Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| from torch.utils.checkpoint import checkpoint | |
| from .mask_dit import DiTBlock, FinalBlock, UDiT | |
| from .modules import ( | |
| film_modulate, | |
| PatchEmbed, | |
| PE_wrapper, | |
| TimestepEmbedder, | |
| RMSNorm, | |
| ) | |
| class AudioDiTBlock(DiTBlock): | |
| """ | |
| A modified DiT block with time_aligned_context add to latent. | |
| """ | |
| def __init__( | |
| self, | |
| dim, | |
| time_aligned_context_dim, | |
| dilation, | |
| context_dim=None, | |
| num_heads=8, | |
| mlp_ratio=4., | |
| qkv_bias=False, | |
| qk_scale=None, | |
| qk_norm=None, | |
| act_layer='gelu', | |
| norm_layer=nn.LayerNorm, | |
| time_fusion='none', | |
| ada_sola_rank=None, | |
| ada_sola_alpha=None, | |
| skip=False, | |
| skip_norm=False, | |
| rope_mode='none', | |
| context_norm=False, | |
| use_checkpoint=False | |
| ): | |
| super().__init__( | |
| dim=dim, | |
| context_dim=context_dim, | |
| num_heads=num_heads, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| qk_norm=qk_norm, | |
| act_layer=act_layer, | |
| norm_layer=norm_layer, | |
| time_fusion=time_fusion, | |
| ada_sola_rank=ada_sola_rank, | |
| ada_sola_alpha=ada_sola_alpha, | |
| skip=skip, | |
| skip_norm=skip_norm, | |
| rope_mode=rope_mode, | |
| context_norm=context_norm, | |
| use_checkpoint=use_checkpoint | |
| ) | |
| # time-aligned context projection | |
| self.ta_context_projection = nn.Linear( | |
| time_aligned_context_dim, 2 * dim | |
| ) | |
| self.dilated_conv = nn.Conv1d( | |
| dim, 2 * dim, kernel_size=3, padding=dilation, dilation=dilation | |
| ) | |
| def forward( | |
| self, | |
| x, | |
| time_aligned_context, | |
| time_token=None, | |
| time_ada=None, | |
| skip=None, | |
| context=None, | |
| x_mask=None, | |
| context_mask=None, | |
| extras=None | |
| ): | |
| if self.use_checkpoint: | |
| return checkpoint( | |
| self._forward, | |
| x, | |
| time_aligned_context, | |
| time_token, | |
| time_ada, | |
| skip, | |
| context, | |
| x_mask, | |
| context_mask, | |
| extras, | |
| use_reentrant=False | |
| ) | |
| else: | |
| return self._forward( | |
| x, | |
| time_aligned_context, | |
| time_token, | |
| time_ada, | |
| skip, | |
| context, | |
| x_mask, | |
| context_mask, | |
| extras, | |
| ) | |
| def _forward( | |
| self, | |
| x, | |
| time_aligned_context, | |
| time_token=None, | |
| time_ada=None, | |
| skip=None, | |
| context=None, | |
| x_mask=None, | |
| context_mask=None, | |
| extras=None | |
| ): | |
| B, T, C = x.shape | |
| if self.skip_linear is not None: | |
| assert skip is not None | |
| cat = torch.cat([x, skip], dim=-1) | |
| cat = self.skip_norm(cat) | |
| x = self.skip_linear(cat) | |
| if self.use_adanorm: | |
| time_ada = self.adaln(time_token, time_ada) | |
| (shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, | |
| gate_mlp) = time_ada.chunk(6, dim=1) | |
| # self attention | |
| if self.use_adanorm: | |
| x_norm = film_modulate( | |
| self.norm1(x), shift=shift_msa, scale=scale_msa | |
| ) | |
| x = x + (1-gate_msa) * self.attn( | |
| x_norm, context=None, context_mask=x_mask, extras=extras | |
| ) | |
| else: | |
| # TODO diffusion timestep input is not fused here | |
| x = x + self.attn( | |
| self.norm1(x), | |
| context=None, | |
| context_mask=x_mask, | |
| extras=extras | |
| ) | |
| # time-aligned context | |
| time_aligned_context = self.ta_context_projection(time_aligned_context) | |
| x = self.dilated_conv(x.transpose(1, 2) | |
| ).transpose(1, 2) + time_aligned_context | |
| gate, filter = torch.chunk(x, 2, dim=-1) | |
| x = torch.sigmoid(gate) * torch.tanh(filter) | |
| # cross attention | |
| if self.use_context: | |
| assert context is not None | |
| x = x + self.cross_attn( | |
| x=self.norm2(x), | |
| context=self.norm_context(context), | |
| context_mask=context_mask, | |
| extras=extras | |
| ) | |
| # mlp | |
| if self.use_adanorm: | |
| x_norm = film_modulate( | |
| self.norm3(x), shift=shift_mlp, scale=scale_mlp | |
| ) | |
| x = x + (1-gate_mlp) * self.mlp(x_norm) | |
| else: | |
| x = x + self.mlp(self.norm3(x)) | |
| return x | |
| class AudioUDiT(UDiT): | |
| def __init__( | |
| self, | |
| img_size=224, | |
| patch_size=16, | |
| in_chans=3, | |
| input_type='2d', | |
| out_chans=None, | |
| embed_dim=768, | |
| depth=12, | |
| dilation_cycle_length=4, | |
| num_heads=12, | |
| mlp_ratio=4, | |
| qkv_bias=False, | |
| qk_scale=None, | |
| qk_norm=None, | |
| act_layer='gelu', | |
| norm_layer='layernorm', | |
| context_norm=False, | |
| use_checkpoint=False, | |
| time_fusion='token', | |
| ada_sola_rank=None, | |
| ada_sola_alpha=None, | |
| cls_dim=None, | |
| time_aligned_context_dim=768, | |
| context_dim=768, | |
| context_fusion='concat', | |
| context_max_length=128, | |
| context_pe_method='sinu', | |
| pe_method='abs', | |
| rope_mode='none', | |
| use_conv=True, | |
| skip=True, | |
| skip_norm=True | |
| ): | |
| nn.Module.__init__(self) | |
| self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
| # input | |
| self.in_chans = in_chans | |
| self.input_type = input_type | |
| if self.input_type == '2d': | |
| num_patches = (img_size[0] // | |
| patch_size) * (img_size[1] // patch_size) | |
| elif self.input_type == '1d': | |
| num_patches = img_size // patch_size | |
| self.patch_embed = PatchEmbed( | |
| patch_size=patch_size, | |
| in_chans=in_chans, | |
| embed_dim=embed_dim, | |
| input_type=input_type | |
| ) | |
| out_chans = in_chans if out_chans is None else out_chans | |
| self.out_chans = out_chans | |
| # position embedding | |
| self.rope = rope_mode | |
| self.x_pe = PE_wrapper( | |
| dim=embed_dim, method=pe_method, length=num_patches | |
| ) | |
| # time embed | |
| self.time_embed = TimestepEmbedder(embed_dim) | |
| self.time_fusion = time_fusion | |
| self.use_adanorm = False | |
| # cls embed | |
| if cls_dim is not None: | |
| self.cls_embed = nn.Sequential( | |
| nn.Linear(cls_dim, embed_dim, bias=True), | |
| nn.SiLU(), | |
| nn.Linear(embed_dim, embed_dim, bias=True), | |
| ) | |
| else: | |
| self.cls_embed = None | |
| # time fusion | |
| if time_fusion == 'token': | |
| # put token at the beginning of sequence | |
| self.extras = 2 if self.cls_embed else 1 | |
| self.time_pe = PE_wrapper( | |
| dim=embed_dim, method='abs', length=self.extras | |
| ) | |
| elif time_fusion in ['ada', 'ada_single', 'ada_sola', 'ada_sola_bias']: | |
| self.use_adanorm = True | |
| # aviod repetitive silu for each adaln block | |
| self.time_act = nn.SiLU() | |
| self.extras = 0 | |
| self.time_ada_final = nn.Linear( | |
| embed_dim, 2 * embed_dim, bias=True | |
| ) | |
| if time_fusion in ['ada_single', 'ada_sola', 'ada_sola_bias']: | |
| # shared adaln | |
| self.time_ada = nn.Linear(embed_dim, 6 * embed_dim, bias=True) | |
| else: | |
| self.time_ada = None | |
| else: | |
| raise NotImplementedError | |
| # context | |
| # use a simple projection | |
| self.use_context = False | |
| self.context_cross = False | |
| self.context_max_length = context_max_length | |
| self.context_fusion = 'none' | |
| if context_dim is not None: | |
| self.use_context = True | |
| self.context_embed = nn.Sequential( | |
| nn.Linear(context_dim, embed_dim, bias=True), | |
| nn.SiLU(), | |
| nn.Linear(embed_dim, embed_dim, bias=True), | |
| ) | |
| self.context_fusion = context_fusion | |
| if context_fusion == 'concat' or context_fusion == 'joint': | |
| self.extras += context_max_length | |
| self.context_pe = PE_wrapper( | |
| dim=embed_dim, | |
| method=context_pe_method, | |
| length=context_max_length | |
| ) | |
| # no cross attention layers | |
| context_dim = None | |
| elif context_fusion == 'cross': | |
| self.context_pe = PE_wrapper( | |
| dim=embed_dim, | |
| method=context_pe_method, | |
| length=context_max_length | |
| ) | |
| self.context_cross = True | |
| context_dim = embed_dim | |
| else: | |
| raise NotImplementedError | |
| self.use_skip = skip | |
| # norm layers | |
| if norm_layer == 'layernorm': | |
| norm_layer = nn.LayerNorm | |
| elif norm_layer == 'rmsnorm': | |
| norm_layer = RMSNorm | |
| else: | |
| raise NotImplementedError | |
| self.in_blocks = nn.ModuleList([ | |
| AudioDiTBlock( | |
| dim=embed_dim, | |
| time_aligned_context_dim=time_aligned_context_dim, | |
| dilation=2**(i % dilation_cycle_length), | |
| context_dim=context_dim, | |
| num_heads=num_heads, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| qk_norm=qk_norm, | |
| act_layer=act_layer, | |
| norm_layer=norm_layer, | |
| time_fusion=time_fusion, | |
| ada_sola_rank=ada_sola_rank, | |
| ada_sola_alpha=ada_sola_alpha, | |
| skip=False, | |
| skip_norm=False, | |
| rope_mode=self.rope, | |
| context_norm=context_norm, | |
| use_checkpoint=use_checkpoint | |
| ) for i in range(depth // 2) | |
| ]) | |
| self.mid_block = AudioDiTBlock( | |
| dim=embed_dim, | |
| time_aligned_context_dim=time_aligned_context_dim, | |
| dilation=1, | |
| context_dim=context_dim, | |
| num_heads=num_heads, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| qk_norm=qk_norm, | |
| act_layer=act_layer, | |
| norm_layer=norm_layer, | |
| time_fusion=time_fusion, | |
| ada_sola_rank=ada_sola_rank, | |
| ada_sola_alpha=ada_sola_alpha, | |
| skip=False, | |
| skip_norm=False, | |
| rope_mode=self.rope, | |
| context_norm=context_norm, | |
| use_checkpoint=use_checkpoint | |
| ) | |
| self.out_blocks = nn.ModuleList([ | |
| AudioDiTBlock( | |
| dim=embed_dim, | |
| time_aligned_context_dim=time_aligned_context_dim, | |
| dilation=2**(i % dilation_cycle_length), | |
| context_dim=context_dim, | |
| num_heads=num_heads, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| qk_norm=qk_norm, | |
| act_layer=act_layer, | |
| norm_layer=norm_layer, | |
| time_fusion=time_fusion, | |
| ada_sola_rank=ada_sola_rank, | |
| ada_sola_alpha=ada_sola_alpha, | |
| skip=skip, | |
| skip_norm=skip_norm, | |
| rope_mode=self.rope, | |
| context_norm=context_norm, | |
| use_checkpoint=use_checkpoint | |
| ) for i in range(depth // 2) | |
| ]) | |
| # FinalLayer block | |
| self.use_conv = use_conv | |
| self.final_block = FinalBlock( | |
| embed_dim=embed_dim, | |
| patch_size=patch_size, | |
| img_size=img_size, | |
| in_chans=out_chans, | |
| input_type=input_type, | |
| norm_layer=norm_layer, | |
| use_conv=use_conv, | |
| use_adanorm=self.use_adanorm | |
| ) | |
| self.initialize_weights() | |
| def forward( | |
| self, | |
| x, | |
| timesteps, | |
| time_aligned_context, | |
| context, | |
| x_mask=None, | |
| context_mask=None, | |
| cls_token=None, | |
| controlnet_skips=None, | |
| ): | |
| # make it compatible with int time step during inference | |
| if timesteps.dim() == 0: | |
| timesteps = timesteps.expand(x.shape[0] | |
| ).to(x.device, dtype=torch.long) | |
| x = self.patch_embed(x) | |
| x = self.x_pe(x) | |
| B, L, D = x.shape | |
| if self.use_context: | |
| context_token = self.context_embed(context) | |
| context_token = self.context_pe(context_token) | |
| if self.context_fusion == 'concat' or self.context_fusion == 'joint': | |
| x, x_mask = self._concat_x_context( | |
| x=x, | |
| context=context_token, | |
| x_mask=x_mask, | |
| context_mask=context_mask | |
| ) | |
| context_token, context_mask = None, None | |
| else: | |
| context_token, context_mask = None, None | |
| time_token = self.time_embed(timesteps) | |
| if self.cls_embed: | |
| cls_token = self.cls_embed(cls_token) | |
| time_ada = None | |
| time_ada_final = None | |
| if self.use_adanorm: | |
| if self.cls_embed: | |
| time_token = time_token + cls_token | |
| time_token = self.time_act(time_token) | |
| time_ada_final = self.time_ada_final(time_token) | |
| if self.time_ada is not None: | |
| time_ada = self.time_ada(time_token) | |
| else: | |
| time_token = time_token.unsqueeze(dim=1) | |
| if self.cls_embed: | |
| cls_token = cls_token.unsqueeze(dim=1) | |
| time_token = torch.cat([time_token, cls_token], dim=1) | |
| time_token = self.time_pe(time_token) | |
| x = torch.cat((time_token, x), dim=1) | |
| if x_mask is not None: | |
| x_mask = torch.cat([ | |
| torch.ones(B, time_token.shape[1], | |
| device=x_mask.device).bool(), x_mask | |
| ], | |
| dim=1) | |
| time_token = None | |
| skips = [] | |
| for blk in self.in_blocks: | |
| x = blk( | |
| x=x, | |
| time_aligned_context=time_aligned_context, | |
| time_token=time_token, | |
| time_ada=time_ada, | |
| skip=None, | |
| context=context_token, | |
| x_mask=x_mask, | |
| context_mask=context_mask, | |
| extras=self.extras | |
| ) | |
| if self.use_skip: | |
| skips.append(x) | |
| x = self.mid_block( | |
| x=x, | |
| time_aligned_context=time_aligned_context, | |
| time_token=time_token, | |
| time_ada=time_ada, | |
| skip=None, | |
| context=context_token, | |
| x_mask=x_mask, | |
| context_mask=context_mask, | |
| extras=self.extras | |
| ) | |
| for blk in self.out_blocks: | |
| if self.use_skip: | |
| skip = skips.pop() | |
| if controlnet_skips: | |
| # add to skip like u-net controlnet | |
| skip = skip + controlnet_skips.pop() | |
| else: | |
| skip = None | |
| if controlnet_skips: | |
| # directly add to x | |
| x = x + controlnet_skips.pop() | |
| x = blk( | |
| x=x, | |
| time_aligned_context=time_aligned_context, | |
| time_token=time_token, | |
| time_ada=time_ada, | |
| skip=skip, | |
| context=context_token, | |
| x_mask=x_mask, | |
| context_mask=context_mask, | |
| extras=self.extras | |
| ) | |
| x = self.final_block(x, time_ada=time_ada_final, extras=self.extras) | |
| return x | |