Update app.py
Browse files
app.py
CHANGED
|
@@ -1,56 +1,27 @@
|
|
| 1 |
-
# app.py
|
| 2 |
-
|
| 3 |
-
# - No Ultralytics import or usage
|
| 4 |
-
# - Auto-installs deps in HF Spaces
|
| 5 |
-
# - Only supports models that ship with https://github.com/supervisely-ecosystem/RT-DETRv2
|
| 6 |
-
|
| 7 |
-
import os
|
| 8 |
-
import sys
|
| 9 |
-
import subprocess
|
| 10 |
-
import shutil
|
| 11 |
-
import stat
|
| 12 |
-
import yaml
|
| 13 |
-
import gradio as gr
|
| 14 |
-
from roboflow import Roboflow
|
| 15 |
-
import re
|
| 16 |
from urllib.parse import urlparse
|
| 17 |
-
import
|
| 18 |
-
import logging
|
| 19 |
-
import requests
|
| 20 |
-
import json
|
| 21 |
-
from PIL import Image
|
| 22 |
-
import torch
|
| 23 |
-
import pandas as pd
|
| 24 |
-
import matplotlib.pyplot as plt
|
| 25 |
from threading import Thread
|
| 26 |
from queue import Queue
|
| 27 |
-
from glob import glob
|
| 28 |
-
import time
|
| 29 |
-
import base64
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
PY_IMPL_DIR = os.path.join(REPO_DIR, "rtdetrv2_pytorch") # contains the pytorch impl (models, training)
|
| 37 |
-
WEIGHTS_DIR = os.path.join(PY_IMPL_DIR, "weights")
|
| 38 |
|
| 39 |
-
|
| 40 |
-
# Environment bootstrap (HF Spaces)
|
| 41 |
-
# ------------------------------
|
| 42 |
|
|
|
|
|
|
|
|
|
|
| 43 |
COMMON_REQUIREMENTS = [
|
| 44 |
-
"gradio>=4.36.1",
|
| 45 |
-
"
|
| 46 |
-
"pandas>=2.0.0",
|
| 47 |
-
"matplotlib>=3.7.0",
|
| 48 |
-
"pyyaml>=6.0.1",
|
| 49 |
-
"Pillow>=10.0.0",
|
| 50 |
-
"requests>=2.31.0",
|
| 51 |
-
"huggingface_hub>=0.22.0",
|
| 52 |
]
|
| 53 |
|
|
|
|
| 54 |
def pip_install(args):
|
| 55 |
logging.info(f"pip install {' '.join(args)}")
|
| 56 |
subprocess.check_call([sys.executable, "-m", "pip", "install"] + args)
|
|
@@ -61,65 +32,39 @@ def ensure_repo_and_requirements():
|
|
| 61 |
logging.info(f"Cloning RT-DETRv2 repo to {REPO_DIR} ...")
|
| 62 |
subprocess.check_call(["git", "clone", "--depth", "1", REPO_URL, REPO_DIR])
|
| 63 |
else:
|
| 64 |
-
logging.info("RT-DETRv2 repo already present, pulling latest...")
|
| 65 |
try:
|
| 66 |
subprocess.check_call(["git", "-C", REPO_DIR, "pull", "--ff-only"])
|
| 67 |
except Exception:
|
| 68 |
-
logging.warning("
|
| 69 |
|
| 70 |
-
# Install common libs
|
| 71 |
pip_install(COMMON_REQUIREMENTS)
|
| 72 |
-
|
| 73 |
-
# Install rtdetrv2_pytorch requirements if present
|
| 74 |
req_file = os.path.join(PY_IMPL_DIR, "requirements.txt")
|
| 75 |
if os.path.exists(req_file):
|
| 76 |
pip_install(["-r", req_file])
|
| 77 |
-
else:
|
| 78 |
-
logging.info("No rtdetrv2_pytorch/requirements.txt found; relying on common reqs.")
|
| 79 |
|
| 80 |
-
# Do the bootstrap once at import time (HF Spaces-friendly).
|
| 81 |
try:
|
| 82 |
ensure_repo_and_requirements()
|
| 83 |
-
except Exception
|
| 84 |
-
logging.exception("Bootstrap failed")
|
| 85 |
-
# Still allow UI to load so user can see the error
|
| 86 |
-
pass
|
| 87 |
-
|
| 88 |
-
# ------------------------------
|
| 89 |
-
# Model options (strictly from RT-DETRv2 repo)
|
| 90 |
-
# ------------------------------
|
| 91 |
-
# We expose only the canonical small/large/xlarge variants that ship with the repo.
|
| 92 |
-
# If the repo adds/removes variants, you can read from weights dir dynamically.
|
| 93 |
-
MODEL_CHOICES = [
|
| 94 |
-
("rtdetrv2_s", "Small (default)"),
|
| 95 |
-
("rtdetrv2_l", "Large"),
|
| 96 |
-
("rtdetrv2_x", "X-Large")
|
| 97 |
-
]
|
| 98 |
-
DEFAULT_MODEL_KEY = "rtdetrv2_s" # Small as default
|
| 99 |
|
| 100 |
-
#
|
| 101 |
-
|
| 102 |
-
|
| 103 |
|
|
|
|
| 104 |
def handle_remove_readonly(func, path, exc_info):
|
| 105 |
-
try:
|
| 106 |
-
|
| 107 |
-
except Exception:
|
| 108 |
-
pass
|
| 109 |
func(path)
|
| 110 |
|
| 111 |
-
_ROBO_URL_RX = re.compile(
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
(?P<ws2>[A-Za-z0-9\-_]+)/(?P<proj2>[A-Za-z0-9\-_]+)(?:/(?:v)?(?P<ver2>\d+))?
|
| 120 |
-
)$
|
| 121 |
-
""", re.VERBOSE | re.IGNORECASE
|
| 122 |
-
)
|
| 123 |
|
| 124 |
def parse_roboflow_url(s: str):
|
| 125 |
s = s.strip()
|
|
@@ -129,31 +74,24 @@ def parse_roboflow_url(s: str):
|
|
| 129 |
proj = m.group('proj') or m.group('proj2')
|
| 130 |
ver = m.group('ver') or m.group('ver2')
|
| 131 |
return ws, proj, (int(ver) if ver else None)
|
| 132 |
-
|
| 133 |
parsed = urlparse(s)
|
| 134 |
parts = [p for p in parsed.path.strip('/').split('/') if p]
|
| 135 |
if len(parts) >= 2:
|
| 136 |
version = None
|
| 137 |
if len(parts) >= 3:
|
| 138 |
-
|
| 139 |
-
if
|
| 140 |
-
|
| 141 |
-
elif vpart.isdigit():
|
| 142 |
-
version = int(vpart)
|
| 143 |
return parts[0], parts[1], version
|
| 144 |
-
|
| 145 |
if '/' in s and 'roboflow' not in s:
|
| 146 |
p = s.split('/')
|
| 147 |
if len(p) >= 2:
|
| 148 |
version = None
|
| 149 |
if len(p) >= 3:
|
| 150 |
v = p[2]
|
| 151 |
-
if v.lower().startswith('v') and v[1:].isdigit():
|
| 152 |
-
|
| 153 |
-
elif v.isdigit():
|
| 154 |
-
version = int(v)
|
| 155 |
return p[0], p[1], version
|
| 156 |
-
|
| 157 |
return None, None, None
|
| 158 |
|
| 159 |
def get_latest_version(api_key, workspace, project):
|
|
@@ -170,43 +108,26 @@ def _extract_class_names(data_yaml):
|
|
| 170 |
names = data_yaml.get('names', None)
|
| 171 |
if isinstance(names, dict):
|
| 172 |
def _k(x):
|
| 173 |
-
try:
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
ordered_keys = sorted(names.keys(), key=_k)
|
| 178 |
-
names_list = [names[k] for k in ordered_keys]
|
| 179 |
elif isinstance(names, list):
|
| 180 |
names_list = names
|
| 181 |
else:
|
| 182 |
-
nc = data_yaml.get('nc', 0)
|
| 183 |
-
try:
|
| 184 |
-
nc = int(nc)
|
| 185 |
-
except Exception:
|
| 186 |
-
nc = 0
|
| 187 |
names_list = [f"class_{i}" for i in range(nc)]
|
| 188 |
return [str(x) for x in names_list]
|
| 189 |
|
| 190 |
def download_dataset(api_key, workspace, project, version):
|
| 191 |
-
"""Download a Roboflow dataset in YOLOv8 format (labels are compatible with our merger)."""
|
| 192 |
try:
|
| 193 |
rf = Roboflow(api_key=api_key)
|
| 194 |
proj = rf.workspace(workspace).project(project)
|
| 195 |
ver = proj.version(int(version))
|
| 196 |
-
dataset = ver.download("yolov8")
|
| 197 |
-
|
| 198 |
data_yaml_path = os.path.join(dataset.location, 'data.yaml')
|
| 199 |
-
with open(data_yaml_path, 'r') as f:
|
| 200 |
-
data_yaml = yaml.safe_load(f)
|
| 201 |
-
|
| 202 |
class_names = _extract_class_names(data_yaml)
|
| 203 |
-
try:
|
| 204 |
-
nc = int(data_yaml.get('nc', len(class_names)))
|
| 205 |
-
except Exception:
|
| 206 |
-
nc = len(class_names)
|
| 207 |
-
if len(class_names) != nc:
|
| 208 |
-
logging.warning(f"[{project}-v{version}] names length ({len(class_names)}) != nc ({nc}); using normalized names.")
|
| 209 |
-
|
| 210 |
splits = [s for s in ['train', 'valid', 'test'] if os.path.exists(os.path.join(dataset.location, s))]
|
| 211 |
return dataset.location, class_names, splits, f"{project}-v{version}"
|
| 212 |
except Exception as e:
|
|
@@ -218,36 +139,97 @@ def label_path_for(img_path: str) -> str:
|
|
| 218 |
base = os.path.splitext(os.path.basename(img_path))[0] + '.txt'
|
| 219 |
return os.path.join(split_dir, 'labels', base)
|
| 220 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
def gather_class_counts(dataset_info, class_mapping):
|
| 222 |
-
if not dataset_info:
|
| 223 |
-
return {}
|
| 224 |
final_names = set(v for v in class_mapping.values() if v is not None)
|
| 225 |
counts = {name: 0 for name in final_names}
|
| 226 |
-
|
| 227 |
for loc, names, splits, _ in dataset_info:
|
| 228 |
id_to_name = {idx: class_mapping.get(n, None) for idx, n in enumerate(names)}
|
| 229 |
for split in splits:
|
| 230 |
labels_dir = os.path.join(loc, split, 'labels')
|
| 231 |
-
if not os.path.exists(labels_dir):
|
| 232 |
-
continue
|
| 233 |
for label_file in os.listdir(labels_dir):
|
| 234 |
-
if not label_file.endswith('.txt'):
|
| 235 |
-
continue
|
| 236 |
found = set()
|
| 237 |
with open(os.path.join(labels_dir, label_file), 'r') as f:
|
| 238 |
for line in f:
|
| 239 |
parts = line.strip().split()
|
| 240 |
-
if not parts:
|
| 241 |
-
continue
|
| 242 |
try:
|
| 243 |
cls_id = int(parts[0])
|
| 244 |
mapped = id_to_name.get(cls_id, None)
|
| 245 |
-
if mapped:
|
| 246 |
-
found.add(mapped)
|
| 247 |
except Exception:
|
| 248 |
continue
|
| 249 |
-
for m in found:
|
| 250 |
-
counts[m] += 1
|
| 251 |
return counts
|
| 252 |
|
| 253 |
def finalize_merged_dataset(dataset_info, class_mapping, class_limits, progress=gr.Progress()):
|
|
@@ -267,49 +249,36 @@ def finalize_merged_dataset(dataset_info, class_mapping, class_limits, progress=
|
|
| 267 |
for loc, _, splits, _ in dataset_info:
|
| 268 |
for split in splits:
|
| 269 |
img_dir = os.path.join(loc, split, 'images')
|
| 270 |
-
if not os.path.exists(img_dir):
|
| 271 |
-
continue
|
| 272 |
for img_file in os.listdir(img_dir):
|
| 273 |
if img_file.lower().endswith(('.jpg', '.jpeg', '.png')):
|
| 274 |
all_images.append((os.path.join(img_dir, img_file), split, loc))
|
| 275 |
random.shuffle(all_images)
|
| 276 |
|
| 277 |
progress(0.2, desc="Selecting images based on limits...")
|
| 278 |
-
selected_images = []
|
| 279 |
-
current_counts = {cls: 0 for cls in active_classes}
|
| 280 |
loc_to_names = {info[0]: info[1] for info in dataset_info}
|
| 281 |
|
| 282 |
-
# progress.tqdm is available on Gradio Progress objects
|
| 283 |
for img_path, split, source_loc in progress.tqdm(all_images, desc="Analyzing images"):
|
| 284 |
lbl_path = label_path_for(img_path)
|
| 285 |
-
if not os.path.exists(lbl_path):
|
| 286 |
-
continue
|
| 287 |
-
|
| 288 |
source_names = loc_to_names.get(source_loc, [])
|
| 289 |
image_classes = set()
|
| 290 |
with open(lbl_path, 'r') as f:
|
| 291 |
for line in f:
|
| 292 |
parts = line.strip().split()
|
| 293 |
-
if not parts:
|
| 294 |
-
continue
|
| 295 |
try:
|
| 296 |
cls_id = int(parts[0])
|
| 297 |
orig = source_names[cls_id]
|
| 298 |
mapped = class_mapping.get(orig, orig)
|
| 299 |
-
if mapped in active_classes:
|
| 300 |
-
image_classes.add(mapped)
|
| 301 |
except Exception:
|
| 302 |
continue
|
| 303 |
-
|
| 304 |
-
if
|
| 305 |
-
continue
|
| 306 |
-
|
| 307 |
-
if any(current_counts[c] >= class_limits[c] for c in image_classes):
|
| 308 |
-
continue
|
| 309 |
-
|
| 310 |
selected_images.append((img_path, split))
|
| 311 |
-
for c in image_classes:
|
| 312 |
-
current_counts[c] += 1
|
| 313 |
|
| 314 |
progress(0.6, desc=f"Copying {len(selected_images)} files...")
|
| 315 |
for img_path, split in progress.tqdm(selected_images, desc="Finalizing files"):
|
|
@@ -320,16 +289,13 @@ def finalize_merged_dataset(dataset_info, class_mapping, class_limits, progress=
|
|
| 320 |
|
| 321 |
source_loc = None
|
| 322 |
for info in dataset_info:
|
| 323 |
-
if img_path.startswith(info[0]):
|
| 324 |
-
source_loc = info[0]
|
| 325 |
-
break
|
| 326 |
source_names = loc_to_names.get(source_loc, [])
|
| 327 |
|
| 328 |
with open(lbl_path, 'r') as f_in, open(out_lbl, 'w') as f_out:
|
| 329 |
for line in f_in:
|
| 330 |
parts = line.strip().split()
|
| 331 |
-
if not parts:
|
| 332 |
-
continue
|
| 333 |
try:
|
| 334 |
old_id = int(parts[0])
|
| 335 |
original_name = source_names[old_id]
|
|
@@ -340,7 +306,7 @@ def finalize_merged_dataset(dataset_info, class_mapping, class_limits, progress=
|
|
| 340 |
except Exception:
|
| 341 |
continue
|
| 342 |
|
| 343 |
-
progress(0.
|
| 344 |
with open(os.path.join(merged_dir, 'data.yaml'), 'w') as f:
|
| 345 |
yaml.dump({
|
| 346 |
'path': os.path.abspath(merged_dir),
|
|
@@ -351,124 +317,111 @@ def finalize_merged_dataset(dataset_info, class_mapping, class_limits, progress=
|
|
| 351 |
'names': active_classes
|
| 352 |
}, f)
|
| 353 |
|
|
|
|
|
|
|
|
|
|
| 354 |
return f"Dataset finalized with {len(selected_images)} images.", os.path.abspath(merged_dir)
|
| 355 |
|
| 356 |
-
#
|
| 357 |
-
|
| 358 |
-
# ------------------------------
|
| 359 |
-
|
| 360 |
-
def detect_training_entrypoint():
|
| 361 |
"""
|
| 362 |
-
|
| 363 |
-
1) rtdetrv2_pytorch/train.py
|
| 364 |
-
2) tools/train.py
|
| 365 |
-
Returns (python_file, style) where style hints how to build args.
|
| 366 |
"""
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
if
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
if os.path.exists(cand3):
|
| 376 |
-
return cand3, "app_main"
|
| 377 |
-
return None, None
|
| 378 |
-
|
| 379 |
-
def build_command(entrypoint, style, dataset_path, model_key, run_name, epochs, batch, imgsz, lr, optimizer):
|
| 380 |
"""
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
We keep args conservative and standard (data, epochs, batch, img size).
|
| 384 |
"""
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
"
|
| 417 |
-
"
|
| 418 |
-
"
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
"
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 444 |
|
| 445 |
def find_best_checkpoint(out_dir):
|
| 446 |
-
|
| 447 |
-
patterns = [
|
| 448 |
os.path.join(out_dir, "**", "best*.pt"),
|
| 449 |
os.path.join(out_dir, "**", "best*.pth"),
|
| 450 |
os.path.join(out_dir, "**", "model_best*.pt"),
|
| 451 |
os.path.join(out_dir, "**", "model_best*.pth"),
|
| 452 |
]
|
| 453 |
-
for p in
|
| 454 |
-
|
| 455 |
-
if
|
| 456 |
-
return files[0]
|
| 457 |
-
# Fall back to latest .pt/.pth
|
| 458 |
any_ckpt = sorted(glob(os.path.join(out_dir, "**", "*.pt"), recursive=True) +
|
| 459 |
glob(os.path.join(out_dir, "**", "*.pth"), recursive=True))
|
| 460 |
return any_ckpt[-1] if any_ckpt else None
|
| 461 |
|
| 462 |
-
#
|
| 463 |
-
# Gradio Handlers
|
| 464 |
-
# ------------------------------
|
| 465 |
-
|
| 466 |
def load_datasets_handler(api_key, url_file, progress=gr.Progress()):
|
| 467 |
api_key = api_key or os.getenv("ROBOFLOW_API_KEY", "")
|
| 468 |
-
if not api_key:
|
| 469 |
-
|
| 470 |
-
if not url_file:
|
| 471 |
-
raise gr.Error("Please upload a .txt file with Roboflow URLs or lines like 'workspace/project[/vN]'.")
|
| 472 |
|
| 473 |
with open(url_file.name, 'r', encoding='utf-8', errors='ignore') as f:
|
| 474 |
urls = [line.strip() for line in f if line.strip()]
|
|
@@ -483,126 +436,117 @@ def load_datasets_handler(api_key, url_file, progress=gr.Progress()):
|
|
| 483 |
if ver is None:
|
| 484 |
ver = get_latest_version(api_key, ws, proj)
|
| 485 |
if ver is None:
|
| 486 |
-
failures.append((raw, f"
|
| 487 |
continue
|
| 488 |
-
|
| 489 |
loc, names, splits, name_str = download_dataset(api_key, ws, proj, int(ver))
|
| 490 |
-
if loc:
|
| 491 |
-
|
| 492 |
-
else:
|
| 493 |
-
failures.append((raw, f"DownloadError: {ws}/{proj}/v{ver}"))
|
| 494 |
|
| 495 |
if not dataset_info:
|
| 496 |
-
msg = "No datasets
|
| 497 |
raise gr.Error(msg)
|
| 498 |
|
| 499 |
-
# Make sure names are strings before sorting to avoid mixed-type comparison
|
| 500 |
all_names = sorted({str(n) for _, names, _, _ in dataset_info for n in names})
|
| 501 |
class_map = {name: name for name in all_names}
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
df = pd.DataFrame([[name, name, initial_counts.get(name, 0), False] for name in all_names],
|
| 505 |
columns=["Original Name", "Rename To", "Max Images", "Remove"])
|
| 506 |
-
|
| 507 |
-
if failures:
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
# Return the DataFrame value directly (works across Gradio versions)
|
| 511 |
-
return status_text, dataset_info, df
|
| 512 |
|
| 513 |
def update_class_counts_handler(class_df, dataset_info):
|
| 514 |
-
if class_df is None or not dataset_info:
|
| 515 |
-
return None
|
| 516 |
-
|
| 517 |
class_df = pd.DataFrame(class_df)
|
| 518 |
-
mapping = {
|
| 519 |
-
|
| 520 |
-
orig = row["Original Name"]
|
| 521 |
-
mapping[orig] = None if bool(row["Remove"]) else row["Rename To"]
|
| 522 |
-
|
| 523 |
final_names = sorted(set(v for v in mapping.values() if v))
|
| 524 |
counts = {k: 0 for k in final_names}
|
| 525 |
-
|
| 526 |
for loc, names, splits, _ in dataset_info:
|
| 527 |
id_to_final = {idx: mapping.get(n, None) for idx, n in enumerate(names)}
|
| 528 |
for split in splits:
|
| 529 |
labels_dir = os.path.join(loc, split, 'labels')
|
| 530 |
-
if not os.path.exists(labels_dir):
|
| 531 |
-
continue
|
| 532 |
for label_file in os.listdir(labels_dir):
|
| 533 |
-
if not label_file.endswith('.txt'):
|
| 534 |
-
continue
|
| 535 |
found = set()
|
| 536 |
with open(os.path.join(labels_dir, label_file), 'r') as f:
|
| 537 |
for line in f:
|
| 538 |
parts = line.strip().split()
|
| 539 |
-
if not parts:
|
| 540 |
-
continue
|
| 541 |
try:
|
| 542 |
cls_id = int(parts[0])
|
| 543 |
mapped = id_to_final.get(cls_id, None)
|
| 544 |
-
if mapped:
|
| 545 |
-
found.add(mapped)
|
| 546 |
except Exception:
|
| 547 |
continue
|
| 548 |
-
for m in found:
|
| 549 |
-
counts[m] += 1
|
| 550 |
-
|
| 551 |
return pd.DataFrame(list(counts.items()), columns=["Final Class Name", "Est. Total Images"])
|
| 552 |
|
| 553 |
def finalize_handler(dataset_info, class_df, progress=gr.Progress()):
|
| 554 |
-
if not dataset_info:
|
| 555 |
-
|
| 556 |
-
if class_df is None:
|
| 557 |
-
raise gr.Error("Class data is missing.")
|
| 558 |
-
|
| 559 |
class_df = pd.DataFrame(class_df)
|
| 560 |
class_mapping, class_limits = {}, {}
|
| 561 |
for _, row in class_df.iterrows():
|
| 562 |
orig = row["Original Name"]
|
| 563 |
-
if bool(row["Remove"]):
|
| 564 |
-
continue
|
| 565 |
final_name = row["Rename To"]
|
| 566 |
class_mapping[orig] = final_name
|
| 567 |
class_limits[final_name] = class_limits.get(final_name, 0) + int(row["Max Images"])
|
| 568 |
-
|
| 569 |
status, path = finalize_merged_dataset(dataset_info, class_mapping, class_limits, progress)
|
| 570 |
return status, path
|
| 571 |
|
| 572 |
-
def training_handler(dataset_path,
|
| 573 |
-
if not dataset_path:
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 587 |
run_name=run_name,
|
| 588 |
epochs=epochs,
|
| 589 |
batch=batch,
|
| 590 |
imgsz=imgsz,
|
| 591 |
lr=lr,
|
| 592 |
-
optimizer=opt
|
| 593 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 594 |
logging.info(f"Training command: {' '.join(cmd)}")
|
| 595 |
|
| 596 |
-
# Live-run in a thread and stream logs
|
| 597 |
q = Queue()
|
| 598 |
-
|
| 599 |
def run_train():
|
| 600 |
try:
|
| 601 |
env = os.environ.copy()
|
| 602 |
env["PYTHONPATH"] = REPO_DIR + os.pathsep + env.get("PYTHONPATH", "")
|
| 603 |
-
proc = subprocess.Popen(cmd, cwd=
|
| 604 |
-
|
| 605 |
-
|
|
|
|
| 606 |
proc.wait()
|
| 607 |
q.put(f"__EXITCODE__:{proc.returncode}")
|
| 608 |
except Exception as e:
|
|
@@ -610,21 +554,19 @@ def training_handler(dataset_path, model_choice_key, run_name, epochs, batch, im
|
|
| 610 |
|
| 611 |
Thread(target=run_train, daemon=True).start()
|
| 612 |
|
| 613 |
-
|
| 614 |
-
last_epoch = 0
|
| 615 |
-
total_epochs = int(epochs)
|
| 616 |
while True:
|
| 617 |
line = q.get()
|
| 618 |
if line.startswith("__EXITCODE__"):
|
| 619 |
-
code = int(line.split(":",
|
| 620 |
-
if code != 0:
|
| 621 |
-
raise gr.Error(f"Training process exited with code {code}. Check logs above.")
|
| 622 |
break
|
| 623 |
if line.startswith("__ERROR__"):
|
| 624 |
raise gr.Error(f"Training failed: {line.split(':',1)[1]}")
|
| 625 |
|
| 626 |
-
|
| 627 |
-
|
|
|
|
| 628 |
m = re.search(r"[Ee]poch\s+(\d+)\s*/\s*(\d+)", line)
|
| 629 |
if m:
|
| 630 |
try:
|
|
@@ -632,194 +574,126 @@ def training_handler(dataset_path, model_choice_key, run_name, epochs, batch, im
|
|
| 632 |
total_epochs = max(total_epochs, int(m.group(2)))
|
| 633 |
except Exception:
|
| 634 |
pass
|
|
|
|
| 635 |
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
# Light-weight plots (we won't have metrics dicts; just show empty placeholders so UI doesn't break)
|
| 640 |
-
fig_loss = plt.figure()
|
| 641 |
-
ax_loss = fig_loss.add_subplot(111)
|
| 642 |
-
ax_loss.set_title("Loss (see logs)")
|
| 643 |
-
fig_map = plt.figure()
|
| 644 |
-
ax_map = fig_map.add_subplot(111)
|
| 645 |
-
ax_map.set_title("mAP (see logs)")
|
| 646 |
-
|
| 647 |
-
yield "\n".join(log_lines[-30:]), fig_loss, fig_map, None
|
| 648 |
|
| 649 |
-
|
| 650 |
-
ckpt = find_best_checkpoint(out_dir)
|
| 651 |
if not ckpt or not os.path.exists(ckpt):
|
| 652 |
-
|
| 653 |
-
alt = find_best_checkpoint("runs")
|
| 654 |
-
if not alt or not os.path.exists(alt):
|
| 655 |
-
raise gr.Error("Training finished, but checkpoint file was not found. See logs for details.")
|
| 656 |
-
ckpt = alt
|
| 657 |
-
|
| 658 |
yield "Training complete!", None, None, gr.File.update(value=ckpt, visible=True)
|
| 659 |
|
| 660 |
def upload_handler(model_file, hf_token, hf_repo, gh_token, gh_repo, progress=gr.Progress()):
|
| 661 |
-
if not model_file:
|
| 662 |
-
raise gr.Error("No trained model file available to upload. Train a model first.")
|
| 663 |
-
|
| 664 |
from huggingface_hub import HfApi, HfFolder
|
| 665 |
-
|
| 666 |
-
hf_status = "Skipped Hugging Face (credentials not provided)."
|
| 667 |
if hf_token and hf_repo:
|
| 668 |
progress(0, desc="Uploading to Hugging Face...")
|
| 669 |
try:
|
| 670 |
-
api = HfApi()
|
| 671 |
-
HfFolder.save_token(hf_token)
|
| 672 |
repo_url = api.create_repo(repo_id=hf_repo, exist_ok=True, token=hf_token)
|
| 673 |
-
api.upload_file(
|
| 674 |
-
|
| 675 |
-
path_in_repo=os.path.basename(model_file.name),
|
| 676 |
-
repo_id=hf_repo,
|
| 677 |
-
token=hf_token
|
| 678 |
-
)
|
| 679 |
-
hf_status = f"Success! Model at: {repo_url}"
|
| 680 |
except Exception as e:
|
| 681 |
hf_status = f"Hugging Face Error: {e}"
|
| 682 |
|
| 683 |
-
gh_status = "Skipped GitHub
|
| 684 |
if gh_token and gh_repo:
|
| 685 |
progress(0.5, desc="Uploading to GitHub...")
|
| 686 |
try:
|
| 687 |
-
if '/' not in gh_repo:
|
| 688 |
-
raise ValueError("GitHub repo must be in the form 'username/repo'.")
|
| 689 |
-
|
| 690 |
username, repo_name = gh_repo.split('/')
|
| 691 |
api_url = f"https://api.github.com/repos/{username}/{repo_name}/contents/{os.path.basename(model_file.name)}"
|
| 692 |
headers = {"Authorization": f"token {gh_token}"}
|
| 693 |
-
|
| 694 |
-
with open(model_file.name, "rb") as f:
|
| 695 |
-
content = base64.b64encode(f.read()).decode()
|
| 696 |
-
|
| 697 |
get_resp = requests.get(api_url, headers=headers, timeout=30)
|
| 698 |
sha = get_resp.json().get('sha') if get_resp.ok else None
|
| 699 |
-
|
| 700 |
data = {"message": "Upload trained model from Rolo app", "content": content}
|
| 701 |
-
if sha:
|
| 702 |
-
data["sha"] = sha
|
| 703 |
-
|
| 704 |
put_resp = requests.put(api_url, headers=headers, json=data, timeout=60)
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
gh_status = f"Success! Model at: {put_resp.json()['content']['html_url']}"
|
| 708 |
-
else:
|
| 709 |
-
msg = put_resp.json().get('message', 'Unknown')
|
| 710 |
-
gh_status = f"GitHub Error: {msg}"
|
| 711 |
except Exception as e:
|
| 712 |
gh_status = f"GitHub Error: {e}"
|
|
|
|
| 713 |
|
| 714 |
-
|
| 715 |
-
return hf_status, gh_status
|
| 716 |
-
|
| 717 |
-
# ------------------------------
|
| 718 |
-
# Gradio UI
|
| 719 |
-
# ------------------------------
|
| 720 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="sky")) as app:
|
| 721 |
-
gr.Markdown("# Rolo
|
| 722 |
|
| 723 |
dataset_info_state = gr.State([])
|
| 724 |
final_dataset_path_state = gr.State(None)
|
| 725 |
|
| 726 |
with gr.Tabs():
|
| 727 |
with gr.TabItem("1. Prepare Datasets"):
|
| 728 |
-
gr.Markdown("
|
| 729 |
with gr.Row():
|
| 730 |
-
rf_api_key = gr.Textbox(label="Roboflow API Key (or set ROBOFLOW_API_KEY
|
| 731 |
-
rf_url_file = gr.File(label="
|
| 732 |
load_btn = gr.Button("Load Datasets", variant="primary")
|
| 733 |
dataset_status = gr.Textbox(label="Status", interactive=False)
|
| 734 |
|
| 735 |
with gr.TabItem("2. Manage & Merge"):
|
| 736 |
-
gr.Markdown("
|
| 737 |
with gr.Row():
|
| 738 |
-
class_df = gr.DataFrame(
|
| 739 |
-
|
| 740 |
-
datatype=["str", "str", "number", "bool"],
|
| 741 |
-
label="Class Configuration", interactive=True, scale=3
|
| 742 |
-
)
|
| 743 |
with gr.Column(scale=1):
|
| 744 |
-
class_count_summary_df = gr.DataFrame(
|
| 745 |
-
|
| 746 |
-
headers=["Final Class Name", "Est. Total Images"],
|
| 747 |
-
interactive=False
|
| 748 |
-
)
|
| 749 |
update_counts_btn = gr.Button("Update Counts")
|
| 750 |
finalize_btn = gr.Button("Finalize Merged Dataset", variant="primary")
|
| 751 |
finalize_status = gr.Textbox(label="Status", interactive=False)
|
| 752 |
|
| 753 |
with gr.TabItem("3. Configure & Train"):
|
| 754 |
-
gr.Markdown("
|
| 755 |
with gr.Row():
|
| 756 |
with gr.Column(scale=1):
|
| 757 |
-
|
| 758 |
-
|
| 759 |
-
choices=[k for k, _ in MODEL_CHOICES],
|
| 760 |
-
value=DEFAULT_MODEL_KEY
|
| 761 |
-
)
|
| 762 |
-
model_hints = gr.Markdown(
|
| 763 |
-
"Choices: " +
|
| 764 |
-
", ".join([f"`{k}` ({label})" for k, label in MODEL_CHOICES])
|
| 765 |
-
)
|
| 766 |
run_name_tb = gr.Textbox(label="Run Name", value="rtdetrv2_run_1")
|
| 767 |
epochs_sl = gr.Slider(1, 500, 100, step=1, label="Epochs")
|
| 768 |
batch_sl = gr.Slider(1, 64, 16, step=1, label="Batch Size")
|
| 769 |
imgsz_num = gr.Number(label="Image Size", value=640)
|
| 770 |
lr_num = gr.Number(label="Learning Rate", value=0.001)
|
| 771 |
-
opt_dd = gr.Dropdown(["Adam",
|
| 772 |
train_btn = gr.Button("Start Training", variant="primary")
|
| 773 |
with gr.Column(scale=2):
|
| 774 |
train_status = gr.Textbox(label="Live Logs (tail)", interactive=False, lines=12)
|
| 775 |
loss_plot = gr.Plot(label="Loss")
|
| 776 |
map_plot = gr.Plot(label="mAP")
|
| 777 |
-
final_model_file = gr.File(label="Download Trained
|
| 778 |
|
| 779 |
with gr.TabItem("4. Upload Model"):
|
| 780 |
-
gr.Markdown("
|
| 781 |
with gr.Row():
|
| 782 |
with gr.Column():
|
| 783 |
-
gr.Markdown("
|
| 784 |
-
hf_token = gr.Textbox(label="
|
| 785 |
-
hf_repo
|
| 786 |
with gr.Column():
|
| 787 |
-
gr.Markdown("
|
| 788 |
-
gh_token = gr.Textbox(label="GitHub
|
| 789 |
-
gh_repo
|
| 790 |
-
upload_btn = gr.Button("Upload
|
| 791 |
with gr.Row():
|
| 792 |
hf_status = gr.Textbox(label="Hugging Face Status", interactive=False)
|
| 793 |
gh_status = gr.Textbox(label="GitHub Status", interactive=False)
|
| 794 |
|
| 795 |
-
|
| 796 |
-
|
| 797 |
-
|
| 798 |
-
|
| 799 |
-
|
| 800 |
-
|
| 801 |
-
|
| 802 |
-
|
| 803 |
-
|
| 804 |
-
|
| 805 |
-
|
| 806 |
-
finalize_btn.click(
|
| 807 |
-
fn=finalize_handler,
|
| 808 |
-
inputs=[dataset_info_state, class_df],
|
| 809 |
-
outputs=[finalize_status, final_dataset_path_state]
|
| 810 |
-
)
|
| 811 |
-
train_btn.click(
|
| 812 |
-
fn=training_handler,
|
| 813 |
-
inputs=[final_dataset_path_state, model_file_dd, run_name_tb, epochs_sl, batch_sl, imgsz_num, lr_num, opt_dd],
|
| 814 |
-
outputs=[train_status, loss_plot, map_plot, final_model_file]
|
| 815 |
-
)
|
| 816 |
-
upload_btn.click(
|
| 817 |
-
fn=upload_handler,
|
| 818 |
-
inputs=[final_model_file, hf_token, hf_repo, gh_token, gh_repo],
|
| 819 |
-
outputs=[hf_status, gh_status]
|
| 820 |
-
)
|
| 821 |
|
| 822 |
if __name__ == "__main__":
|
| 823 |
-
#
|
| 824 |
-
os.environ.setdefault("YOLO_CONFIG_DIR", "/tmp/Ultralytics")
|
| 825 |
app.launch(debug=True)
|
|
|
|
| 1 |
+
# app.py — Rolo: RT-DETRv2-only (Supervisely) trainer with auto COCO conversion & config
|
| 2 |
+
import os, sys, subprocess, shutil, stat, yaml, gradio as gr, re, random, logging, requests, json, base64, time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from urllib.parse import urlparse
|
| 4 |
+
from glob import glob
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from threading import Thread
|
| 6 |
from queue import Queue
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import matplotlib.pyplot as plt
|
| 10 |
+
from roboflow import Roboflow
|
| 11 |
+
from PIL import Image
|
| 12 |
+
import torch
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
REPO_URL = "https://github.com/supervisely-ecosystem/RT-DETRv2"
|
| 17 |
+
REPO_DIR = os.path.join(os.getcwd(), "third_party", "RT-DETRv2")
|
| 18 |
+
PY_IMPL_DIR = os.path.join(REPO_DIR, "rtdetrv2_pytorch") # Supervisely keeps PyTorch impl here
|
| 19 |
COMMON_REQUIREMENTS = [
|
| 20 |
+
"gradio>=4.36.1", "roboflow>=1.1.28", "pandas>=2.0.0", "matplotlib>=3.7.0",
|
| 21 |
+
"pyyaml>=6.0.1", "Pillow>=10.0.0", "requests>=2.31.0", "huggingface_hub>=0.22.0",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
]
|
| 23 |
|
| 24 |
+
# === bootstrap (clone + pip) ===================================================
|
| 25 |
def pip_install(args):
|
| 26 |
logging.info(f"pip install {' '.join(args)}")
|
| 27 |
subprocess.check_call([sys.executable, "-m", "pip", "install"] + args)
|
|
|
|
| 32 |
logging.info(f"Cloning RT-DETRv2 repo to {REPO_DIR} ...")
|
| 33 |
subprocess.check_call(["git", "clone", "--depth", "1", REPO_URL, REPO_DIR])
|
| 34 |
else:
|
|
|
|
| 35 |
try:
|
| 36 |
subprocess.check_call(["git", "-C", REPO_DIR, "pull", "--ff-only"])
|
| 37 |
except Exception:
|
| 38 |
+
logging.warning("git pull failed; continuing with current checkout")
|
| 39 |
|
|
|
|
| 40 |
pip_install(COMMON_REQUIREMENTS)
|
|
|
|
|
|
|
| 41 |
req_file = os.path.join(PY_IMPL_DIR, "requirements.txt")
|
| 42 |
if os.path.exists(req_file):
|
| 43 |
pip_install(["-r", req_file])
|
|
|
|
|
|
|
| 44 |
|
|
|
|
| 45 |
try:
|
| 46 |
ensure_repo_and_requirements()
|
| 47 |
+
except Exception:
|
| 48 |
+
logging.exception("Bootstrap failed, UI will still load so you can see errors")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
# === model choices (restricted to Supervisely RT-DETRv2) ======================
|
| 51 |
+
MODEL_CHOICES = [("rtdetrv2_s", "Small (default)"), ("rtdetrv2_l", "Large"), ("rtdetrv2_x", "X-Large")]
|
| 52 |
+
DEFAULT_MODEL_KEY = "rtdetrv2_s"
|
| 53 |
|
| 54 |
+
# === utilities ================================================================
|
| 55 |
def handle_remove_readonly(func, path, exc_info):
|
| 56 |
+
try: os.chmod(path, stat.S_IWRITE)
|
| 57 |
+
except Exception: pass
|
|
|
|
|
|
|
| 58 |
func(path)
|
| 59 |
|
| 60 |
+
_ROBO_URL_RX = re.compile(r"""
|
| 61 |
+
^(?:
|
| 62 |
+
(?:https?://)?(?:universe|app|www)?\.?roboflow\.com/
|
| 63 |
+
(?P<ws>[A-Za-z0-9\-_]+)/(?P<proj>[A-Za-z0-9\-_]+)/?(?:(?:dataset/[^/]+/)?(?:v?(?P<ver>\d+))?)?
|
| 64 |
+
|
|
| 65 |
+
(?P<ws2>[A-Za-z0-9\-_]+)/(?P<proj2>[A-Za-z0-9\-_]+)(?:/(?:v)?(?P<ver2>\d+))?
|
| 66 |
+
)$
|
| 67 |
+
""", re.VERBOSE | re.IGNORECASE)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
def parse_roboflow_url(s: str):
|
| 70 |
s = s.strip()
|
|
|
|
| 74 |
proj = m.group('proj') or m.group('proj2')
|
| 75 |
ver = m.group('ver') or m.group('ver2')
|
| 76 |
return ws, proj, (int(ver) if ver else None)
|
|
|
|
| 77 |
parsed = urlparse(s)
|
| 78 |
parts = [p for p in parsed.path.strip('/').split('/') if p]
|
| 79 |
if len(parts) >= 2:
|
| 80 |
version = None
|
| 81 |
if len(parts) >= 3:
|
| 82 |
+
v = parts[2]
|
| 83 |
+
if v.lower().startswith('v') and v[1:].isdigit(): version = int(v[1:])
|
| 84 |
+
elif v.isdigit(): version = int(v)
|
|
|
|
|
|
|
| 85 |
return parts[0], parts[1], version
|
|
|
|
| 86 |
if '/' in s and 'roboflow' not in s:
|
| 87 |
p = s.split('/')
|
| 88 |
if len(p) >= 2:
|
| 89 |
version = None
|
| 90 |
if len(p) >= 3:
|
| 91 |
v = p[2]
|
| 92 |
+
if v.lower().startswith('v') and v[1:].isdigit(): version = int(v[1:])
|
| 93 |
+
elif v.isdigit(): version = int(v)
|
|
|
|
|
|
|
| 94 |
return p[0], p[1], version
|
|
|
|
| 95 |
return None, None, None
|
| 96 |
|
| 97 |
def get_latest_version(api_key, workspace, project):
|
|
|
|
| 108 |
names = data_yaml.get('names', None)
|
| 109 |
if isinstance(names, dict):
|
| 110 |
def _k(x):
|
| 111 |
+
try: return int(x)
|
| 112 |
+
except Exception: return str(x)
|
| 113 |
+
keys = sorted(names.keys(), key=_k)
|
| 114 |
+
names_list = [names[k] for k in keys]
|
|
|
|
|
|
|
| 115 |
elif isinstance(names, list):
|
| 116 |
names_list = names
|
| 117 |
else:
|
| 118 |
+
nc = int(data_yaml.get('nc', 0) or 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
names_list = [f"class_{i}" for i in range(nc)]
|
| 120 |
return [str(x) for x in names_list]
|
| 121 |
|
| 122 |
def download_dataset(api_key, workspace, project, version):
|
|
|
|
| 123 |
try:
|
| 124 |
rf = Roboflow(api_key=api_key)
|
| 125 |
proj = rf.workspace(workspace).project(project)
|
| 126 |
ver = proj.version(int(version))
|
| 127 |
+
dataset = ver.download("yolov8") # labels in YOLO format (we'll convert to COCO)
|
|
|
|
| 128 |
data_yaml_path = os.path.join(dataset.location, 'data.yaml')
|
| 129 |
+
with open(data_yaml_path, 'r') as f: data_yaml = yaml.safe_load(f)
|
|
|
|
|
|
|
| 130 |
class_names = _extract_class_names(data_yaml)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
splits = [s for s in ['train', 'valid', 'test'] if os.path.exists(os.path.join(dataset.location, s))]
|
| 132 |
return dataset.location, class_names, splits, f"{project}-v{version}"
|
| 133 |
except Exception as e:
|
|
|
|
| 139 |
base = os.path.splitext(os.path.basename(img_path))[0] + '.txt'
|
| 140 |
return os.path.join(split_dir, 'labels', base)
|
| 141 |
|
| 142 |
+
# === YOLOv8 -> COCO converter =================================================
|
| 143 |
+
def yolo_to_coco(split_dir_images, split_dir_labels, class_names, out_json):
|
| 144 |
+
"""
|
| 145 |
+
Convert YOLO txt labels to a COCO annotations json.
|
| 146 |
+
"""
|
| 147 |
+
images, annotations = [], []
|
| 148 |
+
categories = [{"id": i, "name": n} for i, n in enumerate(class_names)]
|
| 149 |
+
ann_id = 1
|
| 150 |
+
img_id = 1
|
| 151 |
+
|
| 152 |
+
# Simple image size read (PIL); in Spaces this is fine.
|
| 153 |
+
for fname in sorted(os.listdir(split_dir_images)):
|
| 154 |
+
if not fname.lower().endswith((".jpg",".jpeg",".png")): continue
|
| 155 |
+
img_path = os.path.join(split_dir_images, fname)
|
| 156 |
+
try:
|
| 157 |
+
with Image.open(img_path) as im:
|
| 158 |
+
w, h = im.size
|
| 159 |
+
except Exception:
|
| 160 |
+
# skip unreadable images
|
| 161 |
+
continue
|
| 162 |
+
images.append({"id": img_id, "file_name": fname, "width": w, "height": h})
|
| 163 |
+
|
| 164 |
+
label_file = os.path.join(split_dir_labels, os.path.splitext(fname)[0] + ".txt")
|
| 165 |
+
if os.path.exists(label_file):
|
| 166 |
+
with open(label_file, "r") as f:
|
| 167 |
+
for line in f:
|
| 168 |
+
parts = line.strip().split()
|
| 169 |
+
if len(parts) < 5: continue
|
| 170 |
+
cls = int(float(parts[0]))
|
| 171 |
+
cx, cy, bw, bh = map(float, parts[1:5])
|
| 172 |
+
# convert normalized (cx,cy,bw,bh) to x,y,w,h in pixels
|
| 173 |
+
x = (cx - bw/2.0) * w
|
| 174 |
+
y = (cy - bh/2.0) * h
|
| 175 |
+
ww = bw * w
|
| 176 |
+
hh = bh * h
|
| 177 |
+
annotations.append({
|
| 178 |
+
"id": ann_id,
|
| 179 |
+
"image_id": img_id,
|
| 180 |
+
"category_id": cls,
|
| 181 |
+
"bbox": [max(0.0,x), max(0.0,y), max(1.0,ww), max(1.0,hh)],
|
| 182 |
+
"area": max(1.0, ww*hh),
|
| 183 |
+
"iscrowd": 0,
|
| 184 |
+
"segmentation": []
|
| 185 |
+
})
|
| 186 |
+
ann_id += 1
|
| 187 |
+
img_id += 1
|
| 188 |
+
|
| 189 |
+
coco = {"images": images, "annotations": annotations, "categories": categories}
|
| 190 |
+
os.makedirs(os.path.dirname(out_json), exist_ok=True)
|
| 191 |
+
with open(out_json, "w") as f: json.dump(coco, f)
|
| 192 |
+
|
| 193 |
+
def make_coco_annotations(merged_dir, class_names):
|
| 194 |
+
"""
|
| 195 |
+
Build COCO jsons under merged_dir/annotations:
|
| 196 |
+
instances_train.json, instances_val.json, instances_test.json
|
| 197 |
+
"""
|
| 198 |
+
ann_dir = os.path.join(merged_dir, "annotations")
|
| 199 |
+
os.makedirs(ann_dir, exist_ok=True)
|
| 200 |
+
mapping = {"train": "instances_train.json", "valid": "instances_val.json", "test": "instances_test.json"}
|
| 201 |
+
for split, outname in mapping.items():
|
| 202 |
+
img_dir = os.path.join(merged_dir, split, "images")
|
| 203 |
+
lbl_dir = os.path.join(merged_dir, split, "labels")
|
| 204 |
+
out_json = os.path.join(ann_dir, outname)
|
| 205 |
+
if os.path.exists(img_dir) and os.listdir(img_dir):
|
| 206 |
+
yolo_to_coco(img_dir, lbl_dir, class_names, out_json)
|
| 207 |
+
return ann_dir
|
| 208 |
+
|
| 209 |
+
# === dataset merging ==========================================================
|
| 210 |
def gather_class_counts(dataset_info, class_mapping):
|
| 211 |
+
if not dataset_info: return {}
|
|
|
|
| 212 |
final_names = set(v for v in class_mapping.values() if v is not None)
|
| 213 |
counts = {name: 0 for name in final_names}
|
|
|
|
| 214 |
for loc, names, splits, _ in dataset_info:
|
| 215 |
id_to_name = {idx: class_mapping.get(n, None) for idx, n in enumerate(names)}
|
| 216 |
for split in splits:
|
| 217 |
labels_dir = os.path.join(loc, split, 'labels')
|
| 218 |
+
if not os.path.exists(labels_dir): continue
|
|
|
|
| 219 |
for label_file in os.listdir(labels_dir):
|
| 220 |
+
if not label_file.endswith('.txt'): continue
|
|
|
|
| 221 |
found = set()
|
| 222 |
with open(os.path.join(labels_dir, label_file), 'r') as f:
|
| 223 |
for line in f:
|
| 224 |
parts = line.strip().split()
|
| 225 |
+
if not parts: continue
|
|
|
|
| 226 |
try:
|
| 227 |
cls_id = int(parts[0])
|
| 228 |
mapped = id_to_name.get(cls_id, None)
|
| 229 |
+
if mapped: found.add(mapped)
|
|
|
|
| 230 |
except Exception:
|
| 231 |
continue
|
| 232 |
+
for m in found: counts[m] += 1
|
|
|
|
| 233 |
return counts
|
| 234 |
|
| 235 |
def finalize_merged_dataset(dataset_info, class_mapping, class_limits, progress=gr.Progress()):
|
|
|
|
| 249 |
for loc, _, splits, _ in dataset_info:
|
| 250 |
for split in splits:
|
| 251 |
img_dir = os.path.join(loc, split, 'images')
|
| 252 |
+
if not os.path.exists(img_dir): continue
|
|
|
|
| 253 |
for img_file in os.listdir(img_dir):
|
| 254 |
if img_file.lower().endswith(('.jpg', '.jpeg', '.png')):
|
| 255 |
all_images.append((os.path.join(img_dir, img_file), split, loc))
|
| 256 |
random.shuffle(all_images)
|
| 257 |
|
| 258 |
progress(0.2, desc="Selecting images based on limits...")
|
| 259 |
+
selected_images, current_counts = [], {cls: 0 for cls in active_classes}
|
|
|
|
| 260 |
loc_to_names = {info[0]: info[1] for info in dataset_info}
|
| 261 |
|
|
|
|
| 262 |
for img_path, split, source_loc in progress.tqdm(all_images, desc="Analyzing images"):
|
| 263 |
lbl_path = label_path_for(img_path)
|
| 264 |
+
if not os.path.exists(lbl_path): continue
|
|
|
|
|
|
|
| 265 |
source_names = loc_to_names.get(source_loc, [])
|
| 266 |
image_classes = set()
|
| 267 |
with open(lbl_path, 'r') as f:
|
| 268 |
for line in f:
|
| 269 |
parts = line.strip().split()
|
| 270 |
+
if not parts: continue
|
|
|
|
| 271 |
try:
|
| 272 |
cls_id = int(parts[0])
|
| 273 |
orig = source_names[cls_id]
|
| 274 |
mapped = class_mapping.get(orig, orig)
|
| 275 |
+
if mapped in active_classes: image_classes.add(mapped)
|
|
|
|
| 276 |
except Exception:
|
| 277 |
continue
|
| 278 |
+
if not image_classes: continue
|
| 279 |
+
if any(current_counts[c] >= class_limits[c] for c in image_classes): continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
selected_images.append((img_path, split))
|
| 281 |
+
for c in image_classes: current_counts[c] += 1
|
|
|
|
| 282 |
|
| 283 |
progress(0.6, desc=f"Copying {len(selected_images)} files...")
|
| 284 |
for img_path, split in progress.tqdm(selected_images, desc="Finalizing files"):
|
|
|
|
| 289 |
|
| 290 |
source_loc = None
|
| 291 |
for info in dataset_info:
|
| 292 |
+
if img_path.startswith(info[0]): source_loc = info[0]; break
|
|
|
|
|
|
|
| 293 |
source_names = loc_to_names.get(source_loc, [])
|
| 294 |
|
| 295 |
with open(lbl_path, 'r') as f_in, open(out_lbl, 'w') as f_out:
|
| 296 |
for line in f_in:
|
| 297 |
parts = line.strip().split()
|
| 298 |
+
if not parts: continue
|
|
|
|
| 299 |
try:
|
| 300 |
old_id = int(parts[0])
|
| 301 |
original_name = source_names[old_id]
|
|
|
|
| 306 |
except Exception:
|
| 307 |
continue
|
| 308 |
|
| 309 |
+
progress(0.9, desc="Writing data.yaml + COCO annotations...")
|
| 310 |
with open(os.path.join(merged_dir, 'data.yaml'), 'w') as f:
|
| 311 |
yaml.dump({
|
| 312 |
'path': os.path.abspath(merged_dir),
|
|
|
|
| 317 |
'names': active_classes
|
| 318 |
}, f)
|
| 319 |
|
| 320 |
+
# also create COCO jsons for RT-DETRv2 training
|
| 321 |
+
ann_dir = make_coco_annotations(merged_dir, active_classes)
|
| 322 |
+
progress(0.98, desc="Finalizing...")
|
| 323 |
return f"Dataset finalized with {len(selected_images)} images.", os.path.abspath(merged_dir)
|
| 324 |
|
| 325 |
+
# === entrypoint + config detection/generation =================================
|
| 326 |
+
def find_training_script(repo_root):
|
|
|
|
|
|
|
|
|
|
| 327 |
"""
|
| 328 |
+
Recursively search for a tools/train.py (or train.py) suitable for RT-DETRv2.
|
|
|
|
|
|
|
|
|
|
| 329 |
"""
|
| 330 |
+
candidates = []
|
| 331 |
+
for pat in ["**/tools/train.py", "**/train.py"]:
|
| 332 |
+
candidates.extend(glob(os.path.join(repo_root, pat), recursive=True))
|
| 333 |
+
# Prefer ones inside rtdetrv2_pytorch
|
| 334 |
+
candidates.sort(key=lambda p: (0 if "rtdetrv2_pytorch" in p else 1, len(p)))
|
| 335 |
+
return candidates[0] if candidates else None
|
| 336 |
+
|
| 337 |
+
def find_model_config_template(model_key):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
"""
|
| 339 |
+
Find a base config YAML in the repo that matches the chosen model key.
|
| 340 |
+
We look under any configs directory for a yaml containing 'rtdetrv2' and the model key.
|
|
|
|
| 341 |
"""
|
| 342 |
+
yamls = glob(os.path.join(REPO_DIR, "**", "*.yml"), recursive=True) + \
|
| 343 |
+
glob(os.path.join(REPO_DIR, "**", "*.yaml"), recursive=True)
|
| 344 |
+
# prioritize files with both rtdetrv2 and the exact key in the name
|
| 345 |
+
def score(p):
|
| 346 |
+
n = os.path.basename(p).lower()
|
| 347 |
+
s = 0
|
| 348 |
+
if "rtdetrv2" in n: s += 2
|
| 349 |
+
if model_key in n: s += 3
|
| 350 |
+
if "coco" in n: s += 1
|
| 351 |
+
return -s, len(p)
|
| 352 |
+
yamls.sort(key=score)
|
| 353 |
+
return yamls[0] if yamls else None
|
| 354 |
+
|
| 355 |
+
def write_custom_config(base_cfg_path, merged_dir, class_count, model_key, run_name, epochs, batch, imgsz, lr, optimizer):
|
| 356 |
+
"""
|
| 357 |
+
Generate a small override config that points to our COCO jsons and sets key hyperparams.
|
| 358 |
+
This YAML gets merged by the repo's config system if it supports '_base_' includes;
|
| 359 |
+
otherwise, it still provides reasonable keys many RT-DETRv2 forks accept.
|
| 360 |
+
"""
|
| 361 |
+
ann_dir = os.path.join(merged_dir, "annotations")
|
| 362 |
+
cfg_out_dir = os.path.join("generated_configs")
|
| 363 |
+
os.makedirs(cfg_out_dir, exist_ok=True)
|
| 364 |
+
out_path = os.path.join(cfg_out_dir, f"{run_name}.yaml")
|
| 365 |
+
|
| 366 |
+
# Try a broadly compatible structure (kept simple on purpose)
|
| 367 |
+
override = {
|
| 368 |
+
"_base_": os.path.relpath(base_cfg_path, start=cfg_out_dir) if base_cfg_path else None,
|
| 369 |
+
"model": {"name": model_key, "num_classes": int(class_count)},
|
| 370 |
+
"input_size": int(imgsz),
|
| 371 |
+
"max_epoch": int(epochs),
|
| 372 |
+
"solver": {
|
| 373 |
+
"base_lr": float(lr),
|
| 374 |
+
"optimizer": str(optimizer).lower(), # "adam", "adamw", "sgd"
|
| 375 |
+
"batch_size": int(batch),
|
| 376 |
+
},
|
| 377 |
+
"dataset": {
|
| 378 |
+
"train": {
|
| 379 |
+
"name": "coco",
|
| 380 |
+
"ann_file": os.path.abspath(os.path.join(ann_dir, "instances_train.json")),
|
| 381 |
+
"img_prefix": os.path.abspath(os.path.join(merged_dir, "train", "images")),
|
| 382 |
+
},
|
| 383 |
+
"val": {
|
| 384 |
+
"name": "coco",
|
| 385 |
+
"ann_file": os.path.abspath(os.path.join(ann_dir, "instances_val.json")),
|
| 386 |
+
"img_prefix": os.path.abspath(os.path.join(merged_dir, "valid", "images")),
|
| 387 |
+
},
|
| 388 |
+
"test": {
|
| 389 |
+
"name": "coco",
|
| 390 |
+
"ann_file": os.path.abspath(os.path.join(ann_dir, "instances_test.json")),
|
| 391 |
+
"img_prefix": os.path.abspath(os.path.join(merged_dir, "test", "images")),
|
| 392 |
+
},
|
| 393 |
+
},
|
| 394 |
+
"output_dir": os.path.abspath(os.path.join("runs", "train", run_name)),
|
| 395 |
+
# some forks use these dataloader keys:
|
| 396 |
+
"train_dataloader": {"batch_size": int(batch)},
|
| 397 |
+
"val_dataloader": {"batch_size": int(batch)},
|
| 398 |
+
}
|
| 399 |
+
# drop None values cleanly
|
| 400 |
+
if override["_base_"] is None:
|
| 401 |
+
del override["_base_"]
|
| 402 |
+
|
| 403 |
+
with open(out_path, "w") as f: yaml.safe_dump(override, f, sort_keys=False)
|
| 404 |
+
return out_path
|
| 405 |
|
| 406 |
def find_best_checkpoint(out_dir):
|
| 407 |
+
pats = [
|
|
|
|
| 408 |
os.path.join(out_dir, "**", "best*.pt"),
|
| 409 |
os.path.join(out_dir, "**", "best*.pth"),
|
| 410 |
os.path.join(out_dir, "**", "model_best*.pt"),
|
| 411 |
os.path.join(out_dir, "**", "model_best*.pth"),
|
| 412 |
]
|
| 413 |
+
for p in pats:
|
| 414 |
+
f = sorted(glob(p, recursive=True))
|
| 415 |
+
if f: return f[0]
|
|
|
|
|
|
|
| 416 |
any_ckpt = sorted(glob(os.path.join(out_dir, "**", "*.pt"), recursive=True) +
|
| 417 |
glob(os.path.join(out_dir, "**", "*.pth"), recursive=True))
|
| 418 |
return any_ckpt[-1] if any_ckpt else None
|
| 419 |
|
| 420 |
+
# === Gradio handlers ==========================================================
|
|
|
|
|
|
|
|
|
|
| 421 |
def load_datasets_handler(api_key, url_file, progress=gr.Progress()):
|
| 422 |
api_key = api_key or os.getenv("ROBOFLOW_API_KEY", "")
|
| 423 |
+
if not api_key: raise gr.Error("Roboflow API Key is required (or set ROBOFLOW_API_KEY).")
|
| 424 |
+
if not url_file: raise gr.Error("Upload a .txt with Roboflow URLs or 'workspace/project[/vN]' lines.")
|
|
|
|
|
|
|
| 425 |
|
| 426 |
with open(url_file.name, 'r', encoding='utf-8', errors='ignore') as f:
|
| 427 |
urls = [line.strip() for line in f if line.strip()]
|
|
|
|
| 436 |
if ver is None:
|
| 437 |
ver = get_latest_version(api_key, ws, proj)
|
| 438 |
if ver is None:
|
| 439 |
+
failures.append((raw, f"No latest version for {ws}/{proj}"))
|
| 440 |
continue
|
|
|
|
| 441 |
loc, names, splits, name_str = download_dataset(api_key, ws, proj, int(ver))
|
| 442 |
+
if loc: dataset_info.append((loc, names, splits, name_str))
|
| 443 |
+
else: failures.append((raw, f"DownloadError: {ws}/{proj}/v{ver}"))
|
|
|
|
|
|
|
| 444 |
|
| 445 |
if not dataset_info:
|
| 446 |
+
msg = "No datasets loaded.\n" + "\n".join([f"- {u}: {why}" for u, why in failures[:10]])
|
| 447 |
raise gr.Error(msg)
|
| 448 |
|
|
|
|
| 449 |
all_names = sorted({str(n) for _, names, _, _ in dataset_info for n in names})
|
| 450 |
class_map = {name: name for name in all_names}
|
| 451 |
+
counts = gather_class_counts(dataset_info, class_map)
|
| 452 |
+
df = pd.DataFrame([[n, n, counts.get(n, 0), False] for n in all_names],
|
|
|
|
| 453 |
columns=["Original Name", "Rename To", "Max Images", "Remove"])
|
| 454 |
+
status = "Datasets loaded successfully."
|
| 455 |
+
if failures: status += f" ({len(dataset_info)} OK, {len(failures)} failed; see logs)."
|
| 456 |
+
return status, dataset_info, df
|
|
|
|
|
|
|
|
|
|
| 457 |
|
| 458 |
def update_class_counts_handler(class_df, dataset_info):
|
| 459 |
+
if class_df is None or not dataset_info: return None
|
|
|
|
|
|
|
| 460 |
class_df = pd.DataFrame(class_df)
|
| 461 |
+
mapping = {row["Original Name"]: (None if bool(row["Remove"]) else row["Rename To"])
|
| 462 |
+
for _, row in class_df.iterrows()}
|
|
|
|
|
|
|
|
|
|
| 463 |
final_names = sorted(set(v for v in mapping.values() if v))
|
| 464 |
counts = {k: 0 for k in final_names}
|
|
|
|
| 465 |
for loc, names, splits, _ in dataset_info:
|
| 466 |
id_to_final = {idx: mapping.get(n, None) for idx, n in enumerate(names)}
|
| 467 |
for split in splits:
|
| 468 |
labels_dir = os.path.join(loc, split, 'labels')
|
| 469 |
+
if not os.path.exists(labels_dir): continue
|
|
|
|
| 470 |
for label_file in os.listdir(labels_dir):
|
| 471 |
+
if not label_file.endswith('.txt'): continue
|
|
|
|
| 472 |
found = set()
|
| 473 |
with open(os.path.join(labels_dir, label_file), 'r') as f:
|
| 474 |
for line in f:
|
| 475 |
parts = line.strip().split()
|
| 476 |
+
if not parts: continue
|
|
|
|
| 477 |
try:
|
| 478 |
cls_id = int(parts[0])
|
| 479 |
mapped = id_to_final.get(cls_id, None)
|
| 480 |
+
if mapped: found.add(mapped)
|
|
|
|
| 481 |
except Exception:
|
| 482 |
continue
|
| 483 |
+
for m in found: counts[m] += 1
|
|
|
|
|
|
|
| 484 |
return pd.DataFrame(list(counts.items()), columns=["Final Class Name", "Est. Total Images"])
|
| 485 |
|
| 486 |
def finalize_handler(dataset_info, class_df, progress=gr.Progress()):
|
| 487 |
+
if not dataset_info: raise gr.Error("Load datasets first in Tab 1.")
|
| 488 |
+
if class_df is None: raise gr.Error("Class data is missing.")
|
|
|
|
|
|
|
|
|
|
| 489 |
class_df = pd.DataFrame(class_df)
|
| 490 |
class_mapping, class_limits = {}, {}
|
| 491 |
for _, row in class_df.iterrows():
|
| 492 |
orig = row["Original Name"]
|
| 493 |
+
if bool(row["Remove"]): continue
|
|
|
|
| 494 |
final_name = row["Rename To"]
|
| 495 |
class_mapping[orig] = final_name
|
| 496 |
class_limits[final_name] = class_limits.get(final_name, 0) + int(row["Max Images"])
|
|
|
|
| 497 |
status, path = finalize_merged_dataset(dataset_info, class_mapping, class_limits, progress)
|
| 498 |
return status, path
|
| 499 |
|
| 500 |
+
def training_handler(dataset_path, model_key, run_name, epochs, batch, imgsz, lr, opt, progress=gr.Progress()):
|
| 501 |
+
if not dataset_path: raise gr.Error("Finalize a dataset in Tab 2 before training.")
|
| 502 |
+
|
| 503 |
+
# 1) find training script (nested-safe)
|
| 504 |
+
train_script = find_training_script(REPO_DIR)
|
| 505 |
+
if not train_script:
|
| 506 |
+
raise gr.Error("RT-DETRv2 training script not found inside the repo (looked for **/tools/train.py).")
|
| 507 |
+
|
| 508 |
+
# 2) pick a model config template from repo (best effort)
|
| 509 |
+
base_cfg = find_model_config_template(model_key)
|
| 510 |
+
|
| 511 |
+
# 3) read class names from our merged data.yaml to set num_classes + produce COCO JSONs
|
| 512 |
+
data_yaml = os.path.join(dataset_path, "data.yaml")
|
| 513 |
+
with open(data_yaml, "r") as f: dy = yaml.safe_load(f)
|
| 514 |
+
class_names = [str(x) for x in dy.get("names", [])]
|
| 515 |
+
ann_dir = make_coco_annotations(dataset_path, class_names)
|
| 516 |
+
|
| 517 |
+
# 4) write a small override config that points to our data and injects hyper-params
|
| 518 |
+
cfg_path = write_custom_config(
|
| 519 |
+
base_cfg_path=base_cfg,
|
| 520 |
+
merged_dir=dataset_path,
|
| 521 |
+
class_count=len(class_names),
|
| 522 |
+
model_key=model_key,
|
| 523 |
run_name=run_name,
|
| 524 |
epochs=epochs,
|
| 525 |
batch=batch,
|
| 526 |
imgsz=imgsz,
|
| 527 |
lr=lr,
|
| 528 |
+
optimizer=opt,
|
| 529 |
)
|
| 530 |
+
|
| 531 |
+
out_dir = os.path.abspath(os.path.join("runs", "train", run_name))
|
| 532 |
+
os.makedirs(out_dir, exist_ok=True)
|
| 533 |
+
|
| 534 |
+
# 5) build & run the command (single-GPU by default, no manual CLI edits)
|
| 535 |
+
cmd = [sys.executable, train_script, "-c", os.path.abspath(cfg_path)]
|
| 536 |
+
# many forks accept optional flags; pass safe ones if present
|
| 537 |
+
if "--use-amp" in open(train_script).read(): # cheap check
|
| 538 |
+
cmd += ["--use-amp"]
|
| 539 |
logging.info(f"Training command: {' '.join(cmd)}")
|
| 540 |
|
|
|
|
| 541 |
q = Queue()
|
|
|
|
| 542 |
def run_train():
|
| 543 |
try:
|
| 544 |
env = os.environ.copy()
|
| 545 |
env["PYTHONPATH"] = REPO_DIR + os.pathsep + env.get("PYTHONPATH", "")
|
| 546 |
+
proc = subprocess.Popen(cmd, cwd=os.path.dirname(train_script),
|
| 547 |
+
stdout=subprocess.PIPE, stderr=subprocess.STDOUT,
|
| 548 |
+
bufsize=1, text=True, env=env)
|
| 549 |
+
for line in proc.stdout: q.put(line.rstrip())
|
| 550 |
proc.wait()
|
| 551 |
q.put(f"__EXITCODE__:{proc.returncode}")
|
| 552 |
except Exception as e:
|
|
|
|
| 554 |
|
| 555 |
Thread(target=run_train, daemon=True).start()
|
| 556 |
|
| 557 |
+
log_tail, last_epoch, total_epochs = [], 0, int(epochs)
|
|
|
|
|
|
|
| 558 |
while True:
|
| 559 |
line = q.get()
|
| 560 |
if line.startswith("__EXITCODE__"):
|
| 561 |
+
code = int(line.split(":",1)[1])
|
| 562 |
+
if code != 0: raise gr.Error(f"Training exited with code {code}. See logs above.")
|
|
|
|
| 563 |
break
|
| 564 |
if line.startswith("__ERROR__"):
|
| 565 |
raise gr.Error(f"Training failed: {line.split(':',1)[1]}")
|
| 566 |
|
| 567 |
+
log_tail.append(line)
|
| 568 |
+
log_tail = log_tail[-30:]
|
| 569 |
+
|
| 570 |
m = re.search(r"[Ee]poch\s+(\d+)\s*/\s*(\d+)", line)
|
| 571 |
if m:
|
| 572 |
try:
|
|
|
|
| 574 |
total_epochs = max(total_epochs, int(m.group(2)))
|
| 575 |
except Exception:
|
| 576 |
pass
|
| 577 |
+
progress(min(max(last_epoch / max(1,total_epochs),0.0),1.0), desc=f"Epoch {last_epoch}/{total_epochs}")
|
| 578 |
|
| 579 |
+
fig1 = plt.figure(); plt.title("Loss (see logs)")
|
| 580 |
+
fig2 = plt.figure(); plt.title("mAP (see logs)")
|
| 581 |
+
yield "\n".join(log_tail), fig1, fig2, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 582 |
|
| 583 |
+
ckpt = find_best_checkpoint(out_dir) or find_best_checkpoint("runs")
|
|
|
|
| 584 |
if not ckpt or not os.path.exists(ckpt):
|
| 585 |
+
raise gr.Error("Training finished, but checkpoint file not found. Check logs/output directory.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 586 |
yield "Training complete!", None, None, gr.File.update(value=ckpt, visible=True)
|
| 587 |
|
| 588 |
def upload_handler(model_file, hf_token, hf_repo, gh_token, gh_repo, progress=gr.Progress()):
|
| 589 |
+
if not model_file: raise gr.Error("No trained model file to upload.")
|
|
|
|
|
|
|
| 590 |
from huggingface_hub import HfApi, HfFolder
|
| 591 |
+
hf_status = "Skipped Hugging Face."
|
|
|
|
| 592 |
if hf_token and hf_repo:
|
| 593 |
progress(0, desc="Uploading to Hugging Face...")
|
| 594 |
try:
|
| 595 |
+
api = HfApi(); HfFolder.save_token(hf_token)
|
|
|
|
| 596 |
repo_url = api.create_repo(repo_id=hf_repo, exist_ok=True, token=hf_token)
|
| 597 |
+
api.upload_file(model_file.name, os.path.basename(model_file.name), repo_id=hf_repo, token=hf_token)
|
| 598 |
+
hf_status = f"Success! {repo_url}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 599 |
except Exception as e:
|
| 600 |
hf_status = f"Hugging Face Error: {e}"
|
| 601 |
|
| 602 |
+
gh_status = "Skipped GitHub."
|
| 603 |
if gh_token and gh_repo:
|
| 604 |
progress(0.5, desc="Uploading to GitHub...")
|
| 605 |
try:
|
| 606 |
+
if '/' not in gh_repo: raise ValueError("GitHub repo must be 'username/repo'.")
|
|
|
|
|
|
|
| 607 |
username, repo_name = gh_repo.split('/')
|
| 608 |
api_url = f"https://api.github.com/repos/{username}/{repo_name}/contents/{os.path.basename(model_file.name)}"
|
| 609 |
headers = {"Authorization": f"token {gh_token}"}
|
| 610 |
+
with open(model_file.name, "rb") as f: content = base64.b64encode(f.read()).decode()
|
|
|
|
|
|
|
|
|
|
| 611 |
get_resp = requests.get(api_url, headers=headers, timeout=30)
|
| 612 |
sha = get_resp.json().get('sha') if get_resp.ok else None
|
|
|
|
| 613 |
data = {"message": "Upload trained model from Rolo app", "content": content}
|
| 614 |
+
if sha: data["sha"] = sha
|
|
|
|
|
|
|
| 615 |
put_resp = requests.put(api_url, headers=headers, json=data, timeout=60)
|
| 616 |
+
if put_resp.ok: gh_status = f"Success! {put_resp.json()['content']['html_url']}"
|
| 617 |
+
else: gh_status = f"GitHub Error: {put_resp.json().get('message','Unknown')}"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 618 |
except Exception as e:
|
| 619 |
gh_status = f"GitHub Error: {e}"
|
| 620 |
+
progress(1); return hf_status, gh_status
|
| 621 |
|
| 622 |
+
# === UI =======================================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 623 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="sky")) as app:
|
| 624 |
+
gr.Markdown("# Rolo — RT-DETRv2 Trainer (Supervisely repo only)")
|
| 625 |
|
| 626 |
dataset_info_state = gr.State([])
|
| 627 |
final_dataset_path_state = gr.State(None)
|
| 628 |
|
| 629 |
with gr.Tabs():
|
| 630 |
with gr.TabItem("1. Prepare Datasets"):
|
| 631 |
+
gr.Markdown("Upload a `.txt` with Roboflow URLs or `workspace/project[/vN]` per line. We’ll pull and merge them.")
|
| 632 |
with gr.Row():
|
| 633 |
+
rf_api_key = gr.Textbox(label="Roboflow API Key (or set ROBOFLOW_API_KEY)", type="password", scale=2)
|
| 634 |
+
rf_url_file = gr.File(label="Roboflow URLs (.txt)", file_types=[".txt"], scale=1)
|
| 635 |
load_btn = gr.Button("Load Datasets", variant="primary")
|
| 636 |
dataset_status = gr.Textbox(label="Status", interactive=False)
|
| 637 |
|
| 638 |
with gr.TabItem("2. Manage & Merge"):
|
| 639 |
+
gr.Markdown("Rename/merge/remove classes and set per-class image caps. Then finalize.")
|
| 640 |
with gr.Row():
|
| 641 |
+
class_df = gr.DataFrame(headers=["Original Name","Rename To","Max Images","Remove"],
|
| 642 |
+
datatype=["str","str","number","bool"], label="Class Config", interactive=True, scale=3)
|
|
|
|
|
|
|
|
|
|
| 643 |
with gr.Column(scale=1):
|
| 644 |
+
class_count_summary_df = gr.DataFrame(label="Merged Class Counts Preview",
|
| 645 |
+
headers=["Final Class Name","Est. Total Images"], interactive=False)
|
|
|
|
|
|
|
|
|
|
| 646 |
update_counts_btn = gr.Button("Update Counts")
|
| 647 |
finalize_btn = gr.Button("Finalize Merged Dataset", variant="primary")
|
| 648 |
finalize_status = gr.Textbox(label="Status", interactive=False)
|
| 649 |
|
| 650 |
with gr.TabItem("3. Configure & Train"):
|
| 651 |
+
gr.Markdown("Pick RT-DETRv2 model, set hyper-params, press Start.")
|
| 652 |
with gr.Row():
|
| 653 |
with gr.Column(scale=1):
|
| 654 |
+
model_dd = gr.Dropdown(choices=[k for k,_ in MODEL_CHOICES], value=DEFAULT_MODEL_KEY,
|
| 655 |
+
label="Model (RT-DETRv2)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 656 |
run_name_tb = gr.Textbox(label="Run Name", value="rtdetrv2_run_1")
|
| 657 |
epochs_sl = gr.Slider(1, 500, 100, step=1, label="Epochs")
|
| 658 |
batch_sl = gr.Slider(1, 64, 16, step=1, label="Batch Size")
|
| 659 |
imgsz_num = gr.Number(label="Image Size", value=640)
|
| 660 |
lr_num = gr.Number(label="Learning Rate", value=0.001)
|
| 661 |
+
opt_dd = gr.Dropdown(["Adam","AdamW","SGD"], value="Adam", label="Optimizer")
|
| 662 |
train_btn = gr.Button("Start Training", variant="primary")
|
| 663 |
with gr.Column(scale=2):
|
| 664 |
train_status = gr.Textbox(label="Live Logs (tail)", interactive=False, lines=12)
|
| 665 |
loss_plot = gr.Plot(label="Loss")
|
| 666 |
map_plot = gr.Plot(label="mAP")
|
| 667 |
+
final_model_file = gr.File(label="Download Trained Checkpoint", interactive=False, visible=False)
|
| 668 |
|
| 669 |
with gr.TabItem("4. Upload Model"):
|
| 670 |
+
gr.Markdown("Optionally push your checkpoint to Hugging Face / GitHub.")
|
| 671 |
with gr.Row():
|
| 672 |
with gr.Column():
|
| 673 |
+
gr.Markdown("**Hugging Face**")
|
| 674 |
+
hf_token = gr.Textbox(label="HF Token", type="password")
|
| 675 |
+
hf_repo = gr.Textbox(label="HF Repo (user/repo)")
|
| 676 |
with gr.Column():
|
| 677 |
+
gr.Markdown("**GitHub**")
|
| 678 |
+
gh_token = gr.Textbox(label="GitHub PAT", type="password")
|
| 679 |
+
gh_repo = gr.Textbox(label="GitHub Repo (user/repo)")
|
| 680 |
+
upload_btn = gr.Button("Upload", variant="primary")
|
| 681 |
with gr.Row():
|
| 682 |
hf_status = gr.Textbox(label="Hugging Face Status", interactive=False)
|
| 683 |
gh_status = gr.Textbox(label="GitHub Status", interactive=False)
|
| 684 |
|
| 685 |
+
load_btn.click(load_datasets_handler, [rf_api_key, rf_url_file],
|
| 686 |
+
[dataset_status, dataset_info_state, class_df])
|
| 687 |
+
update_counts_btn.click(update_class_counts_handler, [class_df, dataset_info_state],
|
| 688 |
+
[class_count_summary_df])
|
| 689 |
+
finalize_btn.click(finalize_handler, [dataset_info_state, class_df],
|
| 690 |
+
[finalize_status, final_dataset_path_state])
|
| 691 |
+
train_btn.click(training_handler,
|
| 692 |
+
[final_dataset_path_state, model_dd, run_name_tb, epochs_sl, batch_sl, imgsz_num, lr_num, opt_dd],
|
| 693 |
+
[train_status, loss_plot, map_plot, final_model_file])
|
| 694 |
+
upload_btn.click(upload_handler, [final_model_file, hf_token, hf_repo, gh_token, gh_repo],
|
| 695 |
+
[hf_status, gh_status])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 696 |
|
| 697 |
if __name__ == "__main__":
|
| 698 |
+
os.environ.setdefault("YOLO_CONFIG_DIR", "/tmp/Ultralytics") # silence stray warnings from other libs
|
|
|
|
| 699 |
app.launch(debug=True)
|