File size: 17,524 Bytes
f582ec6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint

from .mask_dit import DiTBlock, FinalBlock, UDiT
from .modules import (
    film_modulate,
    PatchEmbed,
    PE_wrapper,
    TimestepEmbedder,
    RMSNorm,
)


class AudioDiTBlock(DiTBlock):
    """
    A modified DiT block with time aligned context add to latent.
    """
    def __init__(
        self,
        dim,
        ta_context_dim,
        ta_context_norm=False,
        context_dim=None,
        num_heads=8,
        mlp_ratio=4.,
        qkv_bias=False,
        qk_scale=None,
        qk_norm=None,
        act_layer='gelu',
        norm_layer=nn.LayerNorm,
        ta_context_fusion='add',
        time_fusion='none',
        ada_sola_rank=None,
        ada_sola_alpha=None,
        skip=False,
        skip_norm=False,
        rope_mode='none',
        context_norm=False,
        use_checkpoint=False
    ):
        super().__init__(
            dim=dim,
            context_dim=context_dim,
            num_heads=num_heads,
            mlp_ratio=mlp_ratio,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            qk_norm=qk_norm,
            act_layer=act_layer,
            norm_layer=norm_layer,
            time_fusion=time_fusion,
            ada_sola_rank=ada_sola_rank,
            ada_sola_alpha=ada_sola_alpha,
            skip=skip,
            skip_norm=skip_norm,
            rope_mode=rope_mode,
            context_norm=context_norm,
            use_checkpoint=use_checkpoint
        )
        self.ta_context_fusion = ta_context_fusion
        self.ta_context_norm = ta_context_norm
        if self.ta_context_fusion == "add":
            self.ta_context_projection = nn.Linear(ta_context_dim, dim)
            self.ta_context_norm = norm_layer(
                ta_context_dim
            ) if self.ta_context_norm else nn.Identity()
        elif self.ta_context_fusion == "concat":
            self.ta_context_projection = nn.Linear(ta_context_dim + dim, dim)
            self.ta_context_norm = norm_layer(
                ta_context_dim + dim
            ) if self.ta_context_norm else nn.Identity()

    def forward(
        self,
        x,
        time_aligned_context,
        time_token=None,
        time_ada=None,
        skip=None,
        context=None,
        x_mask=None,
        context_mask=None,
        extras=None
    ):
        if self.use_checkpoint:
            return checkpoint(
                self._forward,
                x,
                time_aligned_context,
                time_token,
                time_ada,
                skip,
                context,
                x_mask,
                context_mask,
                extras,
                use_reentrant=False
            )
        else:
            return self._forward(
                x,
                time_aligned_context,
                time_token,
                time_ada,
                skip,
                context,
                x_mask,
                context_mask,
                extras,
            )

    def _forward(
        self,
        x,
        time_aligned_context,
        time_token=None,
        time_ada=None,
        skip=None,
        context=None,
        x_mask=None,
        context_mask=None,
        extras=None
    ):
        B, T, C = x.shape

        # # time aligned context
        # if self.ta_context_fusion == "add":
        #     time_aligned_context = self.ta_context_projection(
        #         self.ta_context_norm(time_aligned_context)
        #     )
        #     x = x + time_aligned_context
        # elif self.ta_context_fusion == "concat":
        #     cat = torch.cat([x, time_aligned_context], dim=-1)
        #     cat = self.ta_context_norm(cat)
        #     x = self.ta_context_projection(cat)

        # skip connection
        if self.skip_linear is not None:
            assert skip is not None
            cat = torch.cat([x, skip], dim=-1)
            cat = self.skip_norm(cat)
            x = self.skip_linear(cat)
        #print('skip')
        #print(x)
        if self.use_adanorm:
            time_ada = self.adaln(time_token, time_ada)
            (shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp,
             gate_mlp) = time_ada.chunk(6, dim=1)

        # self attention
        if self.use_adanorm:
            x_norm = film_modulate(
                self.norm1(x), shift=shift_msa, scale=scale_msa
            )
            x = x + (1-gate_msa) * self.attn(
                x_norm, context=None, context_mask=x_mask, extras=extras
            )
        else:
            # TODO diffusion timestep input is not fused here
            x = x + self.attn(
                self.norm1(x),
                context=None,
                context_mask=x_mask,
                extras=extras
            )

        # time aligned context fusion
        if self.ta_context_fusion == "add":
            time_aligned_context = self.ta_context_projection(
                self.ta_context_norm(time_aligned_context)
            )
            x = x + time_aligned_context
        elif self.ta_context_fusion == "concat":
            cat = torch.cat([x, time_aligned_context], dim=-1)
            cat = self.ta_context_norm(cat)
            x = self.ta_context_projection(cat)

        # cross attention
        if self.use_context:
            assert context is not None
            x = x + self.cross_attn(
                x=self.norm2(x),
                context=self.norm_context(context),
                context_mask=context_mask,
                extras=extras
            )

        # mlp
        if self.use_adanorm:
            x_norm = film_modulate(
                self.norm3(x), shift=shift_mlp, scale=scale_mlp
            )
            x = x + (1-gate_mlp) * self.mlp(x_norm)
        else:
            x = x + self.mlp(self.norm3(x))

        return x


class AudioUDiT(UDiT):
    def __init__(
        self,
        img_size=224,
        patch_size=16,
        in_chans=3,
        input_type='2d',
        out_chans=None,
        embed_dim=768,
        depth=12,
        num_heads=12,
        mlp_ratio=4,
        qkv_bias=False,
        qk_scale=None,
        qk_norm=None,
        act_layer='gelu',
        norm_layer='layernorm',
        context_norm=False,
        use_checkpoint=False,
        time_fusion='token',
        ada_sola_rank=None,
        ada_sola_alpha=None,
        cls_dim=None,
        ta_context_dim=768,
        ta_context_fusion='concat',
        ta_context_norm=True,
        context_dim=768,
        context_fusion='concat',
        context_max_length=128,
        context_pe_method='sinu',
        pe_method='abs',
        rope_mode='none',
        use_conv=True,
        skip=True,
        skip_norm=True
    ):
        nn.Module.__init__(self)
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models

        # input
        self.in_chans = in_chans
        self.input_type = input_type
        if self.input_type == '2d':
            num_patches = (img_size[0] //
                           patch_size) * (img_size[1] // patch_size)
        elif self.input_type == '1d':
            num_patches = img_size // patch_size
        self.patch_embed = PatchEmbed(
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
            input_type=input_type
        )
        out_chans = in_chans if out_chans is None else out_chans
        self.out_chans = out_chans

        # position embedding
        self.rope = rope_mode
        self.x_pe = PE_wrapper(
            dim=embed_dim, method=pe_method, length=num_patches
        )

        # time embed
        self.time_embed = TimestepEmbedder(embed_dim)
        self.time_fusion = time_fusion
        self.use_adanorm = False

        # cls embed
        if cls_dim is not None:
            self.cls_embed = nn.Sequential(
                nn.Linear(cls_dim, embed_dim, bias=True),
                nn.SiLU(),
                nn.Linear(embed_dim, embed_dim, bias=True),
            )
        else:
            self.cls_embed = None

        # time fusion
        if time_fusion == 'token':
            # put token at the beginning of sequence
            self.extras = 2 if self.cls_embed else 1
            self.time_pe = PE_wrapper(
                dim=embed_dim, method='abs', length=self.extras
            )
        elif time_fusion in ['ada', 'ada_single', 'ada_sola', 'ada_sola_bias']:
            self.use_adanorm = True
            # aviod  repetitive silu for each adaln block
            self.time_act = nn.SiLU()
            self.extras = 0
            self.time_ada_final = nn.Linear(
                embed_dim, 2 * embed_dim, bias=True
            )
            if time_fusion in ['ada_single', 'ada_sola', 'ada_sola_bias']:
                # shared adaln
                self.time_ada = nn.Linear(embed_dim, 6 * embed_dim, bias=True)
            else:
                self.time_ada = None
        else:
            raise NotImplementedError

        # context
        # use a simple projection
        self.use_context = False
        self.context_cross = False
        self.context_max_length = context_max_length
        self.context_fusion = 'none'
        if context_dim is not None:
            self.use_context = True
            self.context_embed = nn.Sequential(
                nn.Linear(context_dim, embed_dim, bias=True),
                nn.SiLU(),
                nn.Linear(embed_dim, embed_dim, bias=True),
            )
            self.context_fusion = context_fusion
            if context_fusion == 'concat' or context_fusion == 'joint':
                self.extras += context_max_length
                self.context_pe = PE_wrapper(
                    dim=embed_dim,
                    method=context_pe_method,
                    length=context_max_length
                )
                # no cross attention layers
                context_dim = None
            elif context_fusion == 'cross':
                self.context_pe = PE_wrapper(
                    dim=embed_dim,
                    method=context_pe_method,
                    length=context_max_length
                )
                self.context_cross = True
                context_dim = embed_dim
            else:
                raise NotImplementedError

        self.use_skip = skip

        # norm layers
        if norm_layer == 'layernorm':
            norm_layer = nn.LayerNorm
        elif norm_layer == 'rmsnorm':
            norm_layer = RMSNorm
        else:
            raise NotImplementedError

        self.in_blocks = nn.ModuleList([
            AudioDiTBlock(
                dim=embed_dim,
                ta_context_dim=ta_context_dim,
                ta_context_fusion=ta_context_fusion,
                ta_context_norm=ta_context_norm,
                context_dim=context_dim,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                qk_norm=qk_norm,
                act_layer=act_layer,
                norm_layer=norm_layer,
                time_fusion=time_fusion,
                ada_sola_rank=ada_sola_rank,
                ada_sola_alpha=ada_sola_alpha,
                skip=False,
                skip_norm=False,
                rope_mode=self.rope,
                context_norm=context_norm,
                use_checkpoint=use_checkpoint
            ) for i in range(depth // 2)
        ])

        self.mid_block = AudioDiTBlock(
            dim=embed_dim,
            ta_context_dim=ta_context_dim,
            context_dim=context_dim,
            num_heads=num_heads,
            mlp_ratio=mlp_ratio,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            qk_norm=qk_norm,
            act_layer=act_layer,
            norm_layer=norm_layer,
            time_fusion=time_fusion,
            ada_sola_rank=ada_sola_rank,
            ada_sola_alpha=ada_sola_alpha,
            ta_context_fusion=ta_context_fusion,
            ta_context_norm=ta_context_norm,
            skip=False,
            skip_norm=False,
            rope_mode=self.rope,
            context_norm=context_norm,
            use_checkpoint=use_checkpoint
        )

        self.out_blocks = nn.ModuleList([
            AudioDiTBlock(
                dim=embed_dim,
                ta_context_dim=ta_context_dim,
                context_dim=context_dim,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                qk_norm=qk_norm,
                act_layer=act_layer,
                norm_layer=norm_layer,
                time_fusion=time_fusion,
                ada_sola_rank=ada_sola_rank,
                ada_sola_alpha=ada_sola_alpha,
                ta_context_fusion=ta_context_fusion,
                ta_context_norm=ta_context_norm,
                skip=skip,
                skip_norm=skip_norm,
                rope_mode=self.rope,
                context_norm=context_norm,
                use_checkpoint=use_checkpoint
            ) for i in range(depth // 2)
        ])

        # FinalLayer block
        self.use_conv = use_conv
        self.final_block = FinalBlock(
            embed_dim=embed_dim,
            patch_size=patch_size,
            img_size=img_size,
            in_chans=out_chans,
            input_type=input_type,
            norm_layer=norm_layer,
            use_conv=use_conv,
            use_adanorm=self.use_adanorm
        )
        self.initialize_weights()

    def forward(
        self,
        x,
        timesteps,
        time_aligned_context,
        context,
        x_mask=None,
        context_mask=None,
        cls_token=None,
        controlnet_skips=None,
    ):
        # make it compatible with int time step during inference
        if timesteps.dim() == 0:
            timesteps = timesteps.expand(x.shape[0]
                                        ).to(x.device, dtype=torch.long)

        x = self.patch_embed(x)
        x = self.x_pe(x)

        B, L, D = x.shape

        if self.use_context:
            context_token = self.context_embed(context)
            context_token = self.context_pe(context_token)
            if self.context_fusion == 'concat' or self.context_fusion == 'joint':
                x, x_mask = self._concat_x_context(
                    x=x,
                    context=context_token,
                    x_mask=x_mask,
                    context_mask=context_mask
                )
                context_token, context_mask = None, None
        else:
            context_token, context_mask = None, None

        time_token = self.time_embed(timesteps)
        if self.cls_embed:
            cls_token = self.cls_embed(cls_token)
        time_ada = None
        time_ada_final = None
        if self.use_adanorm:
            if self.cls_embed:
                time_token = time_token + cls_token
            time_token = self.time_act(time_token)
            time_ada_final = self.time_ada_final(time_token)
            if self.time_ada is not None:
                time_ada = self.time_ada(time_token)
        else:
            time_token = time_token.unsqueeze(dim=1)
            if self.cls_embed:
                cls_token = cls_token.unsqueeze(dim=1)
                time_token = torch.cat([time_token, cls_token], dim=1)
            time_token = self.time_pe(time_token)
            x = torch.cat((time_token, x), dim=1)
            if x_mask is not None:
                x_mask = torch.cat([
                    torch.ones(B, time_token.shape[1],
                               device=x_mask.device).bool(), x_mask
                ],
                                   dim=1)
            time_token = None

        skips = []
        for blk in self.in_blocks:
            x = blk(
                x=x,
                time_aligned_context=time_aligned_context,
                time_token=time_token,
                time_ada=time_ada,
                skip=None,
                context=context_token,
                x_mask=x_mask,
                context_mask=context_mask,
                extras=self.extras
            )

            if self.use_skip:
                skips.append(x)

        x = self.mid_block(
            x=x,
            time_aligned_context=time_aligned_context,
            time_token=time_token,
            time_ada=time_ada,
            skip=None,
            context=context_token,
            x_mask=x_mask,
            context_mask=context_mask,
            extras=self.extras
        )

        for blk in self.out_blocks:
            if self.use_skip:
                skip = skips.pop()
                if controlnet_skips:
                    # add to skip like u-net controlnet
                    skip = skip + controlnet_skips.pop()
            else:
                skip = None
                if controlnet_skips:
                    # directly add to x
                    x = x + controlnet_skips.pop()

            x = blk(
                x=x,
                time_aligned_context=time_aligned_context,
                time_token=time_token,
                time_ada=time_ada,
                skip=skip,
                context=context_token,
                x_mask=x_mask,
                context_mask=context_mask,
                extras=self.extras
            )

        x = self.final_block(x, time_ada=time_ada_final, extras=self.extras)

        return x