None:
valid_segments.append(f"{start}-{end}")
if valid_segments:
# Convert to internal format: event_name__time1_time2
event_name_clean = event_name.strip().replace(' ', '_')
times_str = '_'.join(valid_segments)
result.append(f"{event_name_clean}__{times_str}")
return '--'.join(result)
def generate_audio(tcc, json_data, length, time_ctrl):
tdc = json_to_tdc(json_data)
return infer(tcc, tdc, length, time_ctrl)
@spaces.GPU(duration=60)
def infer(input_text, input_onset, input_length, time_control):
if not input_text and input_onset and is_tdc_format_valid(input_onset):
input_text = convert_tdc_to_tcc(input_onset)
elif not input_text:
input_text = "a dog barks"
if input_onset and not is_tdc_format_valid(input_onset):
input_onset = "random"
if time_control:
if not input_onset or not input_length:
input_json = json.loads(get_time_info(input_text))
input_onset, input_length = input_json["onset"], input_json["length"]
else:
input_onset = input_onset if input_onset else "random"
input_length = input_length if input_length else "10.0"
content = {
"caption": input_text,
"onset": input_onset,
"length": input_length
}
with torch.no_grad():
waveform = model(content)
output_wav = "output.wav"
sf.write(
output_wav,
waveform[0, 0].cpu().numpy(),
samplerate=24000,
)
return output_wav, str(input_onset)
with gr.Blocks(title="PicoAudio2 Online Inference", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π΅ PicoAudio2 Online Inference")
gr.Markdown("""
<div style="text-align: left; padding: 10px;">
## π Definition
<div style="background-color: #f0f8ff; padding: 15px; border-radius: 8px; margin: 10px 0;">
**TCC (Temporal Coarse Caption)**
A brief text description for the overall audio scene.
> *Example*: `a dog barks`
**TDC (Temporal Detailed Caption)**
**Event descriptions with timestamps**. It allows precise temporal control over when events happen in the generated audio.
> *Example*: See the format below.
</div>
## π TDC Event Timestamp JSON (Optional)
<div style="background-color: #fffef0; padding: 12px; border-radius: 6px; border-left: 4px solid #ffa500;">
**π‘ JSON Format:**
- Each **event description** is a key in the JSON object
- The value is an **array of [start, end] timestamp pairs** (in seconds)
**Example:**
<pre style="background-color: #f5f5f5; padding: 8px; border-radius: 4px; margin: 5px 0; font-size: 13px;">
{
"a dog barks": [
[3.0, 4.0],
[6.0, 7.0]
],
"a man speaks": [
[5.0, 6.0]
]
}</pre>
It means the event `a dog barks` happens from 3.0 to 4.0 seconds, and the event `a man speaks` happens from 5.0 to 6.0 seconds.
</div>
---
</div>
""")
with gr.Row():
with gr.Column():
tcc_input = gr.Textbox(
label="π― TCC (Temporal Coarse Caption) - Required",
value="a dog barks and a man speaks",
placeholder="e.g., a dog barks and a man speaks",
lines=2
)
event_json = gr.Code(
label="π TDC (Event Timestamp JSON) - Optional",
value="""{
"a dog barks": [
[3.0, 4.0],
[6.0, 7.0]
],
"a man speaks": [
[8.0, 9.5]
]
}""",
language="json",
lines=10,
interactive=True,
)
clear_btn = gr.Button("ποΈ Clear JSON", size="sm")
gr.Markdown("---")
with gr.Row():
length_input = gr.Textbox(
label="β±οΈ Length (seconds)",
value="10.0",
placeholder="e.g., 10.0 (optional but recommended)",
scale=2)
time_control = gr.Checkbox(
label="βοΈ Enable Time Control",
value=True,
scale=1,
)
generate_btn = gr.Button("π΅ Generate Audio", variant="primary", size="lg")
with gr.Column():
audio_output = gr.Audio(label="π Generated Audio")
tdc_used = gr.Textbox(label="π Final TDC Used (Internal Format)", lines=3)
gr.Markdown("""
<div style="text-align: left; padding: 10px;">
---
## π Input Requirements
<div style="background-color: #fff5e6; padding: 15px; border-radius: 8px; margin: 10px 0;">
1. **TCC** is **required** for audio generation.
2. **TDC (JSON)** is **optional** for precise temporal control of events.
3. **Length** (in seconds) is optional, but recommended for temporal control. Defaults to 10.0 seconds.
4. **Enable Time Control**: Tick to use TDC and length for precise event timing.
</div>
---
## π‘ Notes
<div style="background-color: #f0fff0; padding: 15px; border-radius: 8px; margin: 10px 0;">
1. Currently events with overlapped timestamps will not get good results, so we recommend generating audio **without temporal overlaps between events**.
2. If TDC format is incorrect or length is missing, the model will generate audio **without precise temporal control**.
3. For general audio generation without precise timing, you can leave the JSON empty.
4. You may leave TDC blank to let the LLM generate timestamps automatically (subject to API quota).
</div>
</div>
""")
clear_btn.click(
fn=clear_json,
inputs=[],
outputs=[event_json]
)
generate_btn.click(
fn=generate_audio,
inputs=[tcc_input, event_json, length_input, time_control],
outputs=[audio_output, tdc_used]
)
# Examples
gr.Markdown("## π― Quick Examples")
gr.Examples(
examples=[
[
"a dog barks",
"""{
"a dog barks": [
[3.0, 4.0],
[6.0, 7.0]
]
}""",
"8.0",
True
],
[
"door closes then car engine starts",
"""{
"door closes": [
[1.0, 1.5]
],
"car engine starts": [
[2.0, 7.0]
]
}""",
"8.0",
True
],
[
"birds chirping and water flowing",
"""{
"birds chirping": [
[0.0, 5.0]
],
"water flowing": [
[6.0, 9.8]
]
}""",
"10.0",
True
],
[
"heavy rain is falling with thunder",
"",
"15.0",
False
],
[
"a gun shoots twice then a man speaks",
"",
"",
True
]
],
inputs=[tcc_input, event_json, length_input, time_control],
outputs=[audio_output, tdc_used],
fn=generate_audio,
cache_examples=False,
label="Click examples below to try"
)
if __name__ == "__main__":
demo.launch() |