Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| "this rope is faster than llama rope with jit script" | |
| def rotate_half(x): | |
| x1, x2 = x.chunk(2, dim=-1) | |
| return torch.cat((-x2, x1), dim=-1) | |
| # disable in checkpoint mode | |
| # @torch.jit.script | |
| def apply_rotary_pos_emb(x, cos, sin): | |
| # NOTE: This could probably be moved to Triton | |
| # Handle a possible sequence length mismatch in between q and k | |
| cos = cos[:, :, :x.shape[-2], :] | |
| sin = sin[:, :, :x.shape[-2], :] | |
| return (x*cos) + (rotate_half(x) * sin) | |
| class RotaryEmbedding(torch.nn.Module): | |
| """ | |
| The rotary position embeddings from RoFormer_ (Su et. al). | |
| A crucial insight from the method is that the query and keys are | |
| transformed by rotation matrices which depend on the relative positions. | |
| Other implementations are available in the Rotary Transformer repo_ and in | |
| GPT-NeoX_, GPT-NeoX was an inspiration | |
| .. _RoFormer: https://arxiv.org/abs/2104.09864 | |
| .. _repo: https://github.com/ZhuiyiTechnology/roformer | |
| .. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox | |
| .. warning: Please note that this embedding is not registered on purpose, as it is transformative | |
| (it does not create the embedding dimension) and will likely be picked up (imported) on a ad-hoc basis | |
| """ | |
| def __init__(self, dim: int): | |
| super().__init__() | |
| # Generate and save the inverse frequency buffer (non trainable) | |
| inv_freq = 1.0 / (10000**(torch.arange(0, dim, 2).float() / dim)) | |
| self.register_buffer("inv_freq", inv_freq) | |
| self._seq_len_cached = None | |
| self._cos_cached = None | |
| self._sin_cached = None | |
| def _update_cos_sin_tables(self, x, seq_dimension=-2): | |
| # expect input: B, H, L, D | |
| seq_len = x.shape[seq_dimension] | |
| # Reset the tables if the sequence length has changed, | |
| # or if we're on a new device (possibly due to tracing for instance) | |
| # also make sure dtype wont change | |
| if ( | |
| seq_len != self._seq_len_cached or | |
| self._cos_cached.device != x.device or | |
| self._cos_cached.dtype != x.dtype | |
| ): | |
| self._seq_len_cached = seq_len | |
| t = torch.arange( | |
| x.shape[seq_dimension], device=x.device, dtype=torch.float32 | |
| ) | |
| freqs = torch.einsum("i,j->ij", t, self.inv_freq.to(x.dtype)) | |
| emb = torch.cat((freqs, freqs), dim=-1).to(x.device) | |
| self._cos_cached = emb.cos()[None, None, :, :].to(x.dtype) | |
| self._sin_cached = emb.sin()[None, None, :, :].to(x.dtype) | |
| return self._cos_cached, self._sin_cached | |
| def forward(self, q, k): | |
| self._cos_cached, self._sin_cached = self._update_cos_sin_tables( | |
| q.float(), seq_dimension=-2 | |
| ) | |
| if k is not None: | |
| return ( | |
| apply_rotary_pos_emb( | |
| q.float(), self._cos_cached, self._sin_cached | |
| ).type_as(q), | |
| apply_rotary_pos_emb( | |
| k.float(), self._cos_cached, self._sin_cached | |
| ).type_as(k), | |
| ) | |
| else: | |
| return ( | |
| apply_rotary_pos_emb( | |
| q.float(), self._cos_cached, self._sin_cached | |
| ).type_as(q), None | |
| ) | |