Spaces:
Running
on
Zero
Running
on
Zero
File size: 27,598 Bytes
f582ec6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 |
import logging
import math
import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint
from .modules import (
film_modulate,
unpatchify,
PatchEmbed,
PE_wrapper,
TimestepEmbedder,
FeedForward,
RMSNorm,
)
from .span_mask import compute_mask_indices
from .attention import Attention
logger = logging.Logger(__file__)
class AdaLN(nn.Module):
def __init__(self, dim, ada_mode='ada', r=None, alpha=None):
super().__init__()
self.ada_mode = ada_mode
self.scale_shift_table = None
if ada_mode == 'ada':
# move nn.silu outside
self.time_ada = nn.Linear(dim, 6 * dim, bias=True)
elif ada_mode == 'ada_single':
# adaln used in pixel-art alpha
self.scale_shift_table = nn.Parameter(torch.zeros(6, dim))
elif ada_mode in ['ada_solo', 'ada_sola_bias']:
self.lora_a = nn.Linear(dim, r * 6, bias=False)
self.lora_b = nn.Linear(r * 6, dim * 6, bias=False)
self.scaling = alpha / r
if ada_mode == 'ada_sola_bias':
# take bias out for consistency
self.scale_shift_table = nn.Parameter(torch.zeros(6, dim))
else:
raise NotImplementedError
def forward(self, time_token=None, time_ada=None):
if self.ada_mode == 'ada':
assert time_ada is None
B = time_token.shape[0]
time_ada = self.time_ada(time_token).reshape(B, 6, -1)
elif self.ada_mode == 'ada_single':
B = time_ada.shape[0]
time_ada = time_ada.reshape(B, 6, -1)
time_ada = self.scale_shift_table[None] + time_ada
elif self.ada_mode in ['ada_sola', 'ada_sola_bias']:
B = time_ada.shape[0]
time_ada_lora = self.lora_b(self.lora_a(time_token)) * self.scaling
time_ada = time_ada + time_ada_lora
time_ada = time_ada.reshape(B, 6, -1)
if self.scale_shift_table is not None:
time_ada = self.scale_shift_table[None] + time_ada
else:
raise NotImplementedError
return time_ada
class DiTBlock(nn.Module):
"""
A modified PixArt block with adaptive layer norm (adaLN-single) conditioning.
"""
def __init__(
self,
dim,
context_dim=None,
num_heads=8,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
qk_norm=None,
act_layer='gelu',
norm_layer=nn.LayerNorm,
time_fusion='none',
ada_sola_rank=None,
ada_sola_alpha=None,
skip=False,
skip_norm=False,
rope_mode='none',
context_norm=False,
use_checkpoint=False
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim=dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
qk_norm=qk_norm,
rope_mode=rope_mode
)
if context_dim is not None:
self.use_context = True
self.cross_attn = Attention(
dim=dim,
num_heads=num_heads,
context_dim=context_dim,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
qk_norm=qk_norm,
rope_mode='none'
)
self.norm2 = norm_layer(dim)
if context_norm:
self.norm_context = norm_layer(context_dim)
else:
self.norm_context = nn.Identity()
else:
self.use_context = False
self.norm3 = norm_layer(dim)
self.mlp = FeedForward(
dim=dim, mult=mlp_ratio, activation_fn=act_layer, dropout=0
)
self.use_adanorm = True if time_fusion != 'token' else False
if self.use_adanorm:
self.adaln = AdaLN(
dim,
ada_mode=time_fusion,
r=ada_sola_rank,
alpha=ada_sola_alpha
)
if skip:
self.skip_norm = norm_layer(2 *
dim) if skip_norm else nn.Identity()
self.skip_linear = nn.Linear(2 * dim, dim)
else:
self.skip_linear = None
self.use_checkpoint = use_checkpoint
def forward(
self,
x,
time_token=None,
time_ada=None,
skip=None,
context=None,
x_mask=None,
context_mask=None,
extras=None
):
if self.use_checkpoint:
return checkpoint(
self._forward,
x,
time_token,
time_ada,
skip,
context,
x_mask,
context_mask,
extras,
use_reentrant=False
)
else:
return self._forward(
x, time_token, time_ada, skip, context, x_mask, context_mask,
extras
)
def _forward(
self,
x,
time_token=None,
time_ada=None,
skip=None,
context=None,
x_mask=None,
context_mask=None,
extras=None
):
B, T, C = x.shape
if self.skip_linear is not None:
assert skip is not None
cat = torch.cat([x, skip], dim=-1)
cat = self.skip_norm(cat)
x = self.skip_linear(cat)
if self.use_adanorm:
time_ada = self.adaln(time_token, time_ada)
(shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp,
gate_mlp) = time_ada.chunk(6, dim=1)
# self attention
if self.use_adanorm:
x_norm = film_modulate(
self.norm1(x), shift=shift_msa, scale=scale_msa
)
x = x + (1-gate_msa) * self.attn(
x_norm, context=None, context_mask=x_mask, extras=extras
)
else:
x = x + self.attn(
self.norm1(x),
context=None,
context_mask=x_mask,
extras=extras
)
# cross attention
if self.use_context:
assert context is not None
x = x + self.cross_attn(
x=self.norm2(x),
context=self.norm_context(context),
context_mask=context_mask,
extras=extras
)
# mlp
if self.use_adanorm:
x_norm = film_modulate(
self.norm3(x), shift=shift_mlp, scale=scale_mlp
)
x = x + (1-gate_mlp) * self.mlp(x_norm)
else:
x = x + self.mlp(self.norm3(x))
return x
class FinalBlock(nn.Module):
def __init__(
self,
embed_dim,
patch_size,
in_chans,
img_size,
input_type='2d',
norm_layer=nn.LayerNorm,
use_conv=True,
use_adanorm=True
):
super().__init__()
self.in_chans = in_chans
self.img_size = img_size
self.input_type = input_type
self.norm = norm_layer(embed_dim)
if use_adanorm:
self.use_adanorm = True
else:
self.use_adanorm = False
if input_type == '2d':
self.patch_dim = patch_size**2 * in_chans
self.linear = nn.Linear(embed_dim, self.patch_dim, bias=True)
if use_conv:
self.final_layer = nn.Conv2d(
self.in_chans, self.in_chans, 3, padding=1
)
else:
self.final_layer = nn.Identity()
elif input_type == '1d':
self.patch_dim = patch_size * in_chans
self.linear = nn.Linear(embed_dim, self.patch_dim, bias=True)
if use_conv:
self.final_layer = nn.Conv1d(
self.in_chans, self.in_chans, 3, padding=1
)
else:
self.final_layer = nn.Identity()
def forward(self, x, time_ada=None, extras=0):
B, T, C = x.shape
x = x[:, extras:, :]
# only handle generation target
if self.use_adanorm:
shift, scale = time_ada.reshape(B, 2, -1).chunk(2, dim=1)
x = film_modulate(self.norm(x), shift, scale)
else:
x = self.norm(x)
x = self.linear(x)
x = unpatchify(x, self.in_chans, self.input_type, self.img_size)
x = self.final_layer(x)
return x
class UDiT(nn.Module):
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
input_type='2d',
out_chans=None,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
qk_norm=None,
act_layer='gelu',
norm_layer='layernorm',
context_norm=False,
use_checkpoint=False,
# time fusion ada or token
time_fusion='token',
ada_sola_rank=None,
ada_sola_alpha=None,
cls_dim=None,
# max length is only used for concat
context_dim=768,
context_fusion='concat',
context_max_length=128,
context_pe_method='sinu',
pe_method='abs',
rope_mode='none',
use_conv=True,
skip=True,
skip_norm=True
):
super().__init__()
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
# input
self.in_chans = in_chans
self.input_type = input_type
if self.input_type == '2d':
num_patches = (img_size[0] //
patch_size) * (img_size[1] // patch_size)
elif self.input_type == '1d':
num_patches = img_size // patch_size
self.patch_embed = PatchEmbed(
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
input_type=input_type
)
out_chans = in_chans if out_chans is None else out_chans
self.out_chans = out_chans
# position embedding
self.rope = rope_mode
self.x_pe = PE_wrapper(
dim=embed_dim, method=pe_method, length=num_patches
)
logger.info(f'x position embedding: {pe_method}')
logger.info(f'rope mode: {self.rope}')
# time embed
self.time_embed = TimestepEmbedder(embed_dim)
self.time_fusion = time_fusion
self.use_adanorm = False
# cls embed
if cls_dim is not None:
self.cls_embed = nn.Sequential(
nn.Linear(cls_dim, embed_dim, bias=True),
nn.SiLU(),
nn.Linear(embed_dim, embed_dim, bias=True),
)
else:
self.cls_embed = None
# time fusion
if time_fusion == 'token':
# put token at the beginning of sequence
self.extras = 2 if self.cls_embed else 1
self.time_pe = PE_wrapper(
dim=embed_dim, method='abs', length=self.extras
)
elif time_fusion in ['ada', 'ada_single', 'ada_sola', 'ada_sola_bias']:
self.use_adanorm = True
# aviod repetitive silu for each adaln block
self.time_act = nn.SiLU()
self.extras = 0
self.time_ada_final = nn.Linear(
embed_dim, 2 * embed_dim, bias=True
)
if time_fusion in ['ada_single', 'ada_sola', 'ada_sola_bias']:
# shared adaln
self.time_ada = nn.Linear(embed_dim, 6 * embed_dim, bias=True)
else:
self.time_ada = None
else:
raise NotImplementedError
logger.info(f'time fusion mode: {self.time_fusion}')
# context
# use a simple projection
self.use_context = False
self.context_cross = False
self.context_max_length = context_max_length
self.context_fusion = 'none'
if context_dim is not None:
self.use_context = True
self.context_embed = nn.Sequential(
nn.Linear(context_dim, embed_dim, bias=True),
nn.SiLU(),
nn.Linear(embed_dim, embed_dim, bias=True),
)
self.context_fusion = context_fusion
if context_fusion == 'concat' or context_fusion == 'joint':
self.extras += context_max_length
self.context_pe = PE_wrapper(
dim=embed_dim,
method=context_pe_method,
length=context_max_length
)
# no cross attention layers
context_dim = None
elif context_fusion == 'cross':
self.context_pe = PE_wrapper(
dim=embed_dim,
method=context_pe_method,
length=context_max_length
)
self.context_cross = True
context_dim = embed_dim
else:
raise NotImplementedError
logger.info(f'context fusion mode: {context_fusion}')
logger.info(f'context position embedding: {context_pe_method}')
self.use_skip = skip
# norm layers
if norm_layer == 'layernorm':
norm_layer = nn.LayerNorm
elif norm_layer == 'rmsnorm':
norm_layer = RMSNorm
else:
raise NotImplementedError
logger.info(f'use long skip connection: {skip}')
self.in_blocks = nn.ModuleList([
DiTBlock(
dim=embed_dim,
context_dim=context_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
qk_norm=qk_norm,
act_layer=act_layer,
norm_layer=norm_layer,
time_fusion=time_fusion,
ada_sola_rank=ada_sola_rank,
ada_sola_alpha=ada_sola_alpha,
skip=False,
skip_norm=False,
rope_mode=self.rope,
context_norm=context_norm,
use_checkpoint=use_checkpoint
) for _ in range(depth // 2)
])
self.mid_block = DiTBlock(
dim=embed_dim,
context_dim=context_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
qk_norm=qk_norm,
act_layer=act_layer,
norm_layer=norm_layer,
time_fusion=time_fusion,
ada_sola_rank=ada_sola_rank,
ada_sola_alpha=ada_sola_alpha,
skip=False,
skip_norm=False,
rope_mode=self.rope,
context_norm=context_norm,
use_checkpoint=use_checkpoint
)
self.out_blocks = nn.ModuleList([
DiTBlock(
dim=embed_dim,
context_dim=context_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
qk_norm=qk_norm,
act_layer=act_layer,
norm_layer=norm_layer,
time_fusion=time_fusion,
ada_sola_rank=ada_sola_rank,
ada_sola_alpha=ada_sola_alpha,
skip=skip,
skip_norm=skip_norm,
rope_mode=self.rope,
context_norm=context_norm,
use_checkpoint=use_checkpoint
) for _ in range(depth // 2)
])
# FinalLayer block
self.use_conv = use_conv
self.final_block = FinalBlock(
embed_dim=embed_dim,
patch_size=patch_size,
img_size=img_size,
in_chans=out_chans,
input_type=input_type,
norm_layer=norm_layer,
use_conv=use_conv,
use_adanorm=self.use_adanorm
)
self.initialize_weights()
def _init_ada(self):
if self.time_fusion == 'ada':
nn.init.constant_(self.time_ada_final.weight, 0)
nn.init.constant_(self.time_ada_final.bias, 0)
for block in self.in_blocks:
nn.init.constant_(block.adaln.time_ada.weight, 0)
nn.init.constant_(block.adaln.time_ada.bias, 0)
nn.init.constant_(self.mid_block.adaln.time_ada.weight, 0)
nn.init.constant_(self.mid_block.adaln.time_ada.bias, 0)
for block in self.out_blocks:
nn.init.constant_(block.adaln.time_ada.weight, 0)
nn.init.constant_(block.adaln.time_ada.bias, 0)
elif self.time_fusion == 'ada_single':
nn.init.constant_(self.time_ada.weight, 0)
nn.init.constant_(self.time_ada.bias, 0)
nn.init.constant_(self.time_ada_final.weight, 0)
nn.init.constant_(self.time_ada_final.bias, 0)
elif self.time_fusion in ['ada_sola', 'ada_sola_bias']:
nn.init.constant_(self.time_ada.weight, 0)
nn.init.constant_(self.time_ada.bias, 0)
nn.init.constant_(self.time_ada_final.weight, 0)
nn.init.constant_(self.time_ada_final.bias, 0)
for block in self.in_blocks:
nn.init.kaiming_uniform_(
block.adaln.lora_a.weight, a=math.sqrt(5)
)
nn.init.constant_(block.adaln.lora_b.weight, 0)
nn.init.kaiming_uniform_(
self.mid_block.adaln.lora_a.weight, a=math.sqrt(5)
)
nn.init.constant_(self.mid_block.adaln.lora_b.weight, 0)
for block in self.out_blocks:
nn.init.kaiming_uniform_(
block.adaln.lora_a.weight, a=math.sqrt(5)
)
nn.init.constant_(block.adaln.lora_b.weight, 0)
def initialize_weights(self):
# Basic init for all layers
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# init patch Conv like Linear
w = self.patch_embed.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.constant_(self.patch_embed.proj.bias, 0)
# Zero-out AdaLN
if self.use_adanorm:
self._init_ada()
# Zero-out Cross Attention
if self.context_cross:
for block in self.in_blocks:
nn.init.constant_(block.cross_attn.proj.weight, 0)
nn.init.constant_(block.cross_attn.proj.bias, 0)
nn.init.constant_(self.mid_block.cross_attn.proj.weight, 0)
nn.init.constant_(self.mid_block.cross_attn.proj.bias, 0)
for block in self.out_blocks:
nn.init.constant_(block.cross_attn.proj.weight, 0)
nn.init.constant_(block.cross_attn.proj.bias, 0)
# Zero-out cls embedding
if self.cls_embed:
if self.use_adanorm:
nn.init.constant_(self.cls_embed[-1].weight, 0)
nn.init.constant_(self.cls_embed[-1].bias, 0)
# Zero-out Output
# might not zero-out this when using v-prediction
# it could be good when using noise-prediction
# nn.init.constant_(self.final_block.linear.weight, 0)
# nn.init.constant_(self.final_block.linear.bias, 0)
# if self.use_conv:
# nn.init.constant_(self.final_block.final_layer.weight.data, 0)
# nn.init.constant_(self.final_block.final_layer.bias, 0)
# init out Conv
if self.use_conv:
nn.init.xavier_uniform_(self.final_block.final_layer.weight)
nn.init.constant_(self.final_block.final_layer.bias, 0)
def _concat_x_context(self, x, context, x_mask=None, context_mask=None):
assert context.shape[-2] == self.context_max_length
# Check if either x_mask or context_mask is provided
B = x.shape[0]
# Create default masks if they are not provided
if x_mask is None:
x_mask = torch.ones(B, x.shape[-2], device=x.device).bool()
if context_mask is None:
context_mask = torch.ones(
B, context.shape[-2], device=context.device
).bool()
# Concatenate the masks along the second dimension (dim=1)
x_mask = torch.cat([context_mask, x_mask], dim=1)
# Concatenate context and x along the second dimension (dim=1)
x = torch.cat((context, x), dim=1)
return x, x_mask
def forward(
self,
x,
timesteps,
context,
x_mask=None,
context_mask=None,
cls_token=None,
controlnet_skips=None,
):
# make it compatible with int time step during inference
if timesteps.dim() == 0:
timesteps = timesteps.expand(x.shape[0]
).to(x.device, dtype=torch.long)
x = self.patch_embed(x)
x = self.x_pe(x)
B, L, D = x.shape
if self.use_context:
context_token = self.context_embed(context)
context_token = self.context_pe(context_token)
if self.context_fusion == 'concat' or self.context_fusion == 'joint':
x, x_mask = self._concat_x_context(
x=x,
context=context_token,
x_mask=x_mask,
context_mask=context_mask
)
context_token, context_mask = None, None
else:
context_token, context_mask = None, None
time_token = self.time_embed(timesteps)
if self.cls_embed:
cls_token = self.cls_embed(cls_token)
time_ada = None
time_ada_final = None
if self.use_adanorm:
if self.cls_embed:
time_token = time_token + cls_token
time_token = self.time_act(time_token)
time_ada_final = self.time_ada_final(time_token)
if self.time_ada is not None:
time_ada = self.time_ada(time_token)
else:
time_token = time_token.unsqueeze(dim=1)
if self.cls_embed:
cls_token = cls_token.unsqueeze(dim=1)
time_token = torch.cat([time_token, cls_token], dim=1)
time_token = self.time_pe(time_token)
x = torch.cat((time_token, x), dim=1)
if x_mask is not None:
x_mask = torch.cat([
torch.ones(B, time_token.shape[1],
device=x_mask.device).bool(), x_mask
],
dim=1)
time_token = None
skips = []
for blk in self.in_blocks:
x = blk(
x=x,
time_token=time_token,
time_ada=time_ada,
skip=None,
context=context_token,
x_mask=x_mask,
context_mask=context_mask,
extras=self.extras
)
if self.use_skip:
skips.append(x)
x = self.mid_block(
x=x,
time_token=time_token,
time_ada=time_ada,
skip=None,
context=context_token,
x_mask=x_mask,
context_mask=context_mask,
extras=self.extras
)
for blk in self.out_blocks:
if self.use_skip:
skip = skips.pop()
if controlnet_skips:
# add to skip like u-net controlnet
skip = skip + controlnet_skips.pop()
else:
skip = None
if controlnet_skips:
# directly add to x
x = x + controlnet_skips.pop()
x = blk(
x=x,
time_token=time_token,
time_ada=time_ada,
skip=skip,
context=context_token,
x_mask=x_mask,
context_mask=context_mask,
extras=self.extras
)
x = self.final_block(x, time_ada=time_ada_final, extras=self.extras)
return x
class MaskDiT(nn.Module):
def __init__(
self,
model: UDiT,
mae=False,
mae_prob=0.5,
mask_ratio=[0.25, 1.0],
mask_span=10,
):
super().__init__()
self.model = model
self.mae = mae
if self.mae:
out_channel = model.out_chans
self.mask_embed = nn.Parameter(torch.zeros((out_channel)))
self.mae_prob = mae_prob
self.mask_ratio = mask_ratio
self.mask_span = mask_span
def random_masking(self, gt, mask_ratios, mae_mask_infer=None):
B, D, L = gt.shape
if mae_mask_infer is None:
# mask = torch.rand(B, L).to(gt.device) < mask_ratios.unsqueeze(1)
mask_ratios = mask_ratios.cpu().numpy()
mask = compute_mask_indices(
shape=[B, L],
padding_mask=None,
mask_prob=mask_ratios,
mask_length=self.mask_span,
mask_type="static",
mask_other=0.0,
min_masks=1,
no_overlap=False,
min_space=0,
)
mask = mask.unsqueeze(1).expand_as(gt)
else:
mask = mae_mask_infer
mask = mask.expand_as(gt)
gt[mask] = self.mask_embed.view(1, D, 1).expand_as(gt)[mask]
return gt, mask.type_as(gt)
def forward(
self,
x,
timesteps,
context,
x_mask=None,
context_mask=None,
cls_token=None,
gt=None,
mae_mask_infer=None,
forward_model=True
):
# todo: handle controlnet inside
mae_mask = torch.ones_like(x)
if self.mae:
if gt is not None:
B, D, L = gt.shape
mask_ratios = torch.FloatTensor(B).uniform_(*self.mask_ratio
).to(gt.device)
gt, mae_mask = self.random_masking(
gt, mask_ratios, mae_mask_infer
)
# apply mae only to the selected batches
if mae_mask_infer is None:
# determine mae batch
mae_batch = torch.rand(B) < self.mae_prob
gt[~mae_batch] = self.mask_embed.view(
1, D, 1
).expand_as(gt)[~mae_batch]
mae_mask[~mae_batch] = 1.0
else:
B, D, L = x.shape
gt = self.mask_embed.view(1, D, 1).expand_as(x)
x = torch.cat([x, gt, mae_mask[:, 0:1, :]], dim=1)
if forward_model:
x = self.model(
x=x,
timesteps=timesteps,
context=context,
x_mask=x_mask,
context_mask=context_mask,
cls_token=cls_token
)
# logger.info(mae_mask[:, 0, :].sum(dim=-1))
return x, mae_mask
|