File size: 15,972 Bytes
f582ec6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
from typing import Sequence
import random
from typing import Any

from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import diffusers.schedulers as noise_schedulers
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils.torch_utils import randn_tensor

import numpy as np
from models.autoencoder.autoencoder_base import AutoEncoderBase
from models.content_encoder.caption_encoder import ContentEncoder
from models.common import LoadPretrainedBase, CountParamsBase, SaveTrainableParamsBase
from utils.torch_utilities import (
    create_alignment_path, create_mask_from_length, loss_with_mask,
    trim_or_pad_length
)


class DiffusionMixin:
    def __init__(
        self,
        noise_scheduler_name: str = "stabilityai/stable-diffusion-2-1",
        snr_gamma: float = None,
        classifier_free_guidance: bool = True,
        cfg_drop_ratio: float = 0.2,

    ) -> None:
        self.noise_scheduler_name = noise_scheduler_name
        self.snr_gamma = snr_gamma
        self.classifier_free_guidance = classifier_free_guidance
        self.cfg_drop_ratio = cfg_drop_ratio
        self.noise_scheduler = noise_schedulers.DDIMScheduler.from_pretrained(
            self.noise_scheduler_name, subfolder="scheduler"
        )

    def compute_snr(self, timesteps) -> torch.Tensor:
        """
        Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
        """
        alphas_cumprod = self.noise_scheduler.alphas_cumprod
        sqrt_alphas_cumprod = alphas_cumprod**0.5
        sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod)**0.5

        # Expand the tensors.
        # Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
        sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device
                                                    )[timesteps].float()
        while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
            sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
        alpha = sqrt_alphas_cumprod.expand(timesteps.shape)

        sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(
            device=timesteps.device
        )[timesteps].float()
        while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
            sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[...,
                                                                          None]
        sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)

        # Compute SNR.
        snr = (alpha / sigma)**2
        return snr

    def get_timesteps(
        self,
        batch_size: int,
        device: torch.device,
        training: bool = True
    ) -> torch.Tensor:
        if training:
            timesteps = torch.randint(
                0,
                self.noise_scheduler.config.num_train_timesteps,
                (batch_size, ),
                device=device
            )
        else:
            # validation on half of the total timesteps
            timesteps = (self.noise_scheduler.config.num_train_timesteps //
                         2) * torch.ones((batch_size, ),
                                         dtype=torch.int64,
                                         device=device)

        timesteps = timesteps.long()
        return timesteps

    def get_target(
        self, latent: torch.Tensor, noise: torch.Tensor,
        timesteps: torch.Tensor
    ) -> torch.Tensor:
        """
        Get the target for loss depending on the prediction type
        """
        if self.noise_scheduler.config.prediction_type == "epsilon":
            target = noise
        elif self.noise_scheduler.config.prediction_type == "v_prediction":
            target = self.noise_scheduler.get_velocity(
                latent, noise, timesteps
            )
        else:
            raise ValueError(
                f"Unknown prediction type {self.noise_scheduler.config.prediction_type}"
            )
        return target

    def loss_with_snr(
        self, pred: torch.Tensor, target: torch.Tensor,
        timesteps: torch.Tensor, mask: torch.Tensor
    ) -> torch.Tensor:
        if self.snr_gamma is None:
            loss = F.mse_loss(pred.float(), target.float(), reduction="none")
            loss = loss_with_mask(loss, mask)
        else:
            # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
            # Adaptef from huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py
            snr = self.compute_snr(timesteps)
            mse_loss_weights = (
                torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)],
                            dim=1).min(dim=1)[0] / snr
            )
            loss = F.mse_loss(pred.float(), target.float(), reduction="none")
            loss = loss_with_mask(loss, mask, reduce=False) * mse_loss_weights
            loss = loss.mean()
        return loss


class AudioDiffusion(
    LoadPretrainedBase, CountParamsBase, SaveTrainableParamsBase,
    DiffusionMixin
):  
    """
    Args:
        autoencoder (AutoEncoderBase): Pretrained autoencoder module VAE(frozen).
        content_encoder (ContentEncoder): Encodes TCC and TDC information.
        backbone (nn.Module): Main denoising network.
        frame_resolution (float): Resolution for audio frames.
        noise_scheduler_name (str): Noise scheduler identifier.
        snr_gamma (float, optional): SNR gamma for noise scheduler.
        classifier_free_guidance (bool): Enable classifier-free guidance.
        cfg_drop_ratio (float): Ratio for randomly dropping context for classifier-free guidance.
    """
    def __init__(
        self,
        autoencoder: AutoEncoderBase,
        content_encoder: ContentEncoder,
        backbone: nn.Module,
        frame_resolution:float,
        noise_scheduler_name: str = "stabilityai/stable-diffusion-2-1",
        snr_gamma: float = None,
        classifier_free_guidance: bool = True,
        cfg_drop_ratio: float = 0.2,
    ):
        nn.Module.__init__(self)
        DiffusionMixin.__init__(
            self, noise_scheduler_name, snr_gamma, classifier_free_guidance, cfg_drop_ratio
        )
        
        self.autoencoder = autoencoder
        # Freeze autoencoder parameters
        for param in self.autoencoder.parameters():
            param.requires_grad = False

        self.content_encoder = content_encoder
        self.backbone = backbone
        self.frame_resolution = frame_resolution
        self.dummy_param = nn.Parameter(torch.empty(0))

    def forward(
        self, content: list[Any], condition: list[Any], task: list[str],
        waveform: torch.Tensor, waveform_lengths: torch.Tensor, **kwargs
    ):  
        """
        Training forward pass.

        Args:
            content (list[Any]): List of content dicts for each sample.
            condition (list[Any]): Conditioning information (unused here).
            task (list[str]): List of task types.
            waveform (Tensor): Batch of waveform tensors.
            waveform_lengths (Tensor): Lengths for each waveform sample.

        Returns:
            dict: Dictionary containing the diffusion loss.
        """
        device = self.dummy_param.device
        num_train_timesteps = self.noise_scheduler.config.num_train_timesteps
        self.noise_scheduler.set_timesteps(num_train_timesteps, device=device)

        self.autoencoder.eval()
        with torch.no_grad():
            latent, latent_mask = self.autoencoder.encode(
                waveform.unsqueeze(1), waveform_lengths
            )
        # content(non_time_aligned_content) for TCC and time_aligned_content for TDC
        content, content_mask, onset, _= self.content_encoder.encode_content(
            content, device=device
        )

        # prepare latent and diffusion-related noise
        time_aligned_content = onset.permute(0,2,1)
        if self.training and self.classifier_free_guidance:
            mask_indices = [
                k for k in range(len(waveform)) if random.random() < self.cfg_drop_ratio
            ]
            if len(mask_indices) > 0:
                content[mask_indices] = 0
                time_aligned_content[mask_indices] = 0

        batch_size = latent.shape[0]
        timesteps = self.get_timesteps(batch_size, device, self.training)
        noise = torch.randn_like(latent)
        noisy_latent = self.noise_scheduler.add_noise(latent, noise, timesteps)
        target = self.get_target(latent, noise, timesteps)

        # Denoising prediction
        pred: torch.Tensor = self.backbone(
            x=noisy_latent,
            timesteps=timesteps,
            time_aligned_context=time_aligned_content,
            context=content,
            x_mask=latent_mask,
            context_mask=content_mask
        )
        pred = pred.transpose(1, self.autoencoder.time_dim)
        target = target.transpose(1, self.autoencoder.time_dim)
        diff_loss = self.loss_with_snr(pred, target, timesteps, latent_mask)
        return {
            "diff_loss": diff_loss,
        }

    @torch.no_grad()
    def inference(
        self,
        content: list[Any],
        num_steps: int = 20,
        guidance_scale: float = 3.0,
        guidance_rescale: float = 0.0,
        disable_progress: bool = True,
        num_samples_per_content: int = 1,
        **kwargs
    ):
        """
        Inference/generation method for audio diffusion.

        Args:
            content (list[Any]): List of content dicts.
            scheduler (SchedulerMixin): Scheduler for timesteps and noise.
            num_steps (int): Number of denoising steps.
            guidance_scale (float): Classifier-free guidance scale.
            guidance_rescale (float): Rescale factor for guidance.
            disable_progress (bool): Disable progress bar.
            num_samples_per_content (int): How many samples to generate per content.

        Returns:
            waveform (Tensor): Generated waveform.
        """
        device = self.dummy_param.device
        classifier_free_guidance = guidance_scale > 1.0
        batch_size = len(content) * num_samples_per_content
        print(content)
        if classifier_free_guidance:
            content, content_mask, onset, length_list = self.encode_content_classifier_free(
                content, num_samples_per_content
            )
        else:
            content, content_mask, onset, length_list = self.content_encoder.encode_content(
            content, device=device
        )
            content = content.repeat_interleave(num_samples_per_content, 0)
            content_mask = content_mask.repeat_interleave(
                num_samples_per_content, 0
            )

        self.noise_scheduler.set_timesteps(num_steps, device=device)
        timesteps = self.noise_scheduler.timesteps


        # prepare input latent and context for the backbone
        shape = (batch_size, 128, onset.shape[2])  # 128 for StableVAE channels
        time_aligned_content = onset.permute(0,2,1)
        latent = randn_tensor(
            shape, generator=None, device=device, dtype=content.dtype
        )
        
        # scale the initial noise by the standard deviation required by the scheduler
        latent = latent * self.noise_scheduler.init_noise_sigma
        latent_mask = torch.full((batch_size, onset.shape[2]), False, device=device)
        
        for i, length in enumerate(length_list):
        # Set latent mask True for valid time steps for each sample
            latent_mask[i, :length] = True
        num_warmup_steps = len(timesteps) - num_steps * self.noise_scheduler.order
        progress_bar = tqdm(range(num_steps), disable=disable_progress)

        if classifier_free_guidance:
            uncond_time_aligned_content = torch.zeros_like(
                time_aligned_content
            )
            time_aligned_content = torch.cat(
                [uncond_time_aligned_content, time_aligned_content]
            )
            latent_mask = torch.cat(
                [latent_mask, latent_mask.detach().clone()]
            )

        # iteratively denoising

        for i, timestep in enumerate(timesteps):

            latent_input = torch.cat(
                [latent, latent]
            ) if classifier_free_guidance else latent
            latent_input = self.noise_scheduler.scale_model_input(latent_input, timestep)

            noise_pred = self.backbone(
                x=latent_input,
                x_mask=latent_mask,
                timesteps=timestep,
                time_aligned_context=time_aligned_content,
                context=content,
                context_mask=content_mask,
            )

            if classifier_free_guidance:
                noise_pred_uncond, noise_pred_content = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (
                    noise_pred_content - noise_pred_uncond
                )
                if guidance_rescale != 0.0:
                    noise_pred = self.rescale_cfg(
                        noise_pred_content, noise_pred, guidance_rescale
                    )
            # compute the previous noisy sample x_t -> x_t-1
            latent = self.noise_scheduler.step(noise_pred, timestep, latent).prev_sample
            
            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and
                                           (i+1) % self.noise_scheduler.order == 0):
                progress_bar.update(1)
        #latent = latent.to(next(self.autoencoder.parameters()).device)
        waveform = self.autoencoder.decode(latent)
        return waveform

    def encode_content_classifier_free(
        self,
        content: list[Any],
        task: list[str],
        num_samples_per_content: int = 1
    ):
        device = self.dummy_param.device

        content, content_mask, onset, length_list = self.content_encoder.encode_content(
            content, device=device
        )
        content = content.repeat_interleave(num_samples_per_content, 0)
        content_mask = content_mask.repeat_interleave(
            num_samples_per_content, 0
        )

        # get unconditional embeddings for classifier free guidance
        uncond_content = torch.zeros_like(content)
        uncond_content_mask = content_mask.detach().clone()

        uncond_content = uncond_content.repeat_interleave(
            num_samples_per_content, 0
        )
        uncond_content_mask = uncond_content_mask.repeat_interleave(
            num_samples_per_content, 0
        )

        # For classifier free guidance, we need to do two forward passes.
        # We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
        content = torch.cat([uncond_content, content])
        content_mask = torch.cat([uncond_content_mask, content_mask])

        return content, content_mask, onset, length_list
    
    def rescale_cfg(
        self, pred_cond: torch.Tensor, pred_cfg: torch.Tensor,
        guidance_rescale: float
    ):
        """
        Rescale `pred_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
        Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
        """
        std_cond = pred_cond.std(
            dim=list(range(1, pred_cond.ndim)), keepdim=True
        )
        std_cfg = pred_cfg.std(dim=list(range(1, pred_cfg.ndim)), keepdim=True)

        pred_rescaled = pred_cfg * (std_cond / std_cfg)
        pred_cfg = guidance_rescale * pred_rescaled + (
            1 - guidance_rescale
        ) * pred_cfg