File size: 17,582 Bytes
f582ec6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
import six
from pathlib import Path
import re
import json
from collections import OrderedDict
from typing import Union

import numpy as np
import librosa
import torch

PAD = "<pad>"
EOS = "<EOS>"
UNK = "<UNK>"
SEG = "|"
RESERVED_TOKENS = [PAD, EOS, UNK]
NUM_RESERVED_TOKENS = len(RESERVED_TOKENS)
PAD_ID = RESERVED_TOKENS.index(PAD)  # Normally 0
EOS_ID = RESERVED_TOKENS.index(EOS)  # Normally 1
UNK_ID = RESERVED_TOKENS.index(UNK)  # Normally 2

F0_BIN = 256
F0_MAX = 1100.0
F0_MIN = 50.0
F0_MEL_MIN = 1127 * np.log(1 + F0_MIN/700)
F0_MEL_MAX = 1127 * np.log(1 + F0_MAX/700)


def f0_to_coarse(f0):
    is_torch = isinstance(f0, torch.Tensor)
    f0_mel = 1127 * (1 +
                     f0/700).log() if is_torch else 1127 * np.log(1 + f0/700)
    f0_mel[f0_mel > 0
          ] = (f0_mel[f0_mel > 0] -
               F0_MEL_MIN) * (F0_BIN-2) / (F0_MEL_MAX-F0_MEL_MIN) + 1

    f0_mel[f0_mel <= 1] = 1
    f0_mel[f0_mel > F0_BIN - 1] = F0_BIN - 1
    f0_coarse = (f0_mel +
                 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int)
    assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (
        f0_coarse.max(), f0_coarse.min()
    )
    return f0_coarse


def norm_f0(
    f0: Union[np.ndarray, torch.Tensor],
    uv: Union[None, np.ndarray],
    f0_mean: float,
    f0_std: float,
    pitch_norm: str = "log",
    use_uv: bool = True
):
    is_torch = isinstance(f0, torch.Tensor)
    if pitch_norm == 'standard':
        f0 = (f0-f0_mean) / f0_std
    if pitch_norm == 'log':
        f0 = torch.log2(f0) if is_torch else np.log2(f0)
    if uv is not None and use_uv:
        f0[uv > 0] = 0
    return f0


def norm_interp_f0(
    f0: Union[np.ndarray, torch.Tensor],
    f0_mean: float,
    f0_std: float,
    pitch_norm: str = "log",
    use_uv: bool = True
):
    is_torch = isinstance(f0, torch.Tensor)
    if is_torch:
        device = f0.device
        f0 = f0.data.cpu().numpy()
    uv = f0 == 0
    f0 = norm_f0(f0, uv, f0_mean, f0_std, pitch_norm, use_uv)
    if sum(uv) == len(f0):
        f0[uv] = 0
    elif sum(uv) > 0:
        f0[uv] = np.interp(np.where(uv)[0], np.where(~uv)[0], f0[~uv])
    uv = torch.as_tensor(uv).float()
    f0 = torch.as_tensor(f0).float()
    if is_torch:
        f0 = f0.to(device)
    return f0, uv


def denorm_f0(
    f0,
    uv,
    pitch_norm="log",
    f0_mean=None,
    f0_std=None,
    pitch_padding=None,
    min=None,
    max=None,
    use_uv=True
):
    if pitch_norm == 'standard':
        f0 = f0*f0_std + f0_mean
    if pitch_norm == 'log':
        f0 = 2**f0
    if min is not None:
        f0 = f0.clamp(min=min)
    if max is not None:
        f0 = f0.clamp(max=max)
    if uv is not None and use_uv:
        f0[uv > 0] = 0
    if pitch_padding is not None:
        f0[pitch_padding] = 0
    return f0


def librosa_pad_lr(x, fshift, pad_sides=1):
    '''compute right padding (final frame) or both sides padding (first and final frames)
    '''
    assert pad_sides in (1, 2)
    # return int(fsize // 2)
    pad = (x.shape[0] // fshift + 1) * fshift - x.shape[0]
    if pad_sides == 1:
        return 0, pad
    else:
        return pad // 2, pad//2 + pad%2


def get_pitch(
    wav_file: Union[str, Path], sample_rate: int, frame_shift: float
):
    import parselmouth
    hop_size = int(frame_shift * sample_rate)
    wav, _ = librosa.core.load(wav_file, sr=sample_rate)
    # l_pad, r_pad = librosa_pad_lr(wav, hop_size, 1)
    # wav = np.pad(wav, (l_pad, r_pad), mode='constant', constant_values=0.0)

    latent_length = wav.shape[0] // hop_size
    f0_min = 80
    f0_max = 750
    pad_size = 4

    f0 = parselmouth.Sound(wav, sample_rate).to_pitch_ac(
        time_step=frame_shift,
        voicing_threshold=0.6,
        pitch_floor=f0_min,
        pitch_ceiling=f0_max
    ).selected_array['frequency']
    delta_l = latent_length - len(f0)
    if delta_l > 0:
        f0 = np.concatenate([f0, [f0[-1]] * delta_l], 0)
    pitch_coarse = f0_to_coarse(f0)
    return f0, pitch_coarse


def remove_empty_lines(text):
    """remove empty lines"""
    assert (len(text) > 0)
    assert (isinstance(text, list))
    text = [t.strip() for t in text]
    if "" in text:
        text.remove("")
    return text


def is_sil_phoneme(p):
    return not p[0].isalpha()


def strip_ids(ids, ids_to_strip):
    """Strip ids_to_strip from the end ids."""
    ids = list(ids)
    while ids and ids[-1] in ids_to_strip:
        ids.pop()
    return ids


class TextEncoder(object):
    """Base class for converting from ints to/from human readable strings."""
    def __init__(self, num_reserved_ids=NUM_RESERVED_TOKENS):
        self._num_reserved_ids = num_reserved_ids

    @property
    def num_reserved_ids(self):
        return self._num_reserved_ids

    def encode(self, s):
        """Transform a human-readable string into a sequence of int ids.

        The ids should be in the range [num_reserved_ids, vocab_size). Ids [0,
        num_reserved_ids) are reserved.

        EOS is not appended.

        Args:
        s: human-readable string to be converted.

        Returns:
        ids: list of integers
        """
        return [int(w) + self._num_reserved_ids for w in s.split()]

    def decode(self, ids, strip_extraneous=False):
        """Transform a sequence of int ids into a human-readable string.

        EOS is not expected in ids.

        Args:
        ids: list of integers to be converted.
        strip_extraneous: bool, whether to strip off extraneous tokens
            (EOS and PAD).

        Returns:
        s: human-readable string.
        """
        if strip_extraneous:
            ids = strip_ids(ids, list(range(self._num_reserved_ids or 0)))
        return " ".join(self.decode_list(ids))

    def decode_list(self, ids):
        """Transform a sequence of int ids into a their string versions.

        This method supports transforming individual input/output ids to their
        string versions so that sequence to/from text conversions can be visualized
        in a human readable format.

        Args:
        ids: list of integers to be converted.

        Returns:
        strs: list of human-readable string.
        """
        decoded_ids = []
        for id_ in ids:
            if 0 <= id_ < self._num_reserved_ids:
                decoded_ids.append(RESERVED_TOKENS[int(id_)])
            else:
                decoded_ids.append(id_ - self._num_reserved_ids)
        return [str(d) for d in decoded_ids]

    @property
    def vocab_size(self):
        raise NotImplementedError()


class TokenTextEncoder(TextEncoder):
    """Encoder based on a user-supplied vocabulary (file or list)."""
    def __init__(
        self,
        vocab_filename,
        reverse=False,
        vocab_list=None,
        replace_oov=None,
        num_reserved_ids=NUM_RESERVED_TOKENS
    ):
        """Initialize from a file or list, one token per line.

        Handling of reserved tokens works as follows:
        - When initializing from a list, we add reserved tokens to the vocab.
        - When initializing from a file, we do not add reserved tokens to the vocab.
        - When saving vocab files, we save reserved tokens to the file.

        Args:
            vocab_filename: If not None, the full filename to read vocab from. If this
                is not None, then vocab_list should be None.
            reverse: Boolean indicating if tokens should be reversed during encoding
                and decoding.
            vocab_list: If not None, a list of elements of the vocabulary. If this is
                not None, then vocab_filename should be None.
            replace_oov: If not None, every out-of-vocabulary token seen when
                encoding will be replaced by this string (which must be in vocab).
            num_reserved_ids: Number of IDs to save for reserved tokens like <EOS>.
        """
        super(TokenTextEncoder,
              self).__init__(num_reserved_ids=num_reserved_ids)
        self._reverse = reverse
        self._replace_oov = replace_oov
        if vocab_filename:
            self._init_vocab_from_file(vocab_filename)
        else:
            assert vocab_list is not None
            self._init_vocab_from_list(vocab_list)
        self.pad_index = self._token_to_id[PAD]
        self.eos_index = self._token_to_id[EOS]
        self.unk_index = self._token_to_id[UNK]
        self.seg_index = self._token_to_id[
            SEG] if SEG in self._token_to_id else self.eos_index

    def encode(self, s):
        """Converts a space-separated string of tokens to a list of ids."""
        sentence = s
        tokens = sentence.strip().split()
        if self._replace_oov is not None:
            tokens = [
                t if t in self._token_to_id else self._replace_oov
                for t in tokens
            ]
        ret = [self._token_to_id[tok] for tok in tokens]
        return ret[::-1] if self._reverse else ret

    def decode(self, ids, strip_eos=False, strip_padding=False):
        if strip_padding and self.pad() in list(ids):
            pad_pos = list(ids).index(self.pad())
            ids = ids[:pad_pos]
        if strip_eos and self.eos() in list(ids):
            eos_pos = list(ids).index(self.eos())
            ids = ids[:eos_pos]
        return " ".join(self.decode_list(ids))

    def decode_list(self, ids):
        seq = reversed(ids) if self._reverse else ids
        return [self._safe_id_to_token(i) for i in seq]

    @property
    def vocab_size(self):
        return len(self._id_to_token)

    def __len__(self):
        return self.vocab_size

    def _safe_id_to_token(self, idx):
        return self._id_to_token.get(idx, "ID_%d" % idx)

    def _init_vocab_from_file(self, filename):
        """Load vocab from a file.

        Args:
        filename: The file to load vocabulary from.
        """
        with open(filename) as f:
            tokens = [token.strip() for token in f.readlines()]

        def token_gen():
            for token in tokens:
                yield token

        self._init_vocab(token_gen(), add_reserved_tokens=False)

    def _init_vocab_from_list(self, vocab_list):
        """Initialize tokens from a list of tokens.

        It is ok if reserved tokens appear in the vocab list. They will be
        removed. The set of tokens in vocab_list should be unique.

        Args:
        vocab_list: A list of tokens.
        """
        def token_gen():
            for token in vocab_list:
                if token not in RESERVED_TOKENS:
                    yield token

        self._init_vocab(token_gen())

    def _init_vocab(self, token_generator, add_reserved_tokens=True):
        """Initialize vocabulary with tokens from token_generator."""

        self._id_to_token = {}
        non_reserved_start_index = 0

        if add_reserved_tokens:
            self._id_to_token.update(enumerate(RESERVED_TOKENS))
            non_reserved_start_index = len(RESERVED_TOKENS)

        self._id_to_token.update(
            enumerate(token_generator, start=non_reserved_start_index)
        )

        # _token_to_id is the reverse of _id_to_token
        self._token_to_id = dict((v, k)
                                 for k, v in six.iteritems(self._id_to_token))

    def pad(self):
        return self.pad_index

    def eos(self):
        return self.eos_index

    def unk(self):
        return self.unk_index

    def seg(self):
        return self.seg_index

    def store_to_file(self, filename):
        """Write vocab file to disk.

        Vocab files have one token per line. The file ends in a newline. Reserved
        tokens are written to the vocab file as well.

        Args:
        filename: Full path of the file to store the vocab to.
        """
        with open(filename, "w") as f:
            for i in range(len(self._id_to_token)):
                f.write(self._id_to_token[i] + "\n")

    def sil_phonemes(self):
        return [p for p in self._id_to_token.values() if not p[0].isalpha()]


class TextGrid(object):
    def __init__(self, text):
        text = remove_empty_lines(text)
        self.text = text
        self.line_count = 0
        self._get_type()
        self._get_time_intval()
        self._get_size()
        self.tier_list = []
        self._get_item_list()

    def _extract_pattern(self, pattern, inc):
        """
        Parameters
        ----------
        pattern : regex to extract pattern
        inc : increment of line count after extraction
        Returns
        -------
        group : extracted info
        """
        try:
            group = re.match(pattern, self.text[self.line_count]).group(1)
            self.line_count += inc
        except AttributeError:
            raise ValueError(
                "File format error at line %d:%s" %
                (self.line_count, self.text[self.line_count])
            )
        return group

    def _get_type(self):
        self.file_type = self._extract_pattern(r"File type = \"(.*)\"", 2)

    def _get_time_intval(self):
        self.xmin = self._extract_pattern(r"xmin = (.*)", 1)
        self.xmax = self._extract_pattern(r"xmax = (.*)", 2)

    def _get_size(self):
        self.size = int(self._extract_pattern(r"size = (.*)", 2))

    def _get_item_list(self):
        """Only supports IntervalTier currently"""
        for itemIdx in range(1, self.size + 1):
            tier = OrderedDict()
            item_list = []
            tier_idx = self._extract_pattern(r"item \[(.*)\]:", 1)
            tier_class = self._extract_pattern(r"class = \"(.*)\"", 1)
            if tier_class != "IntervalTier":
                raise NotImplementedError(
                    "Only IntervalTier class is supported currently"
                )
            tier_name = self._extract_pattern(r"name = \"(.*)\"", 1)
            tier_xmin = self._extract_pattern(r"xmin = (.*)", 1)
            tier_xmax = self._extract_pattern(r"xmax = (.*)", 1)
            tier_size = self._extract_pattern(r"intervals: size = (.*)", 1)
            for i in range(int(tier_size)):
                item = OrderedDict()
                item["idx"] = self._extract_pattern(r"intervals \[(.*)\]", 1)
                item["xmin"] = self._extract_pattern(r"xmin = (.*)", 1)
                item["xmax"] = self._extract_pattern(r"xmax = (.*)", 1)
                item["text"] = self._extract_pattern(r"text = \"(.*)\"", 1)
                item_list.append(item)
            tier["idx"] = tier_idx
            tier["class"] = tier_class
            tier["name"] = tier_name
            tier["xmin"] = tier_xmin
            tier["xmax"] = tier_xmax
            tier["size"] = tier_size
            tier["items"] = item_list
            self.tier_list.append(tier)

    def toJson(self):
        _json = OrderedDict()
        _json["file_type"] = self.file_type
        _json["xmin"] = self.xmin
        _json["xmax"] = self.xmax
        _json["size"] = self.size
        _json["tiers"] = self.tier_list
        return json.dumps(_json, ensure_ascii=False, indent=2)


def read_duration_from_textgrid(
    textgrid_path: Union[str, Path],
    phoneme: str,
    utterance_duration: float,
):
    ph_list = phoneme.split(" ")
    with open(textgrid_path, "r") as f:
        textgrid = f.readlines()
    textgrid = remove_empty_lines(textgrid)
    textgrid = TextGrid(textgrid)
    textgrid = json.loads(textgrid.toJson())

    split = np.ones(len(ph_list) + 1, np.float) * -1
    tg_idx = 0
    ph_idx = 0
    tg_align = [x for x in textgrid['tiers'][-1]['items']]
    tg_align_ = []
    for x in tg_align:
        x['xmin'] = float(x['xmin'])
        x['xmax'] = float(x['xmax'])
        if x['text'] in ['sil', 'sp', '', 'SIL', 'PUNC']:
            x['text'] = ''
            if len(tg_align_) > 0 and tg_align_[-1]['text'] == '':
                tg_align_[-1]['xmax'] = x['xmax']
                continue
        tg_align_.append(x)
    tg_align = tg_align_
    tg_len = len([x for x in tg_align if x['text'] != ''])
    ph_len = len([x for x in ph_list if not is_sil_phoneme(x)])
    assert tg_len == ph_len, (tg_len, ph_len, tg_align, ph_list, textgrid_path)
    while tg_idx < len(tg_align) or ph_idx < len(ph_list):
        if tg_idx == len(tg_align) and is_sil_phoneme(ph_list[ph_idx]):
            split[ph_idx] = 1e8
            ph_idx += 1
            continue
        x = tg_align[tg_idx]
        if x['text'] == '' and ph_idx == len(ph_list):
            tg_idx += 1
            continue
        assert ph_idx < len(ph_list), (
            tg_len, ph_len, tg_align, ph_list, textgrid_path
        )

        ph = ph_list[ph_idx]
        if x['text'] == '' and not is_sil_phoneme(ph):
            assert False, (ph_list, tg_align)
        if x['text'] != '' and is_sil_phoneme(ph):
            ph_idx += 1
        else:
            assert (x['text'] == '' and is_sil_phoneme(ph)) \
                   or x['text'].lower() == ph.lower() \
                   or x['text'].lower() == 'sil', (x['text'], ph)
            split[ph_idx] = x['xmin']
            if ph_idx > 0 and split[ph_idx - 1] == -1 and is_sil_phoneme(
                ph_list[ph_idx - 1]
            ):
                split[ph_idx - 1] = split[ph_idx]
            ph_idx += 1
            tg_idx += 1
    assert tg_idx == len(tg_align), (tg_idx, [x['text'] for x in tg_align])
    assert ph_idx >= len(ph_list) - 1, (
        ph_idx, ph_list, len(ph_list), [x['text']
                                        for x in tg_align], textgrid_path
    )

    split[0] = 0
    split[-1] = utterance_duration
    duration = np.diff(split)
    return duration