Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
-
from datasets import load_dataset
|
| 4 |
import torch
|
|
|
|
|
|
|
| 5 |
from transformers import (
|
| 6 |
AutoConfig,
|
| 7 |
AutoTokenizer,
|
|
@@ -9,131 +10,183 @@ from transformers import (
|
|
| 9 |
DataCollatorForLanguageModeling,
|
| 10 |
Trainer,
|
| 11 |
TrainingArguments,
|
| 12 |
-
pipeline
|
|
|
|
| 13 |
)
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
##############################################################################
|
| 16 |
-
#
|
| 17 |
##############################################################################
|
| 18 |
-
# We store a global pipeline after finetuning (if any).
|
| 19 |
TEXT_PIPELINE = None
|
|
|
|
| 20 |
|
| 21 |
-
#
|
| 22 |
-
NUM_EXAMPLES = 50
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
@spaces.GPU(duration=600) # up to 600 seconds (10 minutes) for mini-finetraining
|
| 26 |
def finetune_small_subset():
|
| 27 |
"""
|
| 28 |
-
1) Loads 'wuhp/myr1' in
|
| 29 |
-
2)
|
| 30 |
-
3)
|
| 31 |
-
4) Saves to 'finetuned_myr1
|
| 32 |
-
5) Reloads
|
| 33 |
"""
|
| 34 |
|
| 35 |
-
# 1) Load
|
| 36 |
ds = load_dataset("wikitext", "wikitext-2-raw-v1", split="train")
|
| 37 |
-
# Keep only 50 to fit ephemeral GPU time
|
| 38 |
ds = ds.select(range(min(NUM_EXAMPLES, len(ds))))
|
| 39 |
|
| 40 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
config = AutoConfig.from_pretrained(
|
| 42 |
-
"wuhp/myr1",
|
| 43 |
subfolder="myr1",
|
| 44 |
trust_remote_code=True
|
| 45 |
)
|
| 46 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 47 |
-
"wuhp/myr1",
|
| 48 |
subfolder="myr1",
|
| 49 |
trust_remote_code=True
|
| 50 |
)
|
| 51 |
-
|
| 52 |
-
model
|
|
|
|
| 53 |
"wuhp/myr1",
|
| 54 |
subfolder="myr1",
|
| 55 |
config=config,
|
| 56 |
-
|
| 57 |
-
device_map="auto",
|
| 58 |
trust_remote_code=True
|
| 59 |
)
|
| 60 |
|
| 61 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
def tokenize_fn(ex):
|
| 63 |
return tokenizer(ex["text"], truncation=True, max_length=512)
|
| 64 |
|
| 65 |
ds = ds.map(tokenize_fn, batched=True, remove_columns=["text"])
|
| 66 |
ds.set_format("torch")
|
| 67 |
|
|
|
|
| 68 |
collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
| 69 |
|
| 70 |
-
#
|
| 71 |
training_args = TrainingArguments(
|
| 72 |
output_dir="finetuned_myr1",
|
| 73 |
num_train_epochs=1,
|
| 74 |
per_device_train_batch_size=1,
|
| 75 |
gradient_accumulation_steps=2,
|
| 76 |
-
logging_steps=
|
| 77 |
-
save_steps=999999,
|
| 78 |
save_total_limit=1,
|
| 79 |
-
fp16=False,
|
| 80 |
)
|
| 81 |
|
| 82 |
-
#
|
| 83 |
trainer = Trainer(
|
| 84 |
-
model=
|
| 85 |
args=training_args,
|
| 86 |
train_dataset=ds,
|
| 87 |
data_collator=collator,
|
| 88 |
)
|
| 89 |
|
| 90 |
-
#
|
| 91 |
trainer.train()
|
| 92 |
|
| 93 |
-
#
|
| 94 |
-
|
|
|
|
| 95 |
tokenizer.save_pretrained("finetuned_myr1")
|
| 96 |
|
| 97 |
-
#
|
| 98 |
-
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
device_map="auto",
|
| 101 |
trust_remote_code=True
|
| 102 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
global TEXT_PIPELINE
|
| 105 |
-
TEXT_PIPELINE = pipeline("text-generation", model=
|
| 106 |
-
|
|
|
|
| 107 |
|
| 108 |
|
| 109 |
def ensure_pipeline():
|
| 110 |
"""
|
| 111 |
-
If
|
| 112 |
-
|
| 113 |
"""
|
| 114 |
global TEXT_PIPELINE
|
| 115 |
if TEXT_PIPELINE is None:
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
| 120 |
)
|
| 121 |
-
|
|
|
|
|
|
|
| 122 |
"wuhp/myr1",
|
| 123 |
subfolder="myr1",
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
device_map="auto"
|
|
|
|
| 127 |
)
|
| 128 |
-
TEXT_PIPELINE = pipeline("text-generation", model=
|
| 129 |
return TEXT_PIPELINE
|
| 130 |
|
| 131 |
|
| 132 |
-
@spaces.GPU(duration=120) # up to
|
| 133 |
def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
|
| 134 |
"""
|
| 135 |
-
Generates text from
|
| 136 |
-
Allows user to adjust temperature, top_p, min/max tokens.
|
| 137 |
"""
|
| 138 |
pipe = ensure_pipeline()
|
| 139 |
out = pipe(
|
|
@@ -149,13 +202,13 @@ def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
|
|
| 149 |
|
| 150 |
# Build Gradio UI
|
| 151 |
with gr.Blocks() as demo:
|
| 152 |
-
gr.Markdown("## ZeroGPU
|
| 153 |
|
| 154 |
-
finetune_btn = gr.Button("Finetune on 50 lines of WikiText-2 (up to 10 min)")
|
| 155 |
status_box = gr.Textbox(label="Finetune Status")
|
| 156 |
finetune_btn.click(fn=finetune_small_subset, outputs=status_box)
|
| 157 |
|
| 158 |
-
gr.Markdown("
|
| 159 |
|
| 160 |
prompt_in = gr.Textbox(lines=3, label="Prompt")
|
| 161 |
temperature = gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature")
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
|
|
|
| 3 |
import torch
|
| 4 |
+
|
| 5 |
+
from datasets import load_dataset
|
| 6 |
from transformers import (
|
| 7 |
AutoConfig,
|
| 8 |
AutoTokenizer,
|
|
|
|
| 10 |
DataCollatorForLanguageModeling,
|
| 11 |
Trainer,
|
| 12 |
TrainingArguments,
|
| 13 |
+
pipeline,
|
| 14 |
+
BitsAndBytesConfig, # for 4-bit config
|
| 15 |
)
|
| 16 |
|
| 17 |
+
# PEFT (LoRA / QLoRA)
|
| 18 |
+
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
|
| 19 |
+
|
| 20 |
+
|
| 21 |
##############################################################################
|
| 22 |
+
# ZeroGPU + QLoRA Example
|
| 23 |
##############################################################################
|
|
|
|
| 24 |
TEXT_PIPELINE = None
|
| 25 |
+
NUM_EXAMPLES = 50 # We'll train on 50 lines of WikiText-2 for demonstration
|
| 26 |
|
| 27 |
+
@spaces.GPU(duration=600) # up to 10 min
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
def finetune_small_subset():
|
| 29 |
"""
|
| 30 |
+
1) Loads 'wuhp/myr1' in 4-bit quantization (QLoRA style),
|
| 31 |
+
2) Adds LoRA adapters (trainable),
|
| 32 |
+
3) Trains on 50 lines of WikiText-2,
|
| 33 |
+
4) Saves LoRA adapter to 'finetuned_myr1',
|
| 34 |
+
5) Reloads LoRA adapters for inference in a pipeline.
|
| 35 |
"""
|
| 36 |
|
| 37 |
+
# --- 1) Load WikiText-2 subset ---
|
| 38 |
ds = load_dataset("wikitext", "wikitext-2-raw-v1", split="train")
|
|
|
|
| 39 |
ds = ds.select(range(min(NUM_EXAMPLES, len(ds))))
|
| 40 |
|
| 41 |
+
# We'll define tokenize_fn after we have the tokenizer
|
| 42 |
+
|
| 43 |
+
# --- 2) Setup 4-bit quantization with BitsAndBytes ---
|
| 44 |
+
# This is QLoRA approach: we load the base model in 4-bit
|
| 45 |
+
# and attach LoRA adapters for training.
|
| 46 |
+
bnb_config = BitsAndBytesConfig(
|
| 47 |
+
load_in_4bit=True,
|
| 48 |
+
bnb_4bit_compute_dtype=torch.bfloat16, # or torch.float16 if preferred
|
| 49 |
+
bnb_4bit_use_double_quant=True,
|
| 50 |
+
bnb_4bit_quant_type="nf4", # "nf4" is standard for QLoRA
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
config = AutoConfig.from_pretrained(
|
| 54 |
+
"wuhp/myr1",
|
| 55 |
subfolder="myr1",
|
| 56 |
trust_remote_code=True
|
| 57 |
)
|
| 58 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 59 |
+
"wuhp/myr1",
|
| 60 |
subfolder="myr1",
|
| 61 |
trust_remote_code=True
|
| 62 |
)
|
| 63 |
+
|
| 64 |
+
# Load model in 4-bit
|
| 65 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 66 |
"wuhp/myr1",
|
| 67 |
subfolder="myr1",
|
| 68 |
config=config,
|
| 69 |
+
quantization_config=bnb_config, # <--- QLoRA 4-bit
|
| 70 |
+
device_map="auto",
|
| 71 |
trust_remote_code=True
|
| 72 |
)
|
| 73 |
|
| 74 |
+
# Prepare the model for k-bit training (QLoRA)
|
| 75 |
+
# This step disables dropout on some layers, sets up gradients for LN, etc.
|
| 76 |
+
base_model = prepare_model_for_kbit_training(base_model)
|
| 77 |
+
|
| 78 |
+
# --- 3) Create LoRA config & wrap the base model in LoRA adapter ---
|
| 79 |
+
# For LLaMA-like models, "q_proj" and "v_proj" are typical. If your model is different,
|
| 80 |
+
# adjust target_modules accordingly (maybe "c_attn", "W_pack", "query_key_value", etc.)
|
| 81 |
+
lora_config = LoraConfig(
|
| 82 |
+
r=16,
|
| 83 |
+
lora_alpha=32,
|
| 84 |
+
lora_dropout=0.05,
|
| 85 |
+
bias="none",
|
| 86 |
+
target_modules=["q_proj", "v_proj"], # Adjust if your model uses different layer names
|
| 87 |
+
task_type=TaskType.CAUSAL_LM,
|
| 88 |
+
)
|
| 89 |
+
lora_model = get_peft_model(base_model, lora_config)
|
| 90 |
+
|
| 91 |
+
# --- 4) Tokenize dataset ---
|
| 92 |
def tokenize_fn(ex):
|
| 93 |
return tokenizer(ex["text"], truncation=True, max_length=512)
|
| 94 |
|
| 95 |
ds = ds.map(tokenize_fn, batched=True, remove_columns=["text"])
|
| 96 |
ds.set_format("torch")
|
| 97 |
|
| 98 |
+
# Data collator
|
| 99 |
collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
| 100 |
|
| 101 |
+
# Training args
|
| 102 |
training_args = TrainingArguments(
|
| 103 |
output_dir="finetuned_myr1",
|
| 104 |
num_train_epochs=1,
|
| 105 |
per_device_train_batch_size=1,
|
| 106 |
gradient_accumulation_steps=2,
|
| 107 |
+
logging_steps=5,
|
| 108 |
+
save_steps=999999,
|
| 109 |
save_total_limit=1,
|
| 110 |
+
fp16=False, # We'll rely on bnb_4bit/bfloat16 for the base model
|
| 111 |
)
|
| 112 |
|
| 113 |
+
# Trainer
|
| 114 |
trainer = Trainer(
|
| 115 |
+
model=lora_model,
|
| 116 |
args=training_args,
|
| 117 |
train_dataset=ds,
|
| 118 |
data_collator=collator,
|
| 119 |
)
|
| 120 |
|
| 121 |
+
# --- 5) Train ---
|
| 122 |
trainer.train()
|
| 123 |
|
| 124 |
+
# Save LoRA adapter + tokenizer
|
| 125 |
+
# The 'save_model' would save only the LoRA adapter if using PEFT
|
| 126 |
+
trainer.model.save_pretrained("finetuned_myr1")
|
| 127 |
tokenizer.save_pretrained("finetuned_myr1")
|
| 128 |
|
| 129 |
+
# --- 6) Reload the base model in 4-bit, then merge or apply the LoRA adapter for inference
|
| 130 |
+
# We'll do the same approach, then load adapter from 'finetuned_myr1'
|
| 131 |
+
base_model_2 = AutoModelForCausalLM.from_pretrained(
|
| 132 |
+
"wuhp/myr1",
|
| 133 |
+
subfolder="myr1",
|
| 134 |
+
config=config,
|
| 135 |
+
quantization_config=bnb_config,
|
| 136 |
device_map="auto",
|
| 137 |
trust_remote_code=True
|
| 138 |
)
|
| 139 |
+
base_model_2 = prepare_model_for_kbit_training(base_model_2)
|
| 140 |
+
|
| 141 |
+
# Re-inject LoRA
|
| 142 |
+
# If your LoRA was saved in the same folder, you can do:
|
| 143 |
+
# from peft import PeftModel
|
| 144 |
+
# lora_model_2 = PeftModel.from_pretrained(base_model_2, "finetuned_myr1")
|
| 145 |
+
# or you can do get_peft_model and pass the weights, etc.
|
| 146 |
|
| 147 |
+
# But we can reuse 'get_peft_model' + load the LoRA weights
|
| 148 |
+
lora_model_2 = get_peft_model(base_model_2, lora_config)
|
| 149 |
+
lora_model_2.load_adapter("finetuned_myr1")
|
| 150 |
+
|
| 151 |
+
# Create pipeline
|
| 152 |
global TEXT_PIPELINE
|
| 153 |
+
TEXT_PIPELINE = pipeline("text-generation", model=lora_model_2, tokenizer=tokenizer)
|
| 154 |
+
|
| 155 |
+
return "Finetuning complete (QLoRA + LoRA). Model loaded for inference."
|
| 156 |
|
| 157 |
|
| 158 |
def ensure_pipeline():
|
| 159 |
"""
|
| 160 |
+
If we haven't finetuned yet (TEXT_PIPELINE is None),
|
| 161 |
+
load the base model in 4-bit with NO LoRA.
|
| 162 |
"""
|
| 163 |
global TEXT_PIPELINE
|
| 164 |
if TEXT_PIPELINE is None:
|
| 165 |
+
# Just load base model in 4-bit
|
| 166 |
+
bnb_config = BitsAndBytesConfig(
|
| 167 |
+
load_in_4bit=True,
|
| 168 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 169 |
+
bnb_4bit_use_double_quant=True,
|
| 170 |
+
bnb_4bit_quant_type="nf4",
|
| 171 |
)
|
| 172 |
+
config = AutoConfig.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
|
| 173 |
+
tokenizer = AutoTokenizer.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
|
| 174 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 175 |
"wuhp/myr1",
|
| 176 |
subfolder="myr1",
|
| 177 |
+
config=config,
|
| 178 |
+
quantization_config=bnb_config,
|
| 179 |
+
device_map="auto",
|
| 180 |
+
trust_remote_code=True
|
| 181 |
)
|
| 182 |
+
TEXT_PIPELINE = pipeline("text-generation", model=base_model, tokenizer=tokenizer)
|
| 183 |
return TEXT_PIPELINE
|
| 184 |
|
| 185 |
|
| 186 |
+
@spaces.GPU(duration=120) # up to 2 min for text generation
|
| 187 |
def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
|
| 188 |
"""
|
| 189 |
+
Generates text from the finetuned (LoRA) model if present, else the base model.
|
|
|
|
| 190 |
"""
|
| 191 |
pipe = ensure_pipeline()
|
| 192 |
out = pipe(
|
|
|
|
| 202 |
|
| 203 |
# Build Gradio UI
|
| 204 |
with gr.Blocks() as demo:
|
| 205 |
+
gr.Markdown("## ZeroGPU QLoRA Example for wuhp/myr1")
|
| 206 |
|
| 207 |
+
finetune_btn = gr.Button("Finetune 4-bit (QLoRA) on 50 lines of WikiText-2 (up to 10 min)")
|
| 208 |
status_box = gr.Textbox(label="Finetune Status")
|
| 209 |
finetune_btn.click(fn=finetune_small_subset, outputs=status_box)
|
| 210 |
|
| 211 |
+
gr.Markdown("Then generate text below (or skip finetuning to see base model).")
|
| 212 |
|
| 213 |
prompt_in = gr.Textbox(lines=3, label="Prompt")
|
| 214 |
temperature = gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature")
|