File size: 27,598 Bytes
f582ec6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
import logging
import math
import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint

from .modules import (
    film_modulate,
    unpatchify,
    PatchEmbed,
    PE_wrapper,
    TimestepEmbedder,
    FeedForward,
    RMSNorm,
)
from .span_mask import compute_mask_indices
from .attention import Attention

logger = logging.Logger(__file__)


class AdaLN(nn.Module):
    def __init__(self, dim, ada_mode='ada', r=None, alpha=None):
        super().__init__()
        self.ada_mode = ada_mode
        self.scale_shift_table = None
        if ada_mode == 'ada':
            # move nn.silu outside
            self.time_ada = nn.Linear(dim, 6 * dim, bias=True)
        elif ada_mode == 'ada_single':
            # adaln used in pixel-art alpha
            self.scale_shift_table = nn.Parameter(torch.zeros(6, dim))
        elif ada_mode in ['ada_solo', 'ada_sola_bias']:
            self.lora_a = nn.Linear(dim, r * 6, bias=False)
            self.lora_b = nn.Linear(r * 6, dim * 6, bias=False)
            self.scaling = alpha / r
            if ada_mode == 'ada_sola_bias':
                # take bias out for consistency
                self.scale_shift_table = nn.Parameter(torch.zeros(6, dim))
        else:
            raise NotImplementedError

    def forward(self, time_token=None, time_ada=None):
        if self.ada_mode == 'ada':
            assert time_ada is None
            B = time_token.shape[0]
            time_ada = self.time_ada(time_token).reshape(B, 6, -1)
        elif self.ada_mode == 'ada_single':
            B = time_ada.shape[0]
            time_ada = time_ada.reshape(B, 6, -1)
            time_ada = self.scale_shift_table[None] + time_ada
        elif self.ada_mode in ['ada_sola', 'ada_sola_bias']:
            B = time_ada.shape[0]
            time_ada_lora = self.lora_b(self.lora_a(time_token)) * self.scaling
            time_ada = time_ada + time_ada_lora
            time_ada = time_ada.reshape(B, 6, -1)
            if self.scale_shift_table is not None:
                time_ada = self.scale_shift_table[None] + time_ada
        else:
            raise NotImplementedError
        return time_ada


class DiTBlock(nn.Module):
    """
    A modified PixArt block with adaptive layer norm (adaLN-single) conditioning.
    """
    def __init__(
        self,
        dim,
        context_dim=None,
        num_heads=8,
        mlp_ratio=4.,
        qkv_bias=False,
        qk_scale=None,
        qk_norm=None,
        act_layer='gelu',
        norm_layer=nn.LayerNorm,
        time_fusion='none',
        ada_sola_rank=None,
        ada_sola_alpha=None,
        skip=False,
        skip_norm=False,
        rope_mode='none',
        context_norm=False,
        use_checkpoint=False
    ):

        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim=dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            qk_norm=qk_norm,
            rope_mode=rope_mode
        )

        if context_dim is not None:
            self.use_context = True
            self.cross_attn = Attention(
                dim=dim,
                num_heads=num_heads,
                context_dim=context_dim,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                qk_norm=qk_norm,
                rope_mode='none'
            )
            self.norm2 = norm_layer(dim)
            if context_norm:
                self.norm_context = norm_layer(context_dim)
            else:
                self.norm_context = nn.Identity()
        else:
            self.use_context = False

        self.norm3 = norm_layer(dim)
        self.mlp = FeedForward(
            dim=dim, mult=mlp_ratio, activation_fn=act_layer, dropout=0
        )

        self.use_adanorm = True if time_fusion != 'token' else False
        if self.use_adanorm:
            self.adaln = AdaLN(
                dim,
                ada_mode=time_fusion,
                r=ada_sola_rank,
                alpha=ada_sola_alpha
            )
        if skip:
            self.skip_norm = norm_layer(2 *
                                        dim) if skip_norm else nn.Identity()
            self.skip_linear = nn.Linear(2 * dim, dim)
        else:
            self.skip_linear = None

        self.use_checkpoint = use_checkpoint

    def forward(
        self,
        x,
        time_token=None,
        time_ada=None,
        skip=None,
        context=None,
        x_mask=None,
        context_mask=None,
        extras=None
    ):
        if self.use_checkpoint:
            return checkpoint(
                self._forward,
                x,
                time_token,
                time_ada,
                skip,
                context,
                x_mask,
                context_mask,
                extras,
                use_reentrant=False
            )
        else:
            return self._forward(
                x, time_token, time_ada, skip, context, x_mask, context_mask,
                extras
            )

    def _forward(
        self,
        x,
        time_token=None,
        time_ada=None,
        skip=None,
        context=None,
        x_mask=None,
        context_mask=None,
        extras=None
    ):
        B, T, C = x.shape
        if self.skip_linear is not None:
            assert skip is not None
            cat = torch.cat([x, skip], dim=-1)
            cat = self.skip_norm(cat)
            x = self.skip_linear(cat)

        if self.use_adanorm:
            time_ada = self.adaln(time_token, time_ada)
            (shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp,
             gate_mlp) = time_ada.chunk(6, dim=1)

        # self attention
        if self.use_adanorm:
            x_norm = film_modulate(
                self.norm1(x), shift=shift_msa, scale=scale_msa
            )
            x = x + (1-gate_msa) * self.attn(
                x_norm, context=None, context_mask=x_mask, extras=extras
            )
        else:
            x = x + self.attn(
                self.norm1(x),
                context=None,
                context_mask=x_mask,
                extras=extras
            )

        # cross attention
        if self.use_context:
            assert context is not None
            x = x + self.cross_attn(
                x=self.norm2(x),
                context=self.norm_context(context),
                context_mask=context_mask,
                extras=extras
            )

        # mlp
        if self.use_adanorm:
            x_norm = film_modulate(
                self.norm3(x), shift=shift_mlp, scale=scale_mlp
            )
            x = x + (1-gate_mlp) * self.mlp(x_norm)
        else:
            x = x + self.mlp(self.norm3(x))

        return x


class FinalBlock(nn.Module):
    def __init__(
        self,
        embed_dim,
        patch_size,
        in_chans,
        img_size,
        input_type='2d',
        norm_layer=nn.LayerNorm,
        use_conv=True,
        use_adanorm=True
    ):
        super().__init__()
        self.in_chans = in_chans
        self.img_size = img_size
        self.input_type = input_type

        self.norm = norm_layer(embed_dim)
        if use_adanorm:
            self.use_adanorm = True
        else:
            self.use_adanorm = False

        if input_type == '2d':
            self.patch_dim = patch_size**2 * in_chans
            self.linear = nn.Linear(embed_dim, self.patch_dim, bias=True)
            if use_conv:
                self.final_layer = nn.Conv2d(
                    self.in_chans, self.in_chans, 3, padding=1
                )
            else:
                self.final_layer = nn.Identity()

        elif input_type == '1d':
            self.patch_dim = patch_size * in_chans
            self.linear = nn.Linear(embed_dim, self.patch_dim, bias=True)
            if use_conv:
                self.final_layer = nn.Conv1d(
                    self.in_chans, self.in_chans, 3, padding=1
                )
            else:
                self.final_layer = nn.Identity()

    def forward(self, x, time_ada=None, extras=0):
        B, T, C = x.shape
        x = x[:, extras:, :]
        # only handle generation target
        if self.use_adanorm:
            shift, scale = time_ada.reshape(B, 2, -1).chunk(2, dim=1)
            x = film_modulate(self.norm(x), shift, scale)
        else:
            x = self.norm(x)
        x = self.linear(x)
        x = unpatchify(x, self.in_chans, self.input_type, self.img_size)
        x = self.final_layer(x)
        return x


class UDiT(nn.Module):
    def __init__(
        self,
        img_size=224,
        patch_size=16,
        in_chans=3,
        input_type='2d',
        out_chans=None,
        embed_dim=768,
        depth=12,
        num_heads=12,
        mlp_ratio=4.,
        qkv_bias=False,
        qk_scale=None,
        qk_norm=None,
        act_layer='gelu',
        norm_layer='layernorm',
        context_norm=False,
        use_checkpoint=False,
        # time fusion ada or token
        time_fusion='token',
        ada_sola_rank=None,
        ada_sola_alpha=None,
        cls_dim=None,
        # max length is only used for concat
        context_dim=768,
        context_fusion='concat',
        context_max_length=128,
        context_pe_method='sinu',
        pe_method='abs',
        rope_mode='none',
        use_conv=True,
        skip=True,
        skip_norm=True
    ):
        super().__init__()
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models

        # input
        self.in_chans = in_chans
        self.input_type = input_type
        if self.input_type == '2d':
            num_patches = (img_size[0] //
                           patch_size) * (img_size[1] // patch_size)
        elif self.input_type == '1d':
            num_patches = img_size // patch_size
        self.patch_embed = PatchEmbed(
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
            input_type=input_type
        )
        out_chans = in_chans if out_chans is None else out_chans
        self.out_chans = out_chans

        # position embedding
        self.rope = rope_mode
        self.x_pe = PE_wrapper(
            dim=embed_dim, method=pe_method, length=num_patches
        )

        logger.info(f'x position embedding: {pe_method}')
        logger.info(f'rope mode: {self.rope}')

        # time embed
        self.time_embed = TimestepEmbedder(embed_dim)
        self.time_fusion = time_fusion
        self.use_adanorm = False

        # cls embed
        if cls_dim is not None:
            self.cls_embed = nn.Sequential(
                nn.Linear(cls_dim, embed_dim, bias=True),
                nn.SiLU(),
                nn.Linear(embed_dim, embed_dim, bias=True),
            )
        else:
            self.cls_embed = None

        # time fusion
        if time_fusion == 'token':
            # put token at the beginning of sequence
            self.extras = 2 if self.cls_embed else 1
            self.time_pe = PE_wrapper(
                dim=embed_dim, method='abs', length=self.extras
            )
        elif time_fusion in ['ada', 'ada_single', 'ada_sola', 'ada_sola_bias']:
            self.use_adanorm = True
            # aviod  repetitive silu for each adaln block
            self.time_act = nn.SiLU()
            self.extras = 0
            self.time_ada_final = nn.Linear(
                embed_dim, 2 * embed_dim, bias=True
            )
            if time_fusion in ['ada_single', 'ada_sola', 'ada_sola_bias']:
                # shared adaln
                self.time_ada = nn.Linear(embed_dim, 6 * embed_dim, bias=True)
            else:
                self.time_ada = None
        else:
            raise NotImplementedError
        logger.info(f'time fusion mode: {self.time_fusion}')

        # context
        # use a simple projection
        self.use_context = False
        self.context_cross = False
        self.context_max_length = context_max_length
        self.context_fusion = 'none'
        if context_dim is not None:
            self.use_context = True
            self.context_embed = nn.Sequential(
                nn.Linear(context_dim, embed_dim, bias=True),
                nn.SiLU(),
                nn.Linear(embed_dim, embed_dim, bias=True),
            )
            self.context_fusion = context_fusion
            if context_fusion == 'concat' or context_fusion == 'joint':
                self.extras += context_max_length
                self.context_pe = PE_wrapper(
                    dim=embed_dim,
                    method=context_pe_method,
                    length=context_max_length
                )
                # no cross attention layers
                context_dim = None
            elif context_fusion == 'cross':
                self.context_pe = PE_wrapper(
                    dim=embed_dim,
                    method=context_pe_method,
                    length=context_max_length
                )
                self.context_cross = True
                context_dim = embed_dim
            else:
                raise NotImplementedError
        logger.info(f'context fusion mode: {context_fusion}')
        logger.info(f'context position embedding: {context_pe_method}')

        self.use_skip = skip

        # norm layers
        if norm_layer == 'layernorm':
            norm_layer = nn.LayerNorm
        elif norm_layer == 'rmsnorm':
            norm_layer = RMSNorm
        else:
            raise NotImplementedError

        logger.info(f'use long skip connection: {skip}')
        self.in_blocks = nn.ModuleList([
            DiTBlock(
                dim=embed_dim,
                context_dim=context_dim,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                qk_norm=qk_norm,
                act_layer=act_layer,
                norm_layer=norm_layer,
                time_fusion=time_fusion,
                ada_sola_rank=ada_sola_rank,
                ada_sola_alpha=ada_sola_alpha,
                skip=False,
                skip_norm=False,
                rope_mode=self.rope,
                context_norm=context_norm,
                use_checkpoint=use_checkpoint
            ) for _ in range(depth // 2)
        ])

        self.mid_block = DiTBlock(
            dim=embed_dim,
            context_dim=context_dim,
            num_heads=num_heads,
            mlp_ratio=mlp_ratio,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            qk_norm=qk_norm,
            act_layer=act_layer,
            norm_layer=norm_layer,
            time_fusion=time_fusion,
            ada_sola_rank=ada_sola_rank,
            ada_sola_alpha=ada_sola_alpha,
            skip=False,
            skip_norm=False,
            rope_mode=self.rope,
            context_norm=context_norm,
            use_checkpoint=use_checkpoint
        )

        self.out_blocks = nn.ModuleList([
            DiTBlock(
                dim=embed_dim,
                context_dim=context_dim,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                qk_norm=qk_norm,
                act_layer=act_layer,
                norm_layer=norm_layer,
                time_fusion=time_fusion,
                ada_sola_rank=ada_sola_rank,
                ada_sola_alpha=ada_sola_alpha,
                skip=skip,
                skip_norm=skip_norm,
                rope_mode=self.rope,
                context_norm=context_norm,
                use_checkpoint=use_checkpoint
            ) for _ in range(depth // 2)
        ])

        # FinalLayer block
        self.use_conv = use_conv
        self.final_block = FinalBlock(
            embed_dim=embed_dim,
            patch_size=patch_size,
            img_size=img_size,
            in_chans=out_chans,
            input_type=input_type,
            norm_layer=norm_layer,
            use_conv=use_conv,
            use_adanorm=self.use_adanorm
        )
        self.initialize_weights()

    def _init_ada(self):
        if self.time_fusion == 'ada':
            nn.init.constant_(self.time_ada_final.weight, 0)
            nn.init.constant_(self.time_ada_final.bias, 0)
            for block in self.in_blocks:
                nn.init.constant_(block.adaln.time_ada.weight, 0)
                nn.init.constant_(block.adaln.time_ada.bias, 0)
            nn.init.constant_(self.mid_block.adaln.time_ada.weight, 0)
            nn.init.constant_(self.mid_block.adaln.time_ada.bias, 0)
            for block in self.out_blocks:
                nn.init.constant_(block.adaln.time_ada.weight, 0)
                nn.init.constant_(block.adaln.time_ada.bias, 0)
        elif self.time_fusion == 'ada_single':
            nn.init.constant_(self.time_ada.weight, 0)
            nn.init.constant_(self.time_ada.bias, 0)
            nn.init.constant_(self.time_ada_final.weight, 0)
            nn.init.constant_(self.time_ada_final.bias, 0)
        elif self.time_fusion in ['ada_sola', 'ada_sola_bias']:
            nn.init.constant_(self.time_ada.weight, 0)
            nn.init.constant_(self.time_ada.bias, 0)
            nn.init.constant_(self.time_ada_final.weight, 0)
            nn.init.constant_(self.time_ada_final.bias, 0)
            for block in self.in_blocks:
                nn.init.kaiming_uniform_(
                    block.adaln.lora_a.weight, a=math.sqrt(5)
                )
                nn.init.constant_(block.adaln.lora_b.weight, 0)
            nn.init.kaiming_uniform_(
                self.mid_block.adaln.lora_a.weight, a=math.sqrt(5)
            )
            nn.init.constant_(self.mid_block.adaln.lora_b.weight, 0)
            for block in self.out_blocks:
                nn.init.kaiming_uniform_(
                    block.adaln.lora_a.weight, a=math.sqrt(5)
                )
                nn.init.constant_(block.adaln.lora_b.weight, 0)

    def initialize_weights(self):
        # Basic init for all layers
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)

        self.apply(_basic_init)

        # init patch Conv like Linear
        w = self.patch_embed.proj.weight.data
        nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
        nn.init.constant_(self.patch_embed.proj.bias, 0)

        # Zero-out AdaLN
        if self.use_adanorm:
            self._init_ada()

        # Zero-out Cross Attention
        if self.context_cross:
            for block in self.in_blocks:
                nn.init.constant_(block.cross_attn.proj.weight, 0)
                nn.init.constant_(block.cross_attn.proj.bias, 0)
            nn.init.constant_(self.mid_block.cross_attn.proj.weight, 0)
            nn.init.constant_(self.mid_block.cross_attn.proj.bias, 0)
            for block in self.out_blocks:
                nn.init.constant_(block.cross_attn.proj.weight, 0)
                nn.init.constant_(block.cross_attn.proj.bias, 0)

        # Zero-out cls embedding
        if self.cls_embed:
            if self.use_adanorm:
                nn.init.constant_(self.cls_embed[-1].weight, 0)
                nn.init.constant_(self.cls_embed[-1].bias, 0)

        # Zero-out Output
        # might not zero-out this when using v-prediction
        # it could be good when using noise-prediction
        # nn.init.constant_(self.final_block.linear.weight, 0)
        # nn.init.constant_(self.final_block.linear.bias, 0)
        # if self.use_conv:
        #     nn.init.constant_(self.final_block.final_layer.weight.data, 0)
        #     nn.init.constant_(self.final_block.final_layer.bias, 0)

        # init out Conv
        if self.use_conv:
            nn.init.xavier_uniform_(self.final_block.final_layer.weight)
            nn.init.constant_(self.final_block.final_layer.bias, 0)

    def _concat_x_context(self, x, context, x_mask=None, context_mask=None):
        assert context.shape[-2] == self.context_max_length
        # Check if either x_mask or context_mask is provided
        B = x.shape[0]
        # Create default masks if they are not provided
        if x_mask is None:
            x_mask = torch.ones(B, x.shape[-2], device=x.device).bool()
        if context_mask is None:
            context_mask = torch.ones(
                B, context.shape[-2], device=context.device
            ).bool()
        # Concatenate the masks along the second dimension (dim=1)
        x_mask = torch.cat([context_mask, x_mask], dim=1)
        # Concatenate context and x along the second dimension (dim=1)
        x = torch.cat((context, x), dim=1)
        return x, x_mask

    def forward(
        self,
        x,
        timesteps,
        context,
        x_mask=None,
        context_mask=None,
        cls_token=None,
        controlnet_skips=None,
    ):
        # make it compatible with int time step during inference
        if timesteps.dim() == 0:
            timesteps = timesteps.expand(x.shape[0]
                                        ).to(x.device, dtype=torch.long)

        x = self.patch_embed(x)
        x = self.x_pe(x)

        B, L, D = x.shape

        if self.use_context:
            context_token = self.context_embed(context)
            context_token = self.context_pe(context_token)
            if self.context_fusion == 'concat' or self.context_fusion == 'joint':
                x, x_mask = self._concat_x_context(
                    x=x,
                    context=context_token,
                    x_mask=x_mask,
                    context_mask=context_mask
                )
                context_token, context_mask = None, None
        else:
            context_token, context_mask = None, None

        time_token = self.time_embed(timesteps)
        if self.cls_embed:
            cls_token = self.cls_embed(cls_token)
        time_ada = None
        time_ada_final = None
        if self.use_adanorm:
            if self.cls_embed:
                time_token = time_token + cls_token
            time_token = self.time_act(time_token)
            time_ada_final = self.time_ada_final(time_token)
            if self.time_ada is not None:
                time_ada = self.time_ada(time_token)
        else:
            time_token = time_token.unsqueeze(dim=1)
            if self.cls_embed:
                cls_token = cls_token.unsqueeze(dim=1)
                time_token = torch.cat([time_token, cls_token], dim=1)
            time_token = self.time_pe(time_token)
            x = torch.cat((time_token, x), dim=1)
            if x_mask is not None:
                x_mask = torch.cat([
                    torch.ones(B, time_token.shape[1],
                               device=x_mask.device).bool(), x_mask
                ],
                                   dim=1)
            time_token = None

        skips = []
        for blk in self.in_blocks:
            x = blk(
                x=x,
                time_token=time_token,
                time_ada=time_ada,
                skip=None,
                context=context_token,
                x_mask=x_mask,
                context_mask=context_mask,
                extras=self.extras
            )
            if self.use_skip:
                skips.append(x)

        x = self.mid_block(
            x=x,
            time_token=time_token,
            time_ada=time_ada,
            skip=None,
            context=context_token,
            x_mask=x_mask,
            context_mask=context_mask,
            extras=self.extras
        )
        for blk in self.out_blocks:
            if self.use_skip:
                skip = skips.pop()
                if controlnet_skips:
                    # add to skip like u-net controlnet
                    skip = skip + controlnet_skips.pop()
            else:
                skip = None
                if controlnet_skips:
                    # directly add to x
                    x = x + controlnet_skips.pop()

            x = blk(
                x=x,
                time_token=time_token,
                time_ada=time_ada,
                skip=skip,
                context=context_token,
                x_mask=x_mask,
                context_mask=context_mask,
                extras=self.extras
            )

        x = self.final_block(x, time_ada=time_ada_final, extras=self.extras)

        return x


class MaskDiT(nn.Module):
    def __init__(
        self,
        model: UDiT,
        mae=False,
        mae_prob=0.5,
        mask_ratio=[0.25, 1.0],
        mask_span=10,
    ):
        super().__init__()
        self.model = model
        self.mae = mae
        if self.mae:
            out_channel = model.out_chans
            self.mask_embed = nn.Parameter(torch.zeros((out_channel)))
            self.mae_prob = mae_prob
            self.mask_ratio = mask_ratio
            self.mask_span = mask_span

    def random_masking(self, gt, mask_ratios, mae_mask_infer=None):
        B, D, L = gt.shape
        if mae_mask_infer is None:
            # mask = torch.rand(B, L).to(gt.device) < mask_ratios.unsqueeze(1)
            mask_ratios = mask_ratios.cpu().numpy()
            mask = compute_mask_indices(
                shape=[B, L],
                padding_mask=None,
                mask_prob=mask_ratios,
                mask_length=self.mask_span,
                mask_type="static",
                mask_other=0.0,
                min_masks=1,
                no_overlap=False,
                min_space=0,
            )
            mask = mask.unsqueeze(1).expand_as(gt)
        else:
            mask = mae_mask_infer
            mask = mask.expand_as(gt)
        gt[mask] = self.mask_embed.view(1, D, 1).expand_as(gt)[mask]
        return gt, mask.type_as(gt)

    def forward(
        self,
        x,
        timesteps,
        context,
        x_mask=None,
        context_mask=None,
        cls_token=None,
        gt=None,
        mae_mask_infer=None,
        forward_model=True
    ):
        # todo: handle controlnet inside
        mae_mask = torch.ones_like(x)
        if self.mae:
            if gt is not None:
                B, D, L = gt.shape
                mask_ratios = torch.FloatTensor(B).uniform_(*self.mask_ratio
                                                           ).to(gt.device)
                gt, mae_mask = self.random_masking(
                    gt, mask_ratios, mae_mask_infer
                )
                # apply mae only to the selected batches
                if mae_mask_infer is None:
                    # determine mae batch
                    mae_batch = torch.rand(B) < self.mae_prob
                    gt[~mae_batch] = self.mask_embed.view(
                        1, D, 1
                    ).expand_as(gt)[~mae_batch]
                    mae_mask[~mae_batch] = 1.0
            else:
                B, D, L = x.shape
                gt = self.mask_embed.view(1, D, 1).expand_as(x)
            x = torch.cat([x, gt, mae_mask[:, 0:1, :]], dim=1)

        if forward_model:
            x = self.model(
                x=x,
                timesteps=timesteps,
                context=context,
                x_mask=x_mask,
                context_mask=context_mask,
                cls_token=cls_token
            )
            # logger.info(mae_mask[:, 0, :].sum(dim=-1))
        return x, mae_mask