Update app.py
Browse files
app.py
CHANGED
|
@@ -12,200 +12,172 @@ from transformers import (
|
|
| 12 |
pipeline
|
| 13 |
)
|
| 14 |
|
| 15 |
-
|
| 16 |
-
# ZeroGPU
|
| 17 |
-
#
|
| 18 |
-
#
|
| 19 |
-
|
| 20 |
|
| 21 |
-
# We'll
|
| 22 |
-
# Real finetuning on the entire dataset likely exceeds typical ZeroGPU time.
|
| 23 |
-
NUM_EXAMPLES = 1000 # or fewer to keep it quick
|
| 24 |
|
| 25 |
-
# We'll
|
| 26 |
-
|
| 27 |
|
| 28 |
-
@spaces.GPU(duration=300) #
|
| 29 |
def finetune_small_subset():
|
| 30 |
"""
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
"""
|
| 38 |
-
|
| 39 |
-
# -------------------------------
|
| 40 |
-
# A) Load a small dataset
|
| 41 |
-
# -------------------------------
|
| 42 |
ds = load_dataset("wikitext", "wikitext-2-raw-v1", split="train")
|
| 43 |
-
# Keep only a subset so we don't exceed time.
|
| 44 |
ds = ds.select(range(min(NUM_EXAMPLES, len(ds))))
|
| 45 |
|
| 46 |
-
|
| 47 |
-
# For standard LM, we just treat each line as text
|
| 48 |
-
return tokenizer(ex["text"], truncation=True, max_length=512)
|
| 49 |
-
|
| 50 |
-
# We'll define them once we have the tokenizer below.
|
| 51 |
-
|
| 52 |
-
# -------------------------------
|
| 53 |
-
# B) Load config, tokenizer, model from HF
|
| 54 |
-
# (trust_remote_code = True for custom modeling_deepseek)
|
| 55 |
-
# -------------------------------
|
| 56 |
config = AutoConfig.from_pretrained(
|
| 57 |
-
"wuhp/myr1",
|
| 58 |
subfolder="myr1",
|
| 59 |
trust_remote_code=True
|
| 60 |
)
|
| 61 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 62 |
-
"wuhp/myr1",
|
| 63 |
subfolder="myr1",
|
| 64 |
trust_remote_code=True
|
| 65 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
model = AutoModelForCausalLM.from_pretrained(
|
| 67 |
"wuhp/myr1",
|
| 68 |
subfolder="myr1",
|
| 69 |
config=config,
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
| 72 |
trust_remote_code=True
|
| 73 |
)
|
| 74 |
|
| 75 |
-
#
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
|
|
|
| 79 |
ds.set_format("torch")
|
| 80 |
|
| 81 |
-
|
| 82 |
-
# D) Data Collator
|
| 83 |
-
# -------------------------------
|
| 84 |
-
collator = DataCollatorForLanguageModeling(
|
| 85 |
-
tokenizer=tokenizer,
|
| 86 |
-
mlm=False
|
| 87 |
-
)
|
| 88 |
|
| 89 |
-
#
|
| 90 |
-
# E) Training Arguments + Trainer
|
| 91 |
-
# -------------------------------
|
| 92 |
training_args = TrainingArguments(
|
| 93 |
output_dir="finetuned_myr1",
|
| 94 |
-
num_train_epochs=1,
|
| 95 |
per_device_train_batch_size=1,
|
| 96 |
gradient_accumulation_steps=2,
|
| 97 |
logging_steps=10,
|
| 98 |
-
save_steps=999999,
|
| 99 |
save_total_limit=1,
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
| 102 |
)
|
| 103 |
|
|
|
|
| 104 |
trainer = Trainer(
|
| 105 |
model=model,
|
| 106 |
args=training_args,
|
| 107 |
train_dataset=ds,
|
| 108 |
-
data_collator=collator
|
| 109 |
)
|
| 110 |
|
| 111 |
-
#
|
| 112 |
-
# F) Train
|
| 113 |
-
# -------------------------------
|
| 114 |
trainer.train()
|
| 115 |
|
| 116 |
-
#
|
| 117 |
-
# G) Save local checkpoint
|
| 118 |
-
# -------------------------------
|
| 119 |
trainer.save_model("finetuned_myr1")
|
| 120 |
tokenizer.save_pretrained("finetuned_myr1")
|
| 121 |
|
| 122 |
-
#
|
| 123 |
-
# H) Reload the newly finetuned model as a pipeline
|
| 124 |
-
# -------------------------------
|
| 125 |
-
# (We do this so we can do inference in the same GPU session)
|
| 126 |
-
# However, if the pipeline is used *after* this function returns,
|
| 127 |
-
# we might need to re-load in a separate function call.
|
| 128 |
finetuned_model = AutoModelForCausalLM.from_pretrained(
|
| 129 |
"finetuned_myr1",
|
| 130 |
-
torch_dtype=torch.
|
| 131 |
device_map="auto",
|
| 132 |
trust_remote_code=True
|
| 133 |
)
|
| 134 |
global TEXT_PIPELINE
|
| 135 |
-
TEXT_PIPELINE = pipeline(
|
| 136 |
-
|
| 137 |
-
model=finetuned_model,
|
| 138 |
-
tokenizer=tokenizer
|
| 139 |
-
)
|
| 140 |
-
return "Finetuning complete. Model reloaded for inference!"
|
| 141 |
|
| 142 |
def ensure_pipeline():
|
| 143 |
"""
|
| 144 |
-
If
|
| 145 |
-
|
| 146 |
-
so that 'predict' can still run.
|
| 147 |
"""
|
| 148 |
global TEXT_PIPELINE
|
| 149 |
if TEXT_PIPELINE is None:
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
| 154 |
trust_remote_code=True
|
| 155 |
)
|
|
|
|
| 156 |
return TEXT_PIPELINE
|
| 157 |
|
| 158 |
-
@spaces.GPU(duration=120) # up to 2 minutes
|
| 159 |
-
def predict(prompt, min_new_tokens
|
| 160 |
"""
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
We'll also ensure a minimum of 260 tokens.
|
| 164 |
"""
|
| 165 |
-
pipe = ensure_pipeline()
|
| 166 |
-
|
| 167 |
-
# The pipeline will handle do_sample by default.
|
| 168 |
-
# We set a large max_new_tokens, but be careful about timeouts.
|
| 169 |
-
outputs = pipe(
|
| 170 |
prompt,
|
|
|
|
|
|
|
| 171 |
min_new_tokens=int(min_new_tokens),
|
| 172 |
max_new_tokens=int(max_new_tokens),
|
| 173 |
-
|
| 174 |
-
top_p=0.9
|
| 175 |
)
|
| 176 |
-
return
|
| 177 |
|
| 178 |
-
|
| 179 |
-
# Build a Gradio UI
|
| 180 |
-
#############################################################
|
| 181 |
with gr.Blocks() as demo:
|
| 182 |
-
gr.Markdown("## ZeroGPU Finetuning
|
| 183 |
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
finetune_btn.click(fn=finetune_small_subset, outputs=
|
| 188 |
|
| 189 |
-
gr.Markdown(
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
)
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
-
prompt_in = gr.Textbox(label="Prompt", lines=3)
|
| 195 |
-
min_tok_slider = gr.Slider(
|
| 196 |
-
minimum=260, maximum=5000, value=260, step=10,
|
| 197 |
-
label="Minimum New Tokens"
|
| 198 |
-
)
|
| 199 |
-
max_tok_slider = gr.Slider(
|
| 200 |
-
minimum=260, maximum=5000, value=2600, step=50,
|
| 201 |
-
label="Maximum New Tokens"
|
| 202 |
-
)
|
| 203 |
-
gen_btn = gr.Button("Generate")
|
| 204 |
output_box = gr.Textbox(label="Generated Text", lines=12)
|
|
|
|
| 205 |
|
| 206 |
gen_btn.click(
|
| 207 |
fn=predict,
|
| 208 |
-
inputs=[prompt_in,
|
| 209 |
outputs=output_box
|
| 210 |
)
|
| 211 |
|
|
|
|
| 12 |
pipeline
|
| 13 |
)
|
| 14 |
|
| 15 |
+
##############################################################################
|
| 16 |
+
# ZeroGPU constraints:
|
| 17 |
+
# 1) No GPU calls in top-level code
|
| 18 |
+
# 2) Decorate GPU-using functions with @spaces.GPU(...)
|
| 19 |
+
##############################################################################
|
| 20 |
|
| 21 |
+
TEXT_PIPELINE = None # We'll store an inference pipeline after training (if any).
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
# We'll train on a subset of WikiText-2 to keep it short for ZeroGPU demonstration.
|
| 24 |
+
NUM_EXAMPLES = 1000
|
| 25 |
|
| 26 |
+
@spaces.GPU(duration=300) # 5 minutes to do a quick demo train
|
| 27 |
def finetune_small_subset():
|
| 28 |
"""
|
| 29 |
+
Demonstration:
|
| 30 |
+
- Loads 'wuhp/myr1' (DeepSeek)
|
| 31 |
+
- Finetunes on a small subset of WikiText-2
|
| 32 |
+
- Disables fp16 to avoid "Attempting to unscale FP16 gradients" error
|
| 33 |
+
- Saves model to 'finetuned_myr1'
|
| 34 |
+
- Reloads as pipeline for inference
|
| 35 |
"""
|
| 36 |
+
# 1) Load dataset
|
|
|
|
|
|
|
|
|
|
| 37 |
ds = load_dataset("wikitext", "wikitext-2-raw-v1", split="train")
|
|
|
|
| 38 |
ds = ds.select(range(min(NUM_EXAMPLES, len(ds))))
|
| 39 |
|
| 40 |
+
# 2) Load config, tokenizer, model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
config = AutoConfig.from_pretrained(
|
| 42 |
+
"wuhp/myr1",
|
| 43 |
subfolder="myr1",
|
| 44 |
trust_remote_code=True
|
| 45 |
)
|
| 46 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 47 |
+
"wuhp/myr1",
|
| 48 |
subfolder="myr1",
|
| 49 |
trust_remote_code=True
|
| 50 |
)
|
| 51 |
+
|
| 52 |
+
# If your GPU supports BF16 (e.g. A100), you can try:
|
| 53 |
+
# bf16 = True, and fp16 = False
|
| 54 |
+
# Otherwise, just keep fp16=False
|
| 55 |
+
# We'll do bf16=False so we definitely skip half-precision
|
| 56 |
+
# (which avoids the "Attempting to unscale FP16 gradients" error).
|
| 57 |
+
bf16 = False
|
| 58 |
+
fp16 = False
|
| 59 |
+
|
| 60 |
model = AutoModelForCausalLM.from_pretrained(
|
| 61 |
"wuhp/myr1",
|
| 62 |
subfolder="myr1",
|
| 63 |
config=config,
|
| 64 |
+
# Only auto-detect if we do normal float32 or bfloat16.
|
| 65 |
+
# (We do not want normal fp16 in training.)
|
| 66 |
+
torch_dtype=torch.bfloat16 if bf16 else torch.float32,
|
| 67 |
+
device_map="auto",
|
| 68 |
trust_remote_code=True
|
| 69 |
)
|
| 70 |
|
| 71 |
+
# 3) Tokenize data
|
| 72 |
+
def tokenize_fn(ex):
|
| 73 |
+
return tokenizer(ex["text"], truncation=True, max_length=512)
|
| 74 |
+
|
| 75 |
+
ds = ds.map(tokenize_fn, batched=True, remove_columns=["text"])
|
| 76 |
ds.set_format("torch")
|
| 77 |
|
| 78 |
+
collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
+
# 4) TrainingArguments
|
|
|
|
|
|
|
| 81 |
training_args = TrainingArguments(
|
| 82 |
output_dir="finetuned_myr1",
|
| 83 |
+
num_train_epochs=1,
|
| 84 |
per_device_train_batch_size=1,
|
| 85 |
gradient_accumulation_steps=2,
|
| 86 |
logging_steps=10,
|
| 87 |
+
save_steps=999999, # won't save mid-training
|
| 88 |
save_total_limit=1,
|
| 89 |
+
# Turn off half precision explicitly
|
| 90 |
+
fp16=fp16,
|
| 91 |
+
bf16=bf16,
|
| 92 |
+
# If the above doesn't fix it, remove advanced features that auto uses
|
| 93 |
+
# gradient scaling, or do more manual approach.
|
| 94 |
)
|
| 95 |
|
| 96 |
+
# 5) Build Trainer
|
| 97 |
trainer = Trainer(
|
| 98 |
model=model,
|
| 99 |
args=training_args,
|
| 100 |
train_dataset=ds,
|
| 101 |
+
data_collator=collator
|
| 102 |
)
|
| 103 |
|
| 104 |
+
# 6) Train
|
|
|
|
|
|
|
| 105 |
trainer.train()
|
| 106 |
|
| 107 |
+
# 7) Save final
|
|
|
|
|
|
|
| 108 |
trainer.save_model("finetuned_myr1")
|
| 109 |
tokenizer.save_pretrained("finetuned_myr1")
|
| 110 |
|
| 111 |
+
# 8) Reload the newly trained model as a pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
finetuned_model = AutoModelForCausalLM.from_pretrained(
|
| 113 |
"finetuned_myr1",
|
| 114 |
+
torch_dtype=torch.bfloat16 if bf16 else torch.float32,
|
| 115 |
device_map="auto",
|
| 116 |
trust_remote_code=True
|
| 117 |
)
|
| 118 |
global TEXT_PIPELINE
|
| 119 |
+
TEXT_PIPELINE = pipeline("text-generation", model=finetuned_model, tokenizer=tokenizer)
|
| 120 |
+
return "Finetuning complete! Model reloaded for inference."
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
def ensure_pipeline():
|
| 123 |
"""
|
| 124 |
+
If we haven't finetuned yet, or if TEXT_PIPELINE is None,
|
| 125 |
+
load the original model from 'wuhp/myr1' for inference.
|
|
|
|
| 126 |
"""
|
| 127 |
global TEXT_PIPELINE
|
| 128 |
if TEXT_PIPELINE is None:
|
| 129 |
+
tokenizer = AutoTokenizer.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
|
| 130 |
+
# We'll do float32 for inference if no BF16 or fp16.
|
| 131 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 132 |
+
"wuhp/myr1",
|
| 133 |
+
subfolder="myr1",
|
| 134 |
+
torch_dtype=torch.float32,
|
| 135 |
+
device_map="auto",
|
| 136 |
trust_remote_code=True
|
| 137 |
)
|
| 138 |
+
TEXT_PIPELINE = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 139 |
return TEXT_PIPELINE
|
| 140 |
|
| 141 |
+
@spaces.GPU(duration=120) # up to 2 minutes for text generation
|
| 142 |
+
def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
|
| 143 |
"""
|
| 144 |
+
Generates text from the (finetuned) pipeline or the original model.
|
| 145 |
+
Allows user to adjust temperature, top_p, and token range [260..5000].
|
|
|
|
| 146 |
"""
|
| 147 |
+
pipe = ensure_pipeline()
|
| 148 |
+
out = pipe(
|
|
|
|
|
|
|
|
|
|
| 149 |
prompt,
|
| 150 |
+
temperature=float(temperature),
|
| 151 |
+
top_p=float(top_p),
|
| 152 |
min_new_tokens=int(min_new_tokens),
|
| 153 |
max_new_tokens=int(max_new_tokens),
|
| 154 |
+
do_sample=True
|
|
|
|
| 155 |
)
|
| 156 |
+
return out[0]["generated_text"]
|
| 157 |
|
| 158 |
+
# Build Gradio UI
|
|
|
|
|
|
|
| 159 |
with gr.Blocks() as demo:
|
| 160 |
+
gr.Markdown("## ZeroGPU Mini-Finetuning (No FP16) + Long Text Generation")
|
| 161 |
|
| 162 |
+
# 1) Button to run finetune_small_subset()
|
| 163 |
+
finetune_btn = gr.Button("Finetune WikiText-2 (Subset)")
|
| 164 |
+
status_box = gr.Textbox(label="Finetune Status")
|
| 165 |
+
finetune_btn.click(fn=finetune_small_subset, outputs=status_box)
|
| 166 |
|
| 167 |
+
gr.Markdown("Use 'Generate' to produce text from either the newly finetuned or original model.")
|
| 168 |
+
|
| 169 |
+
prompt_in = gr.Textbox(lines=3, label="Prompt")
|
| 170 |
+
temperature = gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Temperature")
|
| 171 |
+
top_p = gr.Slider(0.0, 1.0, value=0.9, step=0.05, label="Top-p")
|
| 172 |
+
min_tokens = gr.Slider(260, 5000, value=260, step=10, label="Min New Tokens")
|
| 173 |
+
max_tokens = gr.Slider(260, 5000, value=500, step=50, label="Max New Tokens")
|
| 174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
output_box = gr.Textbox(label="Generated Text", lines=12)
|
| 176 |
+
gen_btn = gr.Button("Generate")
|
| 177 |
|
| 178 |
gen_btn.click(
|
| 179 |
fn=predict,
|
| 180 |
+
inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens],
|
| 181 |
outputs=output_box
|
| 182 |
)
|
| 183 |
|