Update app.py
Browse files
app.py
CHANGED
|
@@ -1,33 +1,240 @@
|
|
| 1 |
-
import
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
#
|
| 13 |
-
# IMPORTANT:
|
| 14 |
-
# 1) "name" should be the exact repository you want to load.
|
| 15 |
-
# 2) If your UI code was stored as a "Space" with a 'app.py' or 'api' in your "wuhp/myr1" repo,
|
| 16 |
-
# this approach should pull that same Gradio interface.
|
| 17 |
-
# 3) If "transformers_gradio.registry" is correct for your space, keep it.
|
| 18 |
-
# Otherwise, you might need "src='spaces'" or a different source, depending on how your space is set up.
|
| 19 |
-
|
| 20 |
-
demo = gr.load(
|
| 21 |
-
name="wuhp/myr1",
|
| 22 |
-
src="transformers_gradio.registry"
|
| 23 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
#
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
#
|
| 29 |
-
|
| 30 |
-
fn.api_name = False
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
demo.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
from torch.utils.data import Dataset
|
| 4 |
+
from transformers import (
|
| 5 |
+
AutoConfig,
|
| 6 |
+
AutoTokenizer,
|
| 7 |
+
AutoModelForCausalLM,
|
| 8 |
+
Trainer,
|
| 9 |
+
TrainingArguments,
|
| 10 |
+
GenerationConfig,
|
| 11 |
+
pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
)
|
| 13 |
+
import gradio as gr
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# ---------------------------
|
| 17 |
+
# A) Dummy training dataset
|
| 18 |
+
# ---------------------------
|
| 19 |
+
class MyTextDataset(Dataset):
|
| 20 |
+
"""
|
| 21 |
+
Very simple dataset example. In reality:
|
| 22 |
+
- Use real text data,
|
| 23 |
+
- Possibly use HF 'datasets' library,
|
| 24 |
+
- Tokenize in chunks, etc.
|
| 25 |
+
"""
|
| 26 |
+
def __init__(self, tokenizer, texts, block_size=128):
|
| 27 |
+
self.examples = []
|
| 28 |
+
for txt in texts:
|
| 29 |
+
# Tokenize each text
|
| 30 |
+
tokens = tokenizer(txt, truncation=True, max_length=block_size)
|
| 31 |
+
self.examples.append(tokens["input_ids"])
|
| 32 |
+
|
| 33 |
+
def __len__(self):
|
| 34 |
+
return len(self.examples)
|
| 35 |
+
|
| 36 |
+
def __getitem__(self, idx):
|
| 37 |
+
return torch.tensor(self.examples[idx], dtype=torch.long)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# ---------------------------
|
| 41 |
+
# B) Training routine
|
| 42 |
+
# ---------------------------
|
| 43 |
+
def train_model(
|
| 44 |
+
model_name_or_path="wuhp/myr1",
|
| 45 |
+
subfolder="myr1",
|
| 46 |
+
output_dir="finetuned_myr1",
|
| 47 |
+
epochs=1
|
| 48 |
+
):
|
| 49 |
+
"""
|
| 50 |
+
Demonstrates how to load your custom model from HF, and run a
|
| 51 |
+
quick 'Trainer' to finetune it on some mock texts.
|
| 52 |
+
|
| 53 |
+
- model_name_or_path: huggingface repo ID (or local folder).
|
| 54 |
+
- subfolder: if your model config/weights live in a subfolder
|
| 55 |
+
within that repo, specify it here.
|
| 56 |
+
- output_dir: where to save final trained model.
|
| 57 |
+
- epochs: how many epochs for this mock training example.
|
| 58 |
+
"""
|
| 59 |
+
|
| 60 |
+
# 1) Load config (trust_remote_code=True so we can import custom .py from your repo)
|
| 61 |
+
config = AutoConfig.from_pretrained(
|
| 62 |
+
model_name_or_path,
|
| 63 |
+
subfolder=subfolder,
|
| 64 |
+
trust_remote_code=True
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
# 2) Load tokenizer
|
| 68 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 69 |
+
model_name_or_path,
|
| 70 |
+
subfolder=subfolder,
|
| 71 |
+
trust_remote_code=True
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
# 3) Load model
|
| 75 |
+
# AutoModelForCausalLM will detect your custom architecture from modeling_deepseek.py
|
| 76 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 77 |
+
model_name_or_path,
|
| 78 |
+
subfolder=subfolder,
|
| 79 |
+
config=config,
|
| 80 |
+
torch_dtype=torch.float16, # or "auto", or float32
|
| 81 |
+
device_map="auto", # If you have enough GPU memory, or "cpu"
|
| 82 |
+
trust_remote_code=True
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
# 4) Create a tiny training dataset
|
| 86 |
+
train_texts = [
|
| 87 |
+
"Hello from DeepSeek!",
|
| 88 |
+
"The sky is blue.",
|
| 89 |
+
"Large language models can do amazing things."
|
| 90 |
+
]
|
| 91 |
+
eval_texts = [
|
| 92 |
+
"Testing is essential for robust code.",
|
| 93 |
+
"Generative AI is fun."
|
| 94 |
+
]
|
| 95 |
+
train_dataset = MyTextDataset(tokenizer, train_texts)
|
| 96 |
+
eval_dataset = MyTextDataset(tokenizer, eval_texts)
|
| 97 |
+
|
| 98 |
+
# 5) Trainer hyperparams
|
| 99 |
+
training_args = TrainingArguments(
|
| 100 |
+
output_dir=output_dir,
|
| 101 |
+
overwrite_output_dir=True,
|
| 102 |
+
num_train_epochs=epochs,
|
| 103 |
+
per_device_train_batch_size=1,
|
| 104 |
+
per_device_eval_batch_size=1,
|
| 105 |
+
evaluation_strategy="epoch",
|
| 106 |
+
save_strategy="epoch",
|
| 107 |
+
logging_steps=1,
|
| 108 |
+
gradient_accumulation_steps=1,
|
| 109 |
+
fp16=True if torch.cuda.is_available() else False,
|
| 110 |
+
# If you have limited VRAM and can't do FP16, set fp16=False above
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
# 6) Define data collator for causal LM. Typically:
|
| 114 |
+
from transformers import DataCollatorForLanguageModeling
|
| 115 |
+
data_collator = DataCollatorForLanguageModeling(
|
| 116 |
+
tokenizer=tokenizer, mlm=False
|
| 117 |
+
)
|
| 118 |
|
| 119 |
+
# 7) Build trainer
|
| 120 |
+
trainer = Trainer(
|
| 121 |
+
model=model,
|
| 122 |
+
args=training_args,
|
| 123 |
+
data_collator=data_collator,
|
| 124 |
+
train_dataset=train_dataset,
|
| 125 |
+
eval_dataset=eval_dataset
|
| 126 |
+
)
|
| 127 |
|
| 128 |
+
# 8) Train
|
| 129 |
+
trainer.train()
|
|
|
|
| 130 |
|
| 131 |
+
# 9) Save model & tokenizer
|
| 132 |
+
trainer.save_model(output_dir)
|
| 133 |
+
tokenizer.save_pretrained(output_dir)
|
| 134 |
+
|
| 135 |
+
return trainer
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
# ---------------------------
|
| 139 |
+
# C) Gradio app function
|
| 140 |
+
# ---------------------------
|
| 141 |
+
def create_gradio_demo(
|
| 142 |
+
model_name_or_path="finetuned_myr1",
|
| 143 |
+
generation_config_path=None
|
| 144 |
+
):
|
| 145 |
+
"""
|
| 146 |
+
Loads a (fine-tuned) model from local or HF, sets up
|
| 147 |
+
a text-generation pipeline, and returns a Gradio interface.
|
| 148 |
+
"""
|
| 149 |
+
|
| 150 |
+
# 1) Load config
|
| 151 |
+
config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
|
| 152 |
+
|
| 153 |
+
# 2) Load model & tokenizer
|
| 154 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
|
| 155 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 156 |
+
model_name_or_path,
|
| 157 |
+
config=config,
|
| 158 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 159 |
+
device_map="auto",
|
| 160 |
+
trust_remote_code=True
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
# 3) (Optional) load generation config if present
|
| 164 |
+
# e.g. custom top_k, top_p, temperature, etc.
|
| 165 |
+
# If your repo has "generation_config.json" in subfolder="myr1",
|
| 166 |
+
# you could also do:
|
| 167 |
+
# GenerationConfig.from_pretrained("wuhp/myr1", subfolder="myr1", ...)
|
| 168 |
+
# Or from local path if downloaded.
|
| 169 |
+
if generation_config_path:
|
| 170 |
+
gen_config = GenerationConfig.from_json_file(generation_config_path)
|
| 171 |
+
else:
|
| 172 |
+
# fallback to default or config
|
| 173 |
+
gen_config = GenerationConfig.from_model_config(config)
|
| 174 |
+
|
| 175 |
+
# 4) Build a text-generation pipeline
|
| 176 |
+
text_pipeline = pipeline(
|
| 177 |
+
"text-generation",
|
| 178 |
+
model=model,
|
| 179 |
+
tokenizer=tokenizer,
|
| 180 |
+
generation_config=gen_config,
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
# 5) Define Gradio predict function
|
| 184 |
+
def predict(prompt, max_new_tokens=64, temperature=0.7, top_p=0.95):
|
| 185 |
+
"""
|
| 186 |
+
Generates text from the model given a user prompt.
|
| 187 |
+
"""
|
| 188 |
+
outputs = text_pipeline(
|
| 189 |
+
prompt,
|
| 190 |
+
max_new_tokens=int(max_new_tokens),
|
| 191 |
+
temperature=float(temperature),
|
| 192 |
+
top_p=float(top_p)
|
| 193 |
+
)
|
| 194 |
+
# The pipeline returns a list of dicts like [{'generated_text': '...'}]
|
| 195 |
+
return outputs[0]["generated_text"]
|
| 196 |
+
|
| 197 |
+
# 6) Create the Gradio Interface
|
| 198 |
+
with gr.Blocks() as demo:
|
| 199 |
+
gr.Markdown("## DeepSeek LLM Demo")
|
| 200 |
+
prompt = gr.Textbox(label="Enter your prompt:")
|
| 201 |
+
max_new_tokens = gr.Slider(1, 512, step=1, value=64, label="Max New Tokens")
|
| 202 |
+
temperature = gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature")
|
| 203 |
+
top_p = gr.Slider(0.0, 1.0, step=0.05, value=0.95, label="Top-p")
|
| 204 |
+
output = gr.Textbox(label="Generated Text")
|
| 205 |
+
|
| 206 |
+
generate_btn = gr.Button("Generate")
|
| 207 |
+
generate_btn.click(
|
| 208 |
+
fn=predict,
|
| 209 |
+
inputs=[prompt, max_new_tokens, temperature, top_p],
|
| 210 |
+
outputs=output
|
| 211 |
+
)
|
| 212 |
+
return demo
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
# ---------------------------
|
| 216 |
+
# D) Main: train + launch
|
| 217 |
+
# ---------------------------
|
| 218 |
if __name__ == "__main__":
|
| 219 |
+
# 1) TRAIN (mock demonstration).
|
| 220 |
+
# If you just want to *load* your existing model, skip this step.
|
| 221 |
+
print("Starting mock training on wuhp/myr1 (subfolder myr1)...")
|
| 222 |
+
trainer = train_model(
|
| 223 |
+
model_name_or_path="wuhp/myr1",
|
| 224 |
+
subfolder="myr1",
|
| 225 |
+
output_dir="finetuned_myr1",
|
| 226 |
+
epochs=1
|
| 227 |
+
)
|
| 228 |
+
print("Training complete.")
|
| 229 |
+
|
| 230 |
+
# 2) Build Gradio app from the newly saved model in 'finetuned_myr1'
|
| 231 |
+
# If you want to load the original (un-finetuned) weights, just pass
|
| 232 |
+
# model_name_or_path="wuhp/myr1" and subfolder="myr1" again.
|
| 233 |
+
demo = create_gradio_demo(
|
| 234 |
+
model_name_or_path="finetuned_myr1",
|
| 235 |
+
generation_config_path=None # or "finetuned_myr1/generation_config.json"
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
# 3) Launch
|
| 239 |
+
print("Launching Gradio demo on http://127.0.0.1:7860 ...")
|
| 240 |
demo.launch()
|