Update app.py
Browse files
app.py
CHANGED
|
@@ -15,12 +15,12 @@ from transformers import (
|
|
| 15 |
)
|
| 16 |
|
| 17 |
# PEFT (LoRA / QLoRA)
|
| 18 |
-
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
|
| 19 |
-
|
| 20 |
|
| 21 |
##############################################################################
|
| 22 |
# ZeroGPU + QLoRA Example
|
| 23 |
##############################################################################
|
|
|
|
| 24 |
TEXT_PIPELINE = None
|
| 25 |
NUM_EXAMPLES = 50 # We'll train on 50 lines of WikiText-2 for demonstration
|
| 26 |
|
|
@@ -38,16 +38,12 @@ def finetune_small_subset():
|
|
| 38 |
ds = load_dataset("wikitext", "wikitext-2-raw-v1", split="train")
|
| 39 |
ds = ds.select(range(min(NUM_EXAMPLES, len(ds))))
|
| 40 |
|
| 41 |
-
# We'll define tokenize_fn after we have the tokenizer
|
| 42 |
-
|
| 43 |
# --- 2) Setup 4-bit quantization with BitsAndBytes ---
|
| 44 |
-
# This is QLoRA approach: we load the base model in 4-bit
|
| 45 |
-
# and attach LoRA adapters for training.
|
| 46 |
bnb_config = BitsAndBytesConfig(
|
| 47 |
load_in_4bit=True,
|
| 48 |
-
bnb_4bit_compute_dtype=torch.bfloat16, # or torch.float16 if
|
| 49 |
bnb_4bit_use_double_quant=True,
|
| 50 |
-
bnb_4bit_quant_type="nf4",
|
| 51 |
)
|
| 52 |
|
| 53 |
config = AutoConfig.from_pretrained(
|
|
@@ -61,7 +57,6 @@ def finetune_small_subset():
|
|
| 61 |
trust_remote_code=True
|
| 62 |
)
|
| 63 |
|
| 64 |
-
# Load model in 4-bit
|
| 65 |
base_model = AutoModelForCausalLM.from_pretrained(
|
| 66 |
"wuhp/myr1",
|
| 67 |
subfolder="myr1",
|
|
@@ -72,18 +67,16 @@ def finetune_small_subset():
|
|
| 72 |
)
|
| 73 |
|
| 74 |
# Prepare the model for k-bit training (QLoRA)
|
| 75 |
-
# This step disables dropout on some layers, sets up gradients for LN, etc.
|
| 76 |
base_model = prepare_model_for_kbit_training(base_model)
|
| 77 |
|
| 78 |
-
# --- 3) Create LoRA config & wrap the base model in LoRA
|
| 79 |
-
#
|
| 80 |
-
# adjust target_modules accordingly (maybe "c_attn", "W_pack", "query_key_value", etc.)
|
| 81 |
lora_config = LoraConfig(
|
| 82 |
r=16,
|
| 83 |
lora_alpha=32,
|
| 84 |
lora_dropout=0.05,
|
| 85 |
bias="none",
|
| 86 |
-
target_modules=["q_proj", "v_proj"],
|
| 87 |
task_type=TaskType.CAUSAL_LM,
|
| 88 |
)
|
| 89 |
lora_model = get_peft_model(base_model, lora_config)
|
|
@@ -95,7 +88,6 @@ def finetune_small_subset():
|
|
| 95 |
ds = ds.map(tokenize_fn, batched=True, remove_columns=["text"])
|
| 96 |
ds.set_format("torch")
|
| 97 |
|
| 98 |
-
# Data collator
|
| 99 |
collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
| 100 |
|
| 101 |
# Training args
|
|
@@ -107,7 +99,7 @@ def finetune_small_subset():
|
|
| 107 |
logging_steps=5,
|
| 108 |
save_steps=999999,
|
| 109 |
save_total_limit=1,
|
| 110 |
-
fp16=False, #
|
| 111 |
)
|
| 112 |
|
| 113 |
# Trainer
|
|
@@ -121,13 +113,11 @@ def finetune_small_subset():
|
|
| 121 |
# --- 5) Train ---
|
| 122 |
trainer.train()
|
| 123 |
|
| 124 |
-
# Save LoRA adapter + tokenizer
|
| 125 |
-
# The 'save_model' would save only the LoRA adapter if using PEFT
|
| 126 |
trainer.model.save_pretrained("finetuned_myr1")
|
| 127 |
tokenizer.save_pretrained("finetuned_myr1")
|
| 128 |
|
| 129 |
-
# ---
|
| 130 |
-
# We'll do the same approach, then load adapter from 'finetuned_myr1'
|
| 131 |
base_model_2 = AutoModelForCausalLM.from_pretrained(
|
| 132 |
"wuhp/myr1",
|
| 133 |
subfolder="myr1",
|
|
@@ -138,17 +128,12 @@ def finetune_small_subset():
|
|
| 138 |
)
|
| 139 |
base_model_2 = prepare_model_for_kbit_training(base_model_2)
|
| 140 |
|
| 141 |
-
#
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
# But we can reuse 'get_peft_model' + load the LoRA weights
|
| 148 |
-
lora_model_2 = get_peft_model(base_model_2, lora_config)
|
| 149 |
-
lora_model_2.load_adapter("finetuned_myr1")
|
| 150 |
|
| 151 |
-
# Create pipeline
|
| 152 |
global TEXT_PIPELINE
|
| 153 |
TEXT_PIPELINE = pipeline("text-generation", model=lora_model_2, tokenizer=tokenizer)
|
| 154 |
|
|
@@ -162,7 +147,6 @@ def ensure_pipeline():
|
|
| 162 |
"""
|
| 163 |
global TEXT_PIPELINE
|
| 164 |
if TEXT_PIPELINE is None:
|
| 165 |
-
# Just load base model in 4-bit
|
| 166 |
bnb_config = BitsAndBytesConfig(
|
| 167 |
load_in_4bit=True,
|
| 168 |
bnb_4bit_compute_dtype=torch.bfloat16,
|
|
@@ -182,7 +166,6 @@ def ensure_pipeline():
|
|
| 182 |
TEXT_PIPELINE = pipeline("text-generation", model=base_model, tokenizer=tokenizer)
|
| 183 |
return TEXT_PIPELINE
|
| 184 |
|
| 185 |
-
|
| 186 |
@spaces.GPU(duration=120) # up to 2 min for text generation
|
| 187 |
def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
|
| 188 |
"""
|
|
@@ -199,7 +182,6 @@ def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
|
|
| 199 |
)
|
| 200 |
return out[0]["generated_text"]
|
| 201 |
|
| 202 |
-
|
| 203 |
# Build Gradio UI
|
| 204 |
with gr.Blocks() as demo:
|
| 205 |
gr.Markdown("## ZeroGPU QLoRA Example for wuhp/myr1")
|
|
|
|
| 15 |
)
|
| 16 |
|
| 17 |
# PEFT (LoRA / QLoRA)
|
| 18 |
+
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training, PeftModel
|
|
|
|
| 19 |
|
| 20 |
##############################################################################
|
| 21 |
# ZeroGPU + QLoRA Example
|
| 22 |
##############################################################################
|
| 23 |
+
|
| 24 |
TEXT_PIPELINE = None
|
| 25 |
NUM_EXAMPLES = 50 # We'll train on 50 lines of WikiText-2 for demonstration
|
| 26 |
|
|
|
|
| 38 |
ds = load_dataset("wikitext", "wikitext-2-raw-v1", split="train")
|
| 39 |
ds = ds.select(range(min(NUM_EXAMPLES, len(ds))))
|
| 40 |
|
|
|
|
|
|
|
| 41 |
# --- 2) Setup 4-bit quantization with BitsAndBytes ---
|
|
|
|
|
|
|
| 42 |
bnb_config = BitsAndBytesConfig(
|
| 43 |
load_in_4bit=True,
|
| 44 |
+
bnb_4bit_compute_dtype=torch.bfloat16, # or torch.float16 if you prefer
|
| 45 |
bnb_4bit_use_double_quant=True,
|
| 46 |
+
bnb_4bit_quant_type="nf4",
|
| 47 |
)
|
| 48 |
|
| 49 |
config = AutoConfig.from_pretrained(
|
|
|
|
| 57 |
trust_remote_code=True
|
| 58 |
)
|
| 59 |
|
|
|
|
| 60 |
base_model = AutoModelForCausalLM.from_pretrained(
|
| 61 |
"wuhp/myr1",
|
| 62 |
subfolder="myr1",
|
|
|
|
| 67 |
)
|
| 68 |
|
| 69 |
# Prepare the model for k-bit training (QLoRA)
|
|
|
|
| 70 |
base_model = prepare_model_for_kbit_training(base_model)
|
| 71 |
|
| 72 |
+
# --- 3) Create LoRA config & wrap the base model in LoRA ---
|
| 73 |
+
# Adjust target_modules if your model uses different param names than "q_proj"/"v_proj".
|
|
|
|
| 74 |
lora_config = LoraConfig(
|
| 75 |
r=16,
|
| 76 |
lora_alpha=32,
|
| 77 |
lora_dropout=0.05,
|
| 78 |
bias="none",
|
| 79 |
+
target_modules=["q_proj", "v_proj"],
|
| 80 |
task_type=TaskType.CAUSAL_LM,
|
| 81 |
)
|
| 82 |
lora_model = get_peft_model(base_model, lora_config)
|
|
|
|
| 88 |
ds = ds.map(tokenize_fn, batched=True, remove_columns=["text"])
|
| 89 |
ds.set_format("torch")
|
| 90 |
|
|
|
|
| 91 |
collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
| 92 |
|
| 93 |
# Training args
|
|
|
|
| 99 |
logging_steps=5,
|
| 100 |
save_steps=999999,
|
| 101 |
save_total_limit=1,
|
| 102 |
+
fp16=False, # rely on bfloat16 from quantization
|
| 103 |
)
|
| 104 |
|
| 105 |
# Trainer
|
|
|
|
| 113 |
# --- 5) Train ---
|
| 114 |
trainer.train()
|
| 115 |
|
| 116 |
+
# --- 6) Save LoRA adapter + tokenizer ---
|
|
|
|
| 117 |
trainer.model.save_pretrained("finetuned_myr1")
|
| 118 |
tokenizer.save_pretrained("finetuned_myr1")
|
| 119 |
|
| 120 |
+
# --- 7) Reload the base model + LoRA adapter for inference
|
|
|
|
| 121 |
base_model_2 = AutoModelForCausalLM.from_pretrained(
|
| 122 |
"wuhp/myr1",
|
| 123 |
subfolder="myr1",
|
|
|
|
| 128 |
)
|
| 129 |
base_model_2 = prepare_model_for_kbit_training(base_model_2)
|
| 130 |
|
| 131 |
+
# Instead of load_adapter(...), we use PeftModel.from_pretrained
|
| 132 |
+
lora_model_2 = PeftModel.from_pretrained(
|
| 133 |
+
base_model_2,
|
| 134 |
+
"finetuned_myr1",
|
| 135 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
|
|
|
| 137 |
global TEXT_PIPELINE
|
| 138 |
TEXT_PIPELINE = pipeline("text-generation", model=lora_model_2, tokenizer=tokenizer)
|
| 139 |
|
|
|
|
| 147 |
"""
|
| 148 |
global TEXT_PIPELINE
|
| 149 |
if TEXT_PIPELINE is None:
|
|
|
|
| 150 |
bnb_config = BitsAndBytesConfig(
|
| 151 |
load_in_4bit=True,
|
| 152 |
bnb_4bit_compute_dtype=torch.bfloat16,
|
|
|
|
| 166 |
TEXT_PIPELINE = pipeline("text-generation", model=base_model, tokenizer=tokenizer)
|
| 167 |
return TEXT_PIPELINE
|
| 168 |
|
|
|
|
| 169 |
@spaces.GPU(duration=120) # up to 2 min for text generation
|
| 170 |
def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
|
| 171 |
"""
|
|
|
|
| 182 |
)
|
| 183 |
return out[0]["generated_text"]
|
| 184 |
|
|
|
|
| 185 |
# Build Gradio UI
|
| 186 |
with gr.Blocks() as demo:
|
| 187 |
gr.Markdown("## ZeroGPU QLoRA Example for wuhp/myr1")
|