Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,972 Bytes
f582ec6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
from typing import Sequence
import random
from typing import Any
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import diffusers.schedulers as noise_schedulers
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils.torch_utils import randn_tensor
import numpy as np
from models.autoencoder.autoencoder_base import AutoEncoderBase
from models.content_encoder.caption_encoder import ContentEncoder
from models.common import LoadPretrainedBase, CountParamsBase, SaveTrainableParamsBase
from utils.torch_utilities import (
create_alignment_path, create_mask_from_length, loss_with_mask,
trim_or_pad_length
)
class DiffusionMixin:
def __init__(
self,
noise_scheduler_name: str = "stabilityai/stable-diffusion-2-1",
snr_gamma: float = None,
classifier_free_guidance: bool = True,
cfg_drop_ratio: float = 0.2,
) -> None:
self.noise_scheduler_name = noise_scheduler_name
self.snr_gamma = snr_gamma
self.classifier_free_guidance = classifier_free_guidance
self.cfg_drop_ratio = cfg_drop_ratio
self.noise_scheduler = noise_schedulers.DDIMScheduler.from_pretrained(
self.noise_scheduler_name, subfolder="scheduler"
)
def compute_snr(self, timesteps) -> torch.Tensor:
"""
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
"""
alphas_cumprod = self.noise_scheduler.alphas_cumprod
sqrt_alphas_cumprod = alphas_cumprod**0.5
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod)**0.5
# Expand the tensors.
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device
)[timesteps].float()
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(
device=timesteps.device
)[timesteps].float()
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[...,
None]
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
# Compute SNR.
snr = (alpha / sigma)**2
return snr
def get_timesteps(
self,
batch_size: int,
device: torch.device,
training: bool = True
) -> torch.Tensor:
if training:
timesteps = torch.randint(
0,
self.noise_scheduler.config.num_train_timesteps,
(batch_size, ),
device=device
)
else:
# validation on half of the total timesteps
timesteps = (self.noise_scheduler.config.num_train_timesteps //
2) * torch.ones((batch_size, ),
dtype=torch.int64,
device=device)
timesteps = timesteps.long()
return timesteps
def get_target(
self, latent: torch.Tensor, noise: torch.Tensor,
timesteps: torch.Tensor
) -> torch.Tensor:
"""
Get the target for loss depending on the prediction type
"""
if self.noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif self.noise_scheduler.config.prediction_type == "v_prediction":
target = self.noise_scheduler.get_velocity(
latent, noise, timesteps
)
else:
raise ValueError(
f"Unknown prediction type {self.noise_scheduler.config.prediction_type}"
)
return target
def loss_with_snr(
self, pred: torch.Tensor, target: torch.Tensor,
timesteps: torch.Tensor, mask: torch.Tensor
) -> torch.Tensor:
if self.snr_gamma is None:
loss = F.mse_loss(pred.float(), target.float(), reduction="none")
loss = loss_with_mask(loss, mask)
else:
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
# Adaptef from huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py
snr = self.compute_snr(timesteps)
mse_loss_weights = (
torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)],
dim=1).min(dim=1)[0] / snr
)
loss = F.mse_loss(pred.float(), target.float(), reduction="none")
loss = loss_with_mask(loss, mask, reduce=False) * mse_loss_weights
loss = loss.mean()
return loss
class AudioDiffusion(
LoadPretrainedBase, CountParamsBase, SaveTrainableParamsBase,
DiffusionMixin
):
"""
Args:
autoencoder (AutoEncoderBase): Pretrained autoencoder module VAE(frozen).
content_encoder (ContentEncoder): Encodes TCC and TDC information.
backbone (nn.Module): Main denoising network.
frame_resolution (float): Resolution for audio frames.
noise_scheduler_name (str): Noise scheduler identifier.
snr_gamma (float, optional): SNR gamma for noise scheduler.
classifier_free_guidance (bool): Enable classifier-free guidance.
cfg_drop_ratio (float): Ratio for randomly dropping context for classifier-free guidance.
"""
def __init__(
self,
autoencoder: AutoEncoderBase,
content_encoder: ContentEncoder,
backbone: nn.Module,
frame_resolution:float,
noise_scheduler_name: str = "stabilityai/stable-diffusion-2-1",
snr_gamma: float = None,
classifier_free_guidance: bool = True,
cfg_drop_ratio: float = 0.2,
):
nn.Module.__init__(self)
DiffusionMixin.__init__(
self, noise_scheduler_name, snr_gamma, classifier_free_guidance, cfg_drop_ratio
)
self.autoencoder = autoencoder
# Freeze autoencoder parameters
for param in self.autoencoder.parameters():
param.requires_grad = False
self.content_encoder = content_encoder
self.backbone = backbone
self.frame_resolution = frame_resolution
self.dummy_param = nn.Parameter(torch.empty(0))
def forward(
self, content: list[Any], condition: list[Any], task: list[str],
waveform: torch.Tensor, waveform_lengths: torch.Tensor, **kwargs
):
"""
Training forward pass.
Args:
content (list[Any]): List of content dicts for each sample.
condition (list[Any]): Conditioning information (unused here).
task (list[str]): List of task types.
waveform (Tensor): Batch of waveform tensors.
waveform_lengths (Tensor): Lengths for each waveform sample.
Returns:
dict: Dictionary containing the diffusion loss.
"""
device = self.dummy_param.device
num_train_timesteps = self.noise_scheduler.config.num_train_timesteps
self.noise_scheduler.set_timesteps(num_train_timesteps, device=device)
self.autoencoder.eval()
with torch.no_grad():
latent, latent_mask = self.autoencoder.encode(
waveform.unsqueeze(1), waveform_lengths
)
# content(non_time_aligned_content) for TCC and time_aligned_content for TDC
content, content_mask, onset, _= self.content_encoder.encode_content(
content, device=device
)
# prepare latent and diffusion-related noise
time_aligned_content = onset.permute(0,2,1)
if self.training and self.classifier_free_guidance:
mask_indices = [
k for k in range(len(waveform)) if random.random() < self.cfg_drop_ratio
]
if len(mask_indices) > 0:
content[mask_indices] = 0
time_aligned_content[mask_indices] = 0
batch_size = latent.shape[0]
timesteps = self.get_timesteps(batch_size, device, self.training)
noise = torch.randn_like(latent)
noisy_latent = self.noise_scheduler.add_noise(latent, noise, timesteps)
target = self.get_target(latent, noise, timesteps)
# Denoising prediction
pred: torch.Tensor = self.backbone(
x=noisy_latent,
timesteps=timesteps,
time_aligned_context=time_aligned_content,
context=content,
x_mask=latent_mask,
context_mask=content_mask
)
pred = pred.transpose(1, self.autoencoder.time_dim)
target = target.transpose(1, self.autoencoder.time_dim)
diff_loss = self.loss_with_snr(pred, target, timesteps, latent_mask)
return {
"diff_loss": diff_loss,
}
@torch.no_grad()
def inference(
self,
content: list[Any],
num_steps: int = 20,
guidance_scale: float = 3.0,
guidance_rescale: float = 0.0,
disable_progress: bool = True,
num_samples_per_content: int = 1,
**kwargs
):
"""
Inference/generation method for audio diffusion.
Args:
content (list[Any]): List of content dicts.
scheduler (SchedulerMixin): Scheduler for timesteps and noise.
num_steps (int): Number of denoising steps.
guidance_scale (float): Classifier-free guidance scale.
guidance_rescale (float): Rescale factor for guidance.
disable_progress (bool): Disable progress bar.
num_samples_per_content (int): How many samples to generate per content.
Returns:
waveform (Tensor): Generated waveform.
"""
device = self.dummy_param.device
classifier_free_guidance = guidance_scale > 1.0
batch_size = len(content) * num_samples_per_content
print(content)
if classifier_free_guidance:
content, content_mask, onset, length_list = self.encode_content_classifier_free(
content, num_samples_per_content
)
else:
content, content_mask, onset, length_list = self.content_encoder.encode_content(
content, device=device
)
content = content.repeat_interleave(num_samples_per_content, 0)
content_mask = content_mask.repeat_interleave(
num_samples_per_content, 0
)
self.noise_scheduler.set_timesteps(num_steps, device=device)
timesteps = self.noise_scheduler.timesteps
# prepare input latent and context for the backbone
shape = (batch_size, 128, onset.shape[2]) # 128 for StableVAE channels
time_aligned_content = onset.permute(0,2,1)
latent = randn_tensor(
shape, generator=None, device=device, dtype=content.dtype
)
# scale the initial noise by the standard deviation required by the scheduler
latent = latent * self.noise_scheduler.init_noise_sigma
latent_mask = torch.full((batch_size, onset.shape[2]), False, device=device)
for i, length in enumerate(length_list):
# Set latent mask True for valid time steps for each sample
latent_mask[i, :length] = True
num_warmup_steps = len(timesteps) - num_steps * self.noise_scheduler.order
progress_bar = tqdm(range(num_steps), disable=disable_progress)
if classifier_free_guidance:
uncond_time_aligned_content = torch.zeros_like(
time_aligned_content
)
time_aligned_content = torch.cat(
[uncond_time_aligned_content, time_aligned_content]
)
latent_mask = torch.cat(
[latent_mask, latent_mask.detach().clone()]
)
# iteratively denoising
for i, timestep in enumerate(timesteps):
latent_input = torch.cat(
[latent, latent]
) if classifier_free_guidance else latent
latent_input = self.noise_scheduler.scale_model_input(latent_input, timestep)
noise_pred = self.backbone(
x=latent_input,
x_mask=latent_mask,
timesteps=timestep,
time_aligned_context=time_aligned_content,
context=content,
context_mask=content_mask,
)
if classifier_free_guidance:
noise_pred_uncond, noise_pred_content = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_content - noise_pred_uncond
)
if guidance_rescale != 0.0:
noise_pred = self.rescale_cfg(
noise_pred_content, noise_pred, guidance_rescale
)
# compute the previous noisy sample x_t -> x_t-1
latent = self.noise_scheduler.step(noise_pred, timestep, latent).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and
(i+1) % self.noise_scheduler.order == 0):
progress_bar.update(1)
#latent = latent.to(next(self.autoencoder.parameters()).device)
waveform = self.autoencoder.decode(latent)
return waveform
def encode_content_classifier_free(
self,
content: list[Any],
task: list[str],
num_samples_per_content: int = 1
):
device = self.dummy_param.device
content, content_mask, onset, length_list = self.content_encoder.encode_content(
content, device=device
)
content = content.repeat_interleave(num_samples_per_content, 0)
content_mask = content_mask.repeat_interleave(
num_samples_per_content, 0
)
# get unconditional embeddings for classifier free guidance
uncond_content = torch.zeros_like(content)
uncond_content_mask = content_mask.detach().clone()
uncond_content = uncond_content.repeat_interleave(
num_samples_per_content, 0
)
uncond_content_mask = uncond_content_mask.repeat_interleave(
num_samples_per_content, 0
)
# For classifier free guidance, we need to do two forward passes.
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
content = torch.cat([uncond_content, content])
content_mask = torch.cat([uncond_content_mask, content_mask])
return content, content_mask, onset, length_list
def rescale_cfg(
self, pred_cond: torch.Tensor, pred_cfg: torch.Tensor,
guidance_rescale: float
):
"""
Rescale `pred_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_cond = pred_cond.std(
dim=list(range(1, pred_cond.ndim)), keepdim=True
)
std_cfg = pred_cfg.std(dim=list(range(1, pred_cfg.ndim)), keepdim=True)
pred_rescaled = pred_cfg * (std_cond / std_cfg)
pred_cfg = guidance_rescale * pred_rescaled + (
1 - guidance_rescale
) * pred_cfg
|