Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,7 @@ import shutil
|
|
| 3 |
import stat
|
| 4 |
import yaml
|
| 5 |
import gradio as gr
|
| 6 |
-
from ultralytics import YOLO
|
| 7 |
from roboflow import Roboflow
|
| 8 |
import re
|
| 9 |
from urllib.parse import urlparse
|
|
@@ -40,22 +40,87 @@ RTDETR_MODELS = {
|
|
| 40 |
}
|
| 41 |
DEFAULT_MODEL = "rtdetr-l.pt"
|
| 42 |
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
def handle_remove_readonly(func, path, exc_info):
|
| 46 |
"""Error handler for shutil.rmtree."""
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
| 48 |
func(path)
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
#
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
return None, None, None
|
| 58 |
|
|
|
|
| 59 |
def get_latest_version(api_key, workspace, project):
|
| 60 |
"""Gets the latest version number of a Roboflow project."""
|
| 61 |
try:
|
|
@@ -67,246 +132,348 @@ def get_latest_version(api_key, workspace, project):
|
|
| 67 |
logging.error(f"Could not get latest version for {workspace}/{project}: {e}")
|
| 68 |
return None
|
| 69 |
|
|
|
|
| 70 |
def download_dataset(api_key, workspace, project, version):
|
| 71 |
-
"""Downloads a single dataset from Roboflow."""
|
| 72 |
try:
|
| 73 |
rf = Roboflow(api_key=api_key)
|
| 74 |
proj = rf.workspace(workspace).project(project)
|
| 75 |
-
|
| 76 |
-
dataset =
|
| 77 |
-
|
| 78 |
-
|
|
|
|
| 79 |
data_yaml = yaml.safe_load(f)
|
| 80 |
-
|
| 81 |
class_names = data_yaml.get('names', [])
|
| 82 |
-
splits = [s for s in ['train', 'valid', 'test']
|
| 83 |
-
|
|
|
|
| 84 |
return dataset.location, class_names, splits, f"{project}-v{version}"
|
| 85 |
except Exception as e:
|
| 86 |
logging.error(f"Failed to download {workspace}/{project}/v{version}: {e}")
|
| 87 |
return None, [], [], None
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
def gather_class_counts(dataset_info, class_mapping):
|
| 90 |
-
"""
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
for loc, names, splits, _ in dataset_info:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
for split in splits:
|
| 97 |
labels_dir = os.path.join(loc, split, 'labels')
|
| 98 |
-
if not os.path.exists(labels_dir):
|
|
|
|
| 99 |
for label_file in os.listdir(labels_dir):
|
| 100 |
-
|
|
|
|
|
|
|
| 101 |
with open(os.path.join(labels_dir, label_file), 'r') as f:
|
| 102 |
for line in f:
|
|
|
|
|
|
|
|
|
|
| 103 |
try:
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
except (ValueError, IndexError):
|
| 110 |
continue
|
| 111 |
-
for
|
| 112 |
-
counts[
|
|
|
|
| 113 |
return counts
|
| 114 |
|
|
|
|
| 115 |
def finalize_merged_dataset(dataset_info, class_mapping, class_limits, progress=gr.Progress()):
|
| 116 |
-
"""
|
| 117 |
merged_dir = 'rolo_merged_dataset'
|
| 118 |
if os.path.exists(merged_dir):
|
| 119 |
shutil.rmtree(merged_dir, onerror=handle_remove_readonly)
|
| 120 |
-
|
| 121 |
progress(0, desc="Creating directories...")
|
| 122 |
for split in ['train', 'valid', 'test']:
|
| 123 |
os.makedirs(os.path.join(merged_dir, split, 'images'), exist_ok=True)
|
| 124 |
os.makedirs(os.path.join(merged_dir, split, 'labels'), exist_ok=True)
|
| 125 |
|
| 126 |
-
|
|
|
|
|
|
|
| 127 |
final_class_map = {name: i for i, name in enumerate(active_classes)}
|
| 128 |
|
|
|
|
| 129 |
all_images = []
|
| 130 |
for loc, _, splits, _ in dataset_info:
|
| 131 |
for split in splits:
|
| 132 |
img_dir = os.path.join(loc, split, 'images')
|
| 133 |
-
if not os.path.exists(img_dir):
|
|
|
|
| 134 |
for img_file in os.listdir(img_dir):
|
| 135 |
if img_file.lower().endswith(('.jpg', '.jpeg', '.png')):
|
| 136 |
all_images.append((os.path.join(img_dir, img_file), split, loc))
|
| 137 |
random.shuffle(all_images)
|
| 138 |
-
|
| 139 |
progress(0.2, desc="Selecting images based on limits...")
|
| 140 |
-
selected_images =
|
| 141 |
current_counts = {cls: 0 for cls in active_classes}
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
image_classes = set()
|
| 148 |
with open(lbl_path, 'r') as f:
|
| 149 |
for line in f:
|
|
|
|
|
|
|
|
|
|
| 150 |
try:
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
if
|
| 155 |
-
image_classes.add(
|
| 156 |
-
except
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
|
|
|
| 169 |
progress(0.6, desc=f"Copying {len(selected_images)} files...")
|
| 170 |
for img_path, split in progress.tqdm(selected_images, desc="Finalizing files"):
|
| 171 |
-
lbl_path = img_path
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
for line in f_in:
|
| 176 |
-
parts = line.split()
|
|
|
|
|
|
|
| 177 |
try:
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
original_name = source_names[int(parts[0])]
|
| 181 |
mapped_name = class_mapping.get(original_name, original_name)
|
| 182 |
if mapped_name in final_class_map:
|
| 183 |
new_id = final_class_map[mapped_name]
|
| 184 |
f_out.write(f"{new_id} {' '.join(parts[1:])}\n")
|
| 185 |
-
except
|
|
|
|
| 186 |
|
| 187 |
progress(0.95, desc="Creating data.yaml...")
|
| 188 |
with open(os.path.join(merged_dir, 'data.yaml'), 'w') as f:
|
| 189 |
yaml.dump({
|
| 190 |
-
'path': os.path.abspath(merged_dir),
|
| 191 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
}, f)
|
| 193 |
-
|
| 194 |
return f"Dataset finalized with {len(selected_images)} images.", os.path.abspath(merged_dir)
|
| 195 |
|
| 196 |
|
| 197 |
-
#
|
|
|
|
|
|
|
| 198 |
|
| 199 |
def load_datasets_handler(api_key, url_file, progress=gr.Progress()):
|
| 200 |
"""Handles the 'Load Datasets' button click."""
|
| 201 |
-
|
| 202 |
-
if not
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
-
with open(url_file.name, 'r') as f:
|
| 205 |
urls = [line.strip() for line in f if line.strip()]
|
| 206 |
-
|
| 207 |
dataset_info = []
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
|
|
|
|
|
|
| 213 |
continue
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
|
|
|
| 218 |
continue
|
| 219 |
-
|
| 220 |
-
loc, names, splits, name_str = download_dataset(api_key,
|
| 221 |
if loc:
|
| 222 |
dataset_info.append((loc, names, splits, name_str))
|
| 223 |
-
|
| 224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
|
| 226 |
all_names = sorted(list(set(n for _, names, _, _ in dataset_info for n in names)))
|
| 227 |
class_map = {name: name for name in all_names}
|
|
|
|
|
|
|
| 228 |
initial_counts = gather_class_counts(dataset_info, class_map)
|
| 229 |
df_data = [[name, name, initial_counts.get(name, 0), False] for name in all_names]
|
| 230 |
-
|
| 231 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
|
| 233 |
def update_class_counts_handler(class_df, dataset_info):
|
| 234 |
-
"""
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
for _, row in class_df.iterrows():
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
original_count = gather_class_counts(dataset_info, {k:k for k in class_mapping.keys()}).get(original_name,0)
|
| 251 |
-
is_removed = class_df.loc[class_df['Original Name'] == original_name, 'Remove'].iloc[0]
|
| 252 |
-
if not is_removed:
|
| 253 |
-
merged_summary[rename_to] += original_count
|
| 254 |
-
|
| 255 |
-
final_summary = {}
|
| 256 |
-
# Recalculate from scratch for simplicity and accuracy
|
| 257 |
-
class_map_for_summary = dict(zip(class_df["Original Name"], class_df["Rename To"]))
|
| 258 |
-
all_final_names = set(class_df[~class_df['Remove']]['Rename To'])
|
| 259 |
-
|
| 260 |
-
final_counts = {name: 0 for name in all_final_names}
|
| 261 |
|
| 262 |
for loc, names, splits, _ in dataset_info:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
for split in splits:
|
| 264 |
labels_dir = os.path.join(loc, split, 'labels')
|
| 265 |
-
if not os.path.exists(labels_dir):
|
|
|
|
| 266 |
for label_file in os.listdir(labels_dir):
|
| 267 |
-
|
|
|
|
|
|
|
| 268 |
with open(os.path.join(labels_dir, label_file), 'r') as f:
|
| 269 |
for line in f:
|
|
|
|
|
|
|
|
|
|
| 270 |
try:
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
summary_df = pd.DataFrame(list(final_counts.items()), columns=["Final Class Name", "Est. Total Images"])
|
| 283 |
return summary_df
|
| 284 |
|
|
|
|
| 285 |
def finalize_handler(dataset_info, class_df, progress=gr.Progress()):
|
| 286 |
"""Handles the 'Finalize' button click."""
|
| 287 |
-
if not dataset_info:
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
class_limits = {}
|
| 292 |
for _, row in class_df.iterrows():
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
status, path = finalize_merged_dataset(dataset_info, class_mapping, class_limits, progress)
|
| 298 |
return status, path
|
| 299 |
|
|
|
|
| 300 |
def training_handler(dataset_path, model_filename, run_name, epochs, batch, imgsz, lr, opt, progress=gr.Progress()):
|
| 301 |
-
"""Handles the training process with
|
| 302 |
-
if not dataset_path:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
|
| 304 |
metrics_queue = Queue()
|
|
|
|
| 305 |
def on_epoch_end(trainer):
|
|
|
|
|
|
|
| 306 |
metrics_queue.put({
|
| 307 |
-
'epoch': trainer.epoch + 1,
|
| 308 |
-
'
|
| 309 |
-
'
|
|
|
|
|
|
|
| 310 |
})
|
| 311 |
|
| 312 |
def train_thread_func():
|
|
@@ -315,22 +482,30 @@ def training_handler(dataset_path, model_filename, run_name, epochs, batch, imgs
|
|
| 315 |
weights_path = os.path.join('pretrained_models', model_filename)
|
| 316 |
if not os.path.exists(weights_path):
|
| 317 |
os.makedirs('pretrained_models', exist_ok=True)
|
| 318 |
-
r = requests.get(model_url, stream=True)
|
| 319 |
r.raise_for_status()
|
| 320 |
with open(weights_path, 'wb') as f:
|
| 321 |
for chunk in r.iter_content(chunk_size=8192):
|
| 322 |
f.write(chunk)
|
| 323 |
-
|
| 324 |
model = YOLO(weights_path)
|
| 325 |
model.add_callback("on_train_epoch_end", on_epoch_end)
|
|
|
|
| 326 |
model.train(
|
| 327 |
-
data=os.path.join(dataset_path, 'data.yaml'),
|
| 328 |
-
|
| 329 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
)
|
| 331 |
metrics_queue.put("done")
|
| 332 |
except Exception as e:
|
| 333 |
-
logging.
|
| 334 |
metrics_queue.put(f"error: {e}")
|
| 335 |
|
| 336 |
Thread(target=train_thread_func, daemon=True).start()
|
|
@@ -339,38 +514,52 @@ def training_handler(dataset_path, model_filename, run_name, epochs, batch, imgs
|
|
| 339 |
while True:
|
| 340 |
item = metrics_queue.get()
|
| 341 |
if isinstance(item, str):
|
| 342 |
-
if item == "done":
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 353 |
ax_loss.plot(history['epoch'], history['train_loss'], "o-", label='Train Loss')
|
| 354 |
ax_loss.plot(history['epoch'], history['val_loss'], "o-", label='Val Loss')
|
| 355 |
-
ax_loss.legend()
|
| 356 |
-
|
| 357 |
-
|
|
|
|
|
|
|
|
|
|
| 358 |
ax_map.plot(history['epoch'], history['mAP50'], "o-", label='mAP@0.5')
|
| 359 |
ax_map.plot(history['epoch'], history['mAP50_95'], "o-", label='mAP@0.5:0.95')
|
| 360 |
-
ax_map.legend()
|
| 361 |
-
|
| 362 |
-
|
|
|
|
| 363 |
|
| 364 |
-
final_path = os.path.join('runs
|
| 365 |
if not os.path.exists(final_path):
|
| 366 |
raise gr.Error("Training finished, but 'best.pt' was not found.")
|
| 367 |
-
|
| 368 |
yield "Training complete!", None, None, gr.File.update(value=final_path, visible=True)
|
| 369 |
|
|
|
|
| 370 |
def upload_handler(model_file, hf_token, hf_repo, gh_token, gh_repo, progress=gr.Progress()):
|
| 371 |
-
"""Handles
|
| 372 |
-
if not model_file:
|
| 373 |
-
|
|
|
|
| 374 |
hf_status = "Skipped Hugging Face (credentials not provided)."
|
| 375 |
if hf_token and hf_repo:
|
| 376 |
progress(0, desc="Uploading to Hugging Face...")
|
|
@@ -379,54 +568,71 @@ def upload_handler(model_file, hf_token, hf_repo, gh_token, gh_repo, progress=gr
|
|
| 379 |
HfFolder.save_token(hf_token)
|
| 380 |
repo_url = api.create_repo(repo_id=hf_repo, exist_ok=True, token=hf_token)
|
| 381 |
api.upload_file(
|
| 382 |
-
path_or_fileobj=model_file.name,
|
| 383 |
-
|
|
|
|
|
|
|
| 384 |
)
|
| 385 |
hf_status = f"Success! Model at: {repo_url}"
|
| 386 |
-
except Exception as e:
|
|
|
|
| 387 |
|
| 388 |
gh_status = "Skipped GitHub (credentials not provided)."
|
| 389 |
if gh_token and gh_repo:
|
| 390 |
progress(0.5, desc="Uploading to GitHub...")
|
| 391 |
try:
|
|
|
|
|
|
|
|
|
|
| 392 |
username, repo_name = gh_repo.split('/')
|
| 393 |
api_url = f"https://api.github.com/repos/{username}/{repo_name}/contents/{os.path.basename(model_file.name)}"
|
| 394 |
headers = {"Authorization": f"token {gh_token}"}
|
| 395 |
-
|
| 396 |
-
with open(model_file.name, "rb") as f:
|
| 397 |
-
|
| 398 |
-
|
|
|
|
| 399 |
sha = get_resp.json().get('sha') if get_resp.ok else None
|
| 400 |
-
|
| 401 |
-
data = {"message": "Upload trained model from Rolo app", "content": content
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 408 |
progress(1)
|
| 409 |
return hf_status, gh_status
|
| 410 |
|
| 411 |
-
|
|
|
|
|
|
|
|
|
|
| 412 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="sky")) as app:
|
| 413 |
gr.Markdown("# Rolo: A Dedicated RT-DETR Training Dashboard")
|
| 414 |
-
|
| 415 |
# State variables
|
| 416 |
dataset_info_state = gr.State([])
|
| 417 |
final_dataset_path_state = gr.State(None)
|
| 418 |
|
| 419 |
with gr.Tabs():
|
| 420 |
with gr.TabItem("1. Prepare Datasets"):
|
| 421 |
-
gr.Markdown("### Load Roboflow Datasets\nProvide your Roboflow API key and upload a `.txt` file containing one Roboflow dataset URL per line.")
|
| 422 |
with gr.Row():
|
| 423 |
-
rf_api_key = gr.Textbox(label="Roboflow API Key", type="password", scale=2)
|
| 424 |
rf_url_file = gr.File(label="Upload Roboflow URLs (.txt)", file_types=[".txt"], scale=1)
|
| 425 |
load_btn = gr.Button("Load Datasets", variant="primary")
|
| 426 |
dataset_status = gr.Textbox(label="Status", interactive=False)
|
| 427 |
-
|
| 428 |
with gr.TabItem("2. Manage & Merge"):
|
| 429 |
-
gr.Markdown("### Configure Classes and Finalize Dataset\nRename classes to merge them, set image limits, or remove them. Click **Update Counts** to
|
| 430 |
with gr.Row():
|
| 431 |
class_df = gr.DataFrame(
|
| 432 |
headers=["Original Name", "Rename To", "Max Images", "Remove"],
|
|
@@ -434,9 +640,13 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="sky")) as app:
|
|
| 434 |
label="Class Configuration", interactive=True, scale=3
|
| 435 |
)
|
| 436 |
with gr.Column(scale=1):
|
| 437 |
-
class_count_summary_df = gr.DataFrame(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 438 |
update_counts_btn = gr.Button("Update Counts")
|
| 439 |
-
|
| 440 |
finalize_btn = gr.Button("Finalize Merged Dataset", variant="primary")
|
| 441 |
finalize_status = gr.Textbox(label="Status", interactive=False)
|
| 442 |
|
|
@@ -444,13 +654,15 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="sky")) as app:
|
|
| 444 |
gr.Markdown("### Set Hyperparameters and Train the RT-DETR Model")
|
| 445 |
with gr.Row():
|
| 446 |
with gr.Column(scale=1):
|
| 447 |
-
model_file_dd = gr.Dropdown(
|
| 448 |
-
|
|
|
|
|
|
|
|
|
|
| 449 |
run_name_tb = gr.Textbox(label="Run Name", value="rtdetr_run_1")
|
| 450 |
epochs_sl = gr.Slider(1, 500, 100, step=1, label="Epochs")
|
| 451 |
batch_sl = gr.Slider(1, 32, 8, step=1, label="Batch Size")
|
| 452 |
imgsz_num = gr.Number(label="Image Size", value=640)
|
| 453 |
-
# <<< FIXED: Removed the 'format' argument which is not supported.
|
| 454 |
lr_num = gr.Number(label="Learning Rate", value=0.001)
|
| 455 |
opt_dd = gr.Dropdown(["Adam", "AdamW", "SGD"], value="Adam", label="Optimizer")
|
| 456 |
train_btn = gr.Button("Start Training", variant="primary")
|
|
@@ -476,14 +688,34 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="sky")) as app:
|
|
| 476 |
hf_status = gr.Textbox(label="Hugging Face Status", interactive=False)
|
| 477 |
gh_status = gr.Textbox(label="GitHub Status", interactive=False)
|
| 478 |
|
| 479 |
-
#
|
| 480 |
-
load_btn.click(
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 487 |
|
| 488 |
if __name__ == "__main__":
|
| 489 |
-
|
|
|
|
|
|
|
|
|
| 3 |
import stat
|
| 4 |
import yaml
|
| 5 |
import gradio as gr
|
| 6 |
+
from ultralytics import YOLO # Ultralytics RT-DETR runner
|
| 7 |
from roboflow import Roboflow
|
| 8 |
import re
|
| 9 |
from urllib.parse import urlparse
|
|
|
|
| 40 |
}
|
| 41 |
DEFAULT_MODEL = "rtdetr-l.pt"
|
| 42 |
|
| 43 |
+
|
| 44 |
+
# ------------------------------
|
| 45 |
+
# Utilities
|
| 46 |
+
# ------------------------------
|
| 47 |
|
| 48 |
def handle_remove_readonly(func, path, exc_info):
|
| 49 |
"""Error handler for shutil.rmtree."""
|
| 50 |
+
try:
|
| 51 |
+
os.chmod(path, stat.S_IWRITE)
|
| 52 |
+
except Exception:
|
| 53 |
+
pass
|
| 54 |
func(path)
|
| 55 |
|
| 56 |
+
|
| 57 |
+
_ROBO_URL_RX = re.compile(
|
| 58 |
+
r"""
|
| 59 |
+
^(?:
|
| 60 |
+
(?:https?://)?(?:universe|app|www)?\.?roboflow\.com/ # Any roboflow host
|
| 61 |
+
(?P<ws>[A-Za-z0-9\-_]+)/ # workspace
|
| 62 |
+
(?P<proj>[A-Za-z0-9\-_]+)/? # project
|
| 63 |
+
(?:
|
| 64 |
+
(?:dataset/[^/]+/)? # optional 'dataset/<fmt>/'
|
| 65 |
+
(?:v?(?P<ver>\d+))? # optional version 'vN' or 'N'
|
| 66 |
+
)?
|
| 67 |
+
|
|
| 68 |
+
(?P<ws2>[A-Za-z0-9\-_]+)/(?P<proj2>[A-Za-z0-9\-_]+)(?:/(?:v)?(?P<ver2>\d+))? # raw ws/proj[/vN]
|
| 69 |
+
)$
|
| 70 |
+
""",
|
| 71 |
+
re.VERBOSE | re.IGNORECASE
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
def parse_roboflow_url(s: str):
|
| 75 |
+
"""
|
| 76 |
+
Accepts:
|
| 77 |
+
- https://universe.roboflow.com/<workspace>/<project>[/vN | /N]
|
| 78 |
+
- https://app.roboflow.com/<workspace>/<project>[/vN | /N]
|
| 79 |
+
- https://roboflow.com/<workspace>/<project>[/vN | /N]
|
| 80 |
+
- raw: <workspace>/<project>[/vN | /N]
|
| 81 |
+
Returns: (workspace, project, version_or_None)
|
| 82 |
+
"""
|
| 83 |
+
s = s.strip()
|
| 84 |
+
# Fast path: try regex
|
| 85 |
+
m = _ROBO_URL_RX.match(s)
|
| 86 |
+
if m:
|
| 87 |
+
ws = m.group('ws') or m.group('ws2')
|
| 88 |
+
proj = m.group('proj') or m.group('proj2')
|
| 89 |
+
ver = m.group('ver') or m.group('ver2')
|
| 90 |
+
return ws, proj, (int(ver) if ver else None)
|
| 91 |
+
|
| 92 |
+
# Fallback: parse like URL and split path
|
| 93 |
+
parsed = urlparse(s)
|
| 94 |
+
parts = [p for p in parsed.path.strip('/').split('/') if p]
|
| 95 |
+
if len(parts) >= 2:
|
| 96 |
+
# Try to pull raw version from the 3rd part if it exists
|
| 97 |
+
version = None
|
| 98 |
+
if len(parts) >= 3:
|
| 99 |
+
# Accept 'vN' or 'N'
|
| 100 |
+
vpart = parts[2]
|
| 101 |
+
if vpart.lower().startswith('v') and vpart[1:].isdigit():
|
| 102 |
+
version = int(vpart[1:])
|
| 103 |
+
elif vpart.isdigit():
|
| 104 |
+
version = int(vpart)
|
| 105 |
+
return parts[0], parts[1], version
|
| 106 |
+
|
| 107 |
+
# Fallback raw "ws/proj" without slashes in URL
|
| 108 |
+
if '/' in s and 'roboflow' not in s:
|
| 109 |
+
p = s.split('/')
|
| 110 |
+
if len(p) >= 2:
|
| 111 |
+
# Accept trailing version if present
|
| 112 |
+
version = None
|
| 113 |
+
if len(p) >= 3:
|
| 114 |
+
v = p[2]
|
| 115 |
+
if v.lower().startswith('v') and v[1:].isdigit():
|
| 116 |
+
version = int(v[1:])
|
| 117 |
+
elif v.isdigit():
|
| 118 |
+
version = int(v)
|
| 119 |
+
return p[0], p[1], version
|
| 120 |
+
|
| 121 |
return None, None, None
|
| 122 |
|
| 123 |
+
|
| 124 |
def get_latest_version(api_key, workspace, project):
|
| 125 |
"""Gets the latest version number of a Roboflow project."""
|
| 126 |
try:
|
|
|
|
| 132 |
logging.error(f"Could not get latest version for {workspace}/{project}: {e}")
|
| 133 |
return None
|
| 134 |
|
| 135 |
+
|
| 136 |
def download_dataset(api_key, workspace, project, version):
|
| 137 |
+
"""Downloads a single dataset from Roboflow (yolov8 format works fine for RT-DETR)."""
|
| 138 |
try:
|
| 139 |
rf = Roboflow(api_key=api_key)
|
| 140 |
proj = rf.workspace(workspace).project(project)
|
| 141 |
+
ver = proj.version(int(version))
|
| 142 |
+
dataset = ver.download("yolov8")
|
| 143 |
+
|
| 144 |
+
data_yaml_path = os.path.join(dataset.location, 'data.yaml')
|
| 145 |
+
with open(data_yaml_path, 'r') as f:
|
| 146 |
data_yaml = yaml.safe_load(f)
|
| 147 |
+
|
| 148 |
class_names = data_yaml.get('names', [])
|
| 149 |
+
splits = [s for s in ['train', 'valid', 'test']
|
| 150 |
+
if os.path.exists(os.path.join(dataset.location, s))]
|
| 151 |
+
|
| 152 |
return dataset.location, class_names, splits, f"{project}-v{version}"
|
| 153 |
except Exception as e:
|
| 154 |
logging.error(f"Failed to download {workspace}/{project}/v{version}: {e}")
|
| 155 |
return None, [], [], None
|
| 156 |
|
| 157 |
+
|
| 158 |
+
def label_path_for(img_path: str) -> str:
|
| 159 |
+
"""Convert .../split/images/file.jpg -> .../split/labels/file.txt in a safe way."""
|
| 160 |
+
split_dir = os.path.dirname(os.path.dirname(img_path)) # .../split
|
| 161 |
+
base = os.path.splitext(os.path.basename(img_path))[0] + '.txt'
|
| 162 |
+
return os.path.join(split_dir, 'labels', base)
|
| 163 |
+
|
| 164 |
+
|
| 165 |
def gather_class_counts(dataset_info, class_mapping):
|
| 166 |
+
"""
|
| 167 |
+
Count, per final class, how many images contain at least one instance of that class
|
| 168 |
+
(counted once per image). class_mapping maps original_name -> final_name.
|
| 169 |
+
"""
|
| 170 |
+
if not dataset_info:
|
| 171 |
+
return {}
|
| 172 |
+
|
| 173 |
+
final_names = set(class_mapping.values())
|
| 174 |
+
counts = {name: 0 for name in final_names}
|
| 175 |
|
| 176 |
for loc, names, splits, _ in dataset_info:
|
| 177 |
+
# Map from original idx -> mapped name (or None if removed later)
|
| 178 |
+
id_to_name = {}
|
| 179 |
+
for idx, n in enumerate(names):
|
| 180 |
+
id_to_name[idx] = class_mapping.get(n, None)
|
| 181 |
+
|
| 182 |
for split in splits:
|
| 183 |
labels_dir = os.path.join(loc, split, 'labels')
|
| 184 |
+
if not os.path.exists(labels_dir):
|
| 185 |
+
continue
|
| 186 |
for label_file in os.listdir(labels_dir):
|
| 187 |
+
if not label_file.endswith('.txt'):
|
| 188 |
+
continue
|
| 189 |
+
found = set()
|
| 190 |
with open(os.path.join(labels_dir, label_file), 'r') as f:
|
| 191 |
for line in f:
|
| 192 |
+
parts = line.strip().split()
|
| 193 |
+
if not parts:
|
| 194 |
+
continue
|
| 195 |
try:
|
| 196 |
+
cls_id = int(parts[0])
|
| 197 |
+
mapped = id_to_name.get(cls_id, None)
|
| 198 |
+
if mapped in final_names:
|
| 199 |
+
found.add(mapped)
|
| 200 |
+
except Exception:
|
|
|
|
| 201 |
continue
|
| 202 |
+
for m in found:
|
| 203 |
+
counts[m] += 1
|
| 204 |
+
|
| 205 |
return counts
|
| 206 |
|
| 207 |
+
|
| 208 |
def finalize_merged_dataset(dataset_info, class_mapping, class_limits, progress=gr.Progress()):
|
| 209 |
+
"""Core function to merge datasets based on user rules."""
|
| 210 |
merged_dir = 'rolo_merged_dataset'
|
| 211 |
if os.path.exists(merged_dir):
|
| 212 |
shutil.rmtree(merged_dir, onerror=handle_remove_readonly)
|
| 213 |
+
|
| 214 |
progress(0, desc="Creating directories...")
|
| 215 |
for split in ['train', 'valid', 'test']:
|
| 216 |
os.makedirs(os.path.join(merged_dir, split, 'images'), exist_ok=True)
|
| 217 |
os.makedirs(os.path.join(merged_dir, split, 'labels'), exist_ok=True)
|
| 218 |
|
| 219 |
+
# Only classes with positive limits are active
|
| 220 |
+
active_classes = [cls for cls, limit in class_limits.items() if limit > 0]
|
| 221 |
+
active_classes = sorted(set(active_classes))
|
| 222 |
final_class_map = {name: i for i, name in enumerate(active_classes)}
|
| 223 |
|
| 224 |
+
# Collect all candidate images
|
| 225 |
all_images = []
|
| 226 |
for loc, _, splits, _ in dataset_info:
|
| 227 |
for split in splits:
|
| 228 |
img_dir = os.path.join(loc, split, 'images')
|
| 229 |
+
if not os.path.exists(img_dir):
|
| 230 |
+
continue
|
| 231 |
for img_file in os.listdir(img_dir):
|
| 232 |
if img_file.lower().endswith(('.jpg', '.jpeg', '.png')):
|
| 233 |
all_images.append((os.path.join(img_dir, img_file), split, loc))
|
| 234 |
random.shuffle(all_images)
|
| 235 |
+
|
| 236 |
progress(0.2, desc="Selecting images based on limits...")
|
| 237 |
+
selected_images = []
|
| 238 |
current_counts = {cls: 0 for cls in active_classes}
|
| 239 |
|
| 240 |
+
# Build a quick lookup: source_loc -> names list
|
| 241 |
+
loc_to_names = {info[0]: info[1] for info in dataset_info}
|
| 242 |
+
|
| 243 |
+
for img_path, split, source_loc in progress.tqdm(all_images, desc="Analyzing images"):
|
| 244 |
+
lbl_path = label_path_for(img_path)
|
| 245 |
+
if not os.path.exists(lbl_path):
|
| 246 |
+
continue
|
| 247 |
+
|
| 248 |
+
source_names = loc_to_names.get(source_loc, [])
|
| 249 |
image_classes = set()
|
| 250 |
with open(lbl_path, 'r') as f:
|
| 251 |
for line in f:
|
| 252 |
+
parts = line.strip().split()
|
| 253 |
+
if not parts:
|
| 254 |
+
continue
|
| 255 |
try:
|
| 256 |
+
cls_id = int(parts[0])
|
| 257 |
+
orig = source_names[cls_id]
|
| 258 |
+
mapped = class_mapping.get(orig, orig)
|
| 259 |
+
if mapped in active_classes:
|
| 260 |
+
image_classes.add(mapped)
|
| 261 |
+
except Exception:
|
| 262 |
+
continue
|
| 263 |
+
|
| 264 |
+
if not image_classes:
|
| 265 |
+
continue
|
| 266 |
+
|
| 267 |
+
# Check limits
|
| 268 |
+
if any(current_counts[c] >= class_limits[c] for c in image_classes):
|
| 269 |
+
continue
|
| 270 |
+
|
| 271 |
+
selected_images.append((img_path, split))
|
| 272 |
+
for c in image_classes:
|
| 273 |
+
current_counts[c] += 1
|
| 274 |
+
|
| 275 |
progress(0.6, desc=f"Copying {len(selected_images)} files...")
|
| 276 |
for img_path, split in progress.tqdm(selected_images, desc="Finalizing files"):
|
| 277 |
+
lbl_path = label_path_for(img_path)
|
| 278 |
+
out_img = os.path.join(merged_dir, split, 'images', os.path.basename(img_path))
|
| 279 |
+
out_lbl = os.path.join(merged_dir, split, 'labels', os.path.basename(lbl_path))
|
| 280 |
+
shutil.copy(img_path, out_img)
|
| 281 |
+
|
| 282 |
+
# Determine source names by matching the parent dataset root
|
| 283 |
+
source_loc = None
|
| 284 |
+
for info in dataset_info:
|
| 285 |
+
if img_path.startswith(info[0]):
|
| 286 |
+
source_loc = info[0]
|
| 287 |
+
break
|
| 288 |
+
source_names = loc_to_names.get(source_loc, [])
|
| 289 |
+
|
| 290 |
+
with open(lbl_path, 'r') as f_in, open(out_lbl, 'w') as f_out:
|
| 291 |
for line in f_in:
|
| 292 |
+
parts = line.strip().split()
|
| 293 |
+
if not parts:
|
| 294 |
+
continue
|
| 295 |
try:
|
| 296 |
+
old_id = int(parts[0])
|
| 297 |
+
original_name = source_names[old_id]
|
|
|
|
| 298 |
mapped_name = class_mapping.get(original_name, original_name)
|
| 299 |
if mapped_name in final_class_map:
|
| 300 |
new_id = final_class_map[mapped_name]
|
| 301 |
f_out.write(f"{new_id} {' '.join(parts[1:])}\n")
|
| 302 |
+
except Exception:
|
| 303 |
+
continue
|
| 304 |
|
| 305 |
progress(0.95, desc="Creating data.yaml...")
|
| 306 |
with open(os.path.join(merged_dir, 'data.yaml'), 'w') as f:
|
| 307 |
yaml.dump({
|
| 308 |
+
'path': os.path.abspath(merged_dir),
|
| 309 |
+
'train': 'train/images',
|
| 310 |
+
'val': 'valid/images',
|
| 311 |
+
'test': 'test/images',
|
| 312 |
+
'nc': len(active_classes),
|
| 313 |
+
'names': active_classes
|
| 314 |
}, f)
|
| 315 |
+
|
| 316 |
return f"Dataset finalized with {len(selected_images)} images.", os.path.abspath(merged_dir)
|
| 317 |
|
| 318 |
|
| 319 |
+
# ------------------------------
|
| 320 |
+
# Gradio UI Event Handlers
|
| 321 |
+
# ------------------------------
|
| 322 |
|
| 323 |
def load_datasets_handler(api_key, url_file, progress=gr.Progress()):
|
| 324 |
"""Handles the 'Load Datasets' button click."""
|
| 325 |
+
api_key = api_key or os.getenv("ROBOFLOW_API_KEY", "")
|
| 326 |
+
if not api_key:
|
| 327 |
+
raise gr.Error("Roboflow API Key is required (or set ROBOFLOW_API_KEY).")
|
| 328 |
+
if not url_file:
|
| 329 |
+
raise gr.Error("Please upload a .txt file with Roboflow URLs or lines like 'workspace/project[/vN]'.")
|
| 330 |
|
| 331 |
+
with open(url_file.name, 'r', encoding='utf-8', errors='ignore') as f:
|
| 332 |
urls = [line.strip() for line in f if line.strip()]
|
| 333 |
+
|
| 334 |
dataset_info = []
|
| 335 |
+
failures = []
|
| 336 |
+
|
| 337 |
+
for i, raw in enumerate(urls):
|
| 338 |
+
progress((i + 1) / max(1, len(urls)), desc=f"Parsing {i+1}/{len(urls)}")
|
| 339 |
+
ws, proj, ver = parse_roboflow_url(raw)
|
| 340 |
+
if not (ws and proj):
|
| 341 |
+
failures.append((raw, "ParseError: could not resolve workspace/project"))
|
| 342 |
continue
|
| 343 |
+
|
| 344 |
+
if ver is None:
|
| 345 |
+
ver = get_latest_version(api_key, ws, proj)
|
| 346 |
+
if ver is None:
|
| 347 |
+
failures.append((raw, f"Could not resolve latest version for {ws}/{proj}"))
|
| 348 |
continue
|
| 349 |
+
|
| 350 |
+
loc, names, splits, name_str = download_dataset(api_key, ws, proj, int(ver))
|
| 351 |
if loc:
|
| 352 |
dataset_info.append((loc, names, splits, name_str))
|
| 353 |
+
else:
|
| 354 |
+
failures.append((raw, f"DownloadError: {ws}/{proj}/v{ver}"))
|
| 355 |
+
|
| 356 |
+
if not dataset_info:
|
| 357 |
+
# Show a compact failure report to the UI
|
| 358 |
+
msg = "No datasets were loaded successfully.\n" + "\n".join([f"- {u}: {why}" for u, why in failures[:10]])
|
| 359 |
+
raise gr.Error(msg)
|
| 360 |
|
| 361 |
all_names = sorted(list(set(n for _, names, _, _ in dataset_info for n in names)))
|
| 362 |
class_map = {name: name for name in all_names}
|
| 363 |
+
|
| 364 |
+
# Initial preview uses "keep all" mapping
|
| 365 |
initial_counts = gather_class_counts(dataset_info, class_map)
|
| 366 |
df_data = [[name, name, initial_counts.get(name, 0), False] for name in all_names]
|
| 367 |
+
status_text = "Datasets loaded successfully."
|
| 368 |
+
if failures:
|
| 369 |
+
status_text += f" ({len(dataset_info)} OK, {len(failures)} failed; see console logs)."
|
| 370 |
+
|
| 371 |
+
return status_text, dataset_info, gr.DataFrame.update(
|
| 372 |
+
value=pd.DataFrame(df_data, columns=["Original Name", "Rename To", "Max Images", "Remove"])
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
|
| 376 |
def update_class_counts_handler(class_df, dataset_info):
|
| 377 |
+
"""
|
| 378 |
+
Provides live feedback on class counts as the user edits the DataFrame.
|
| 379 |
+
We compute a mapping of original -> final (or None if removed), then count images
|
| 380 |
+
for each final name.
|
| 381 |
+
"""
|
| 382 |
+
if class_df is None or not dataset_info:
|
| 383 |
+
return None
|
| 384 |
+
|
| 385 |
+
# Build mapping original_name -> final_name or None if removed
|
| 386 |
+
class_df = pd.DataFrame(class_df)
|
| 387 |
+
mapping = {}
|
| 388 |
for _, row in class_df.iterrows():
|
| 389 |
+
orig = row["Original Name"]
|
| 390 |
+
if bool(row["Remove"]):
|
| 391 |
+
mapping[orig] = None
|
| 392 |
+
else:
|
| 393 |
+
mapping[orig] = row["Rename To"]
|
| 394 |
+
|
| 395 |
+
# Build final set
|
| 396 |
+
final_names = sorted(set(v for v in mapping.values() if v))
|
| 397 |
+
counts = {k: 0 for k in final_names}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 398 |
|
| 399 |
for loc, names, splits, _ in dataset_info:
|
| 400 |
+
id_to_final = {}
|
| 401 |
+
for idx, n in enumerate(names):
|
| 402 |
+
id_to_final[idx] = mapping.get(n, None)
|
| 403 |
+
|
| 404 |
for split in splits:
|
| 405 |
labels_dir = os.path.join(loc, split, 'labels')
|
| 406 |
+
if not os.path.exists(labels_dir):
|
| 407 |
+
continue
|
| 408 |
for label_file in os.listdir(labels_dir):
|
| 409 |
+
if not label_file.endswith('.txt'):
|
| 410 |
+
continue
|
| 411 |
+
found = set()
|
| 412 |
with open(os.path.join(labels_dir, label_file), 'r') as f:
|
| 413 |
for line in f:
|
| 414 |
+
parts = line.strip().split()
|
| 415 |
+
if not parts:
|
| 416 |
+
continue
|
| 417 |
try:
|
| 418 |
+
cls_id = int(parts[0])
|
| 419 |
+
mapped = id_to_final.get(cls_id, None)
|
| 420 |
+
if mapped:
|
| 421 |
+
found.add(mapped)
|
| 422 |
+
except Exception:
|
| 423 |
+
continue
|
| 424 |
+
for m in found:
|
| 425 |
+
counts[m] += 1
|
| 426 |
+
|
| 427 |
+
summary_df = pd.DataFrame(list(counts.items()), columns=["Final Class Name", "Est. Total Images"])
|
|
|
|
|
|
|
| 428 |
return summary_df
|
| 429 |
|
| 430 |
+
|
| 431 |
def finalize_handler(dataset_info, class_df, progress=gr.Progress()):
|
| 432 |
"""Handles the 'Finalize' button click."""
|
| 433 |
+
if not dataset_info:
|
| 434 |
+
raise gr.Error("Load datasets first in Tab 1.")
|
| 435 |
+
if class_df is None:
|
| 436 |
+
raise gr.Error("Class data is missing.")
|
| 437 |
+
|
| 438 |
+
# Mapping and limits
|
| 439 |
+
class_df = pd.DataFrame(class_df)
|
| 440 |
+
class_mapping = {}
|
| 441 |
class_limits = {}
|
| 442 |
for _, row in class_df.iterrows():
|
| 443 |
+
orig = row["Original Name"]
|
| 444 |
+
if bool(row["Remove"]):
|
| 445 |
+
continue
|
| 446 |
+
final_name = row["Rename To"]
|
| 447 |
+
class_mapping[orig] = final_name
|
| 448 |
+
# Sum limits for final_name over any merged originals
|
| 449 |
+
class_limits[final_name] = class_limits.get(final_name, 0) + int(row["Max Images"])
|
| 450 |
+
|
| 451 |
+
# Any original not present in mapping will map to itself (keep behavior)
|
| 452 |
+
# BUT we do not want to include classes with 0 limit in the final dataset
|
| 453 |
+
# finalize_merged_dataset uses the limits dict to decide active classes.
|
| 454 |
status, path = finalize_merged_dataset(dataset_info, class_mapping, class_limits, progress)
|
| 455 |
return status, path
|
| 456 |
|
| 457 |
+
|
| 458 |
def training_handler(dataset_path, model_filename, run_name, epochs, batch, imgsz, lr, opt, progress=gr.Progress()):
|
| 459 |
+
"""Handles the training process with live feedback."""
|
| 460 |
+
if not dataset_path:
|
| 461 |
+
raise gr.Error("Finalize a dataset in Tab 2 before training.")
|
| 462 |
+
|
| 463 |
+
# Ultralytics expects device string, e.g. '0' or 'cpu'
|
| 464 |
+
device_str = "0" if torch.cuda.is_available() else "cpu"
|
| 465 |
|
| 466 |
metrics_queue = Queue()
|
| 467 |
+
|
| 468 |
def on_epoch_end(trainer):
|
| 469 |
+
# Be defensive about metric keys
|
| 470 |
+
m = trainer.metrics or {}
|
| 471 |
metrics_queue.put({
|
| 472 |
+
'epoch': (trainer.epoch or 0) + 1,
|
| 473 |
+
'train_loss': m.get('train/loss') or m.get('loss'),
|
| 474 |
+
'val_loss': m.get('val/loss'),
|
| 475 |
+
'mAP50': m.get('metrics/mAP50(B)') or m.get('metrics/mAP50'),
|
| 476 |
+
'mAP50_95': m.get('metrics/mAP50-95(B)') or m.get('metrics/mAP50-95')
|
| 477 |
})
|
| 478 |
|
| 479 |
def train_thread_func():
|
|
|
|
| 482 |
weights_path = os.path.join('pretrained_models', model_filename)
|
| 483 |
if not os.path.exists(weights_path):
|
| 484 |
os.makedirs('pretrained_models', exist_ok=True)
|
| 485 |
+
r = requests.get(model_url, stream=True, timeout=60)
|
| 486 |
r.raise_for_status()
|
| 487 |
with open(weights_path, 'wb') as f:
|
| 488 |
for chunk in r.iter_content(chunk_size=8192):
|
| 489 |
f.write(chunk)
|
| 490 |
+
|
| 491 |
model = YOLO(weights_path)
|
| 492 |
model.add_callback("on_train_epoch_end", on_epoch_end)
|
| 493 |
+
|
| 494 |
model.train(
|
| 495 |
+
data=os.path.join(dataset_path, 'data.yaml'),
|
| 496 |
+
epochs=int(epochs),
|
| 497 |
+
batch=int(batch),
|
| 498 |
+
imgsz=int(imgsz),
|
| 499 |
+
lr0=float(lr),
|
| 500 |
+
optimizer=str(opt),
|
| 501 |
+
project='runs/train',
|
| 502 |
+
name=str(run_name),
|
| 503 |
+
exist_ok=True,
|
| 504 |
+
device=device_str
|
| 505 |
)
|
| 506 |
metrics_queue.put("done")
|
| 507 |
except Exception as e:
|
| 508 |
+
logging.exception("Training thread error")
|
| 509 |
metrics_queue.put(f"error: {e}")
|
| 510 |
|
| 511 |
Thread(target=train_thread_func, daemon=True).start()
|
|
|
|
| 514 |
while True:
|
| 515 |
item = metrics_queue.get()
|
| 516 |
if isinstance(item, str):
|
| 517 |
+
if item == "done":
|
| 518 |
+
break
|
| 519 |
+
if item.startswith("error"):
|
| 520 |
+
raise gr.Error(f"Training failed: {item}")
|
| 521 |
+
|
| 522 |
+
# Append metrics
|
| 523 |
+
for key in ['epoch', 'train_loss', 'val_loss', 'mAP50', 'mAP50_95']:
|
| 524 |
+
val = item.get(key, None)
|
| 525 |
+
if val is not None:
|
| 526 |
+
history[key].append(val)
|
| 527 |
+
|
| 528 |
+
current_epoch = history['epoch'][-1] if history['epoch'] else 0
|
| 529 |
+
total_epochs = int(epochs)
|
| 530 |
+
frac = min(max(current_epoch / max(1, total_epochs), 0.0), 1.0)
|
| 531 |
+
progress(frac, desc=f"Epoch {current_epoch}/{total_epochs}")
|
| 532 |
+
|
| 533 |
+
# Plot Loss
|
| 534 |
+
fig_loss = plt.figure()
|
| 535 |
+
ax_loss = fig_loss.add_subplot(111)
|
| 536 |
ax_loss.plot(history['epoch'], history['train_loss'], "o-", label='Train Loss')
|
| 537 |
ax_loss.plot(history['epoch'], history['val_loss'], "o-", label='Val Loss')
|
| 538 |
+
ax_loss.legend()
|
| 539 |
+
ax_loss.set_title("Loss")
|
| 540 |
+
|
| 541 |
+
# Plot mAP
|
| 542 |
+
fig_map = plt.figure()
|
| 543 |
+
ax_map = fig_map.add_subplot(111)
|
| 544 |
ax_map.plot(history['epoch'], history['mAP50'], "o-", label='mAP@0.5')
|
| 545 |
ax_map.plot(history['epoch'], history['mAP50_95'], "o-", label='mAP@0.5:0.95')
|
| 546 |
+
ax_map.legend()
|
| 547 |
+
ax_map.set_title("mAP")
|
| 548 |
+
|
| 549 |
+
yield f"Epoch {current_epoch}/{total_epochs} complete.", fig_loss, fig_map, None
|
| 550 |
|
| 551 |
+
final_path = os.path.join('runs', 'train', str(run_name), 'weights', 'best.pt')
|
| 552 |
if not os.path.exists(final_path):
|
| 553 |
raise gr.Error("Training finished, but 'best.pt' was not found.")
|
| 554 |
+
|
| 555 |
yield "Training complete!", None, None, gr.File.update(value=final_path, visible=True)
|
| 556 |
|
| 557 |
+
|
| 558 |
def upload_handler(model_file, hf_token, hf_repo, gh_token, gh_repo, progress=gr.Progress()):
|
| 559 |
+
"""Handles model upload to Hugging Face and GitHub."""
|
| 560 |
+
if not model_file:
|
| 561 |
+
raise gr.Error("No trained model file available to upload. Train a model first.")
|
| 562 |
+
|
| 563 |
hf_status = "Skipped Hugging Face (credentials not provided)."
|
| 564 |
if hf_token and hf_repo:
|
| 565 |
progress(0, desc="Uploading to Hugging Face...")
|
|
|
|
| 568 |
HfFolder.save_token(hf_token)
|
| 569 |
repo_url = api.create_repo(repo_id=hf_repo, exist_ok=True, token=hf_token)
|
| 570 |
api.upload_file(
|
| 571 |
+
path_or_fileobj=model_file.name,
|
| 572 |
+
path_in_repo=os.path.basename(model_file.name),
|
| 573 |
+
repo_id=hf_repo,
|
| 574 |
+
token=hf_token
|
| 575 |
)
|
| 576 |
hf_status = f"Success! Model at: {repo_url}"
|
| 577 |
+
except Exception as e:
|
| 578 |
+
hf_status = f"Hugging Face Error: {e}"
|
| 579 |
|
| 580 |
gh_status = "Skipped GitHub (credentials not provided)."
|
| 581 |
if gh_token and gh_repo:
|
| 582 |
progress(0.5, desc="Uploading to GitHub...")
|
| 583 |
try:
|
| 584 |
+
if '/' not in gh_repo:
|
| 585 |
+
raise ValueError("GitHub repo must be in the form 'username/repo'.")
|
| 586 |
+
|
| 587 |
username, repo_name = gh_repo.split('/')
|
| 588 |
api_url = f"https://api.github.com/repos/{username}/{repo_name}/contents/{os.path.basename(model_file.name)}"
|
| 589 |
headers = {"Authorization": f"token {gh_token}"}
|
| 590 |
+
|
| 591 |
+
with open(model_file.name, "rb") as f:
|
| 592 |
+
content = base64.b64encode(f.read()).decode()
|
| 593 |
+
|
| 594 |
+
get_resp = requests.get(api_url, headers=headers, timeout=30)
|
| 595 |
sha = get_resp.json().get('sha') if get_resp.ok else None
|
| 596 |
+
|
| 597 |
+
data = {"message": "Upload trained model from Rolo app", "content": content}
|
| 598 |
+
if sha:
|
| 599 |
+
data["sha"] = sha
|
| 600 |
+
|
| 601 |
+
put_resp = requests.put(api_url, headers=headers, json=data, timeout=60)
|
| 602 |
+
|
| 603 |
+
if put_resp.ok:
|
| 604 |
+
gh_status = f"Success! Model at: {put_resp.json()['content']['html_url']}"
|
| 605 |
+
else:
|
| 606 |
+
msg = put_resp.json().get('message', 'Unknown')
|
| 607 |
+
gh_status = f"GitHub Error: {msg}"
|
| 608 |
+
except Exception as e:
|
| 609 |
+
gh_status = f"GitHub Error: {e}"
|
| 610 |
+
|
| 611 |
progress(1)
|
| 612 |
return hf_status, gh_status
|
| 613 |
|
| 614 |
+
|
| 615 |
+
# ------------------------------
|
| 616 |
+
# Gradio UI
|
| 617 |
+
# ------------------------------
|
| 618 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="sky")) as app:
|
| 619 |
gr.Markdown("# Rolo: A Dedicated RT-DETR Training Dashboard")
|
| 620 |
+
|
| 621 |
# State variables
|
| 622 |
dataset_info_state = gr.State([])
|
| 623 |
final_dataset_path_state = gr.State(None)
|
| 624 |
|
| 625 |
with gr.Tabs():
|
| 626 |
with gr.TabItem("1. Prepare Datasets"):
|
| 627 |
+
gr.Markdown("### Load Roboflow Datasets\nProvide your Roboflow API key and upload a `.txt` file containing one Roboflow dataset URL or `workspace/project[/vN]` per line.")
|
| 628 |
with gr.Row():
|
| 629 |
+
rf_api_key = gr.Textbox(label="Roboflow API Key (or set ROBOFLOW_API_KEY env)", type="password", scale=2)
|
| 630 |
rf_url_file = gr.File(label="Upload Roboflow URLs (.txt)", file_types=[".txt"], scale=1)
|
| 631 |
load_btn = gr.Button("Load Datasets", variant="primary")
|
| 632 |
dataset_status = gr.Textbox(label="Status", interactive=False)
|
| 633 |
+
|
| 634 |
with gr.TabItem("2. Manage & Merge"):
|
| 635 |
+
gr.Markdown("### Configure Classes and Finalize Dataset\nRename classes to merge them, set image limits, or remove them. Click **Update Counts** to preview, then **Finalize** to create the dataset.")
|
| 636 |
with gr.Row():
|
| 637 |
class_df = gr.DataFrame(
|
| 638 |
headers=["Original Name", "Rename To", "Max Images", "Remove"],
|
|
|
|
| 640 |
label="Class Configuration", interactive=True, scale=3
|
| 641 |
)
|
| 642 |
with gr.Column(scale=1):
|
| 643 |
+
class_count_summary_df = gr.DataFrame(
|
| 644 |
+
label="Merged Class Counts Preview",
|
| 645 |
+
headers=["Final Class Name", "Est. Total Images"],
|
| 646 |
+
interactive=False
|
| 647 |
+
)
|
| 648 |
update_counts_btn = gr.Button("Update Counts")
|
| 649 |
+
|
| 650 |
finalize_btn = gr.Button("Finalize Merged Dataset", variant="primary")
|
| 651 |
finalize_status = gr.Textbox(label="Status", interactive=False)
|
| 652 |
|
|
|
|
| 654 |
gr.Markdown("### Set Hyperparameters and Train the RT-DETR Model")
|
| 655 |
with gr.Row():
|
| 656 |
with gr.Column(scale=1):
|
| 657 |
+
model_file_dd = gr.Dropdown(
|
| 658 |
+
label="Select Pre-Trained RT-DETR Model",
|
| 659 |
+
choices=[m["filename"] for m in RTDETR_MODELS["detection"]],
|
| 660 |
+
value=DEFAULT_MODEL
|
| 661 |
+
)
|
| 662 |
run_name_tb = gr.Textbox(label="Run Name", value="rtdetr_run_1")
|
| 663 |
epochs_sl = gr.Slider(1, 500, 100, step=1, label="Epochs")
|
| 664 |
batch_sl = gr.Slider(1, 32, 8, step=1, label="Batch Size")
|
| 665 |
imgsz_num = gr.Number(label="Image Size", value=640)
|
|
|
|
| 666 |
lr_num = gr.Number(label="Learning Rate", value=0.001)
|
| 667 |
opt_dd = gr.Dropdown(["Adam", "AdamW", "SGD"], value="Adam", label="Optimizer")
|
| 668 |
train_btn = gr.Button("Start Training", variant="primary")
|
|
|
|
| 688 |
hf_status = gr.Textbox(label="Hugging Face Status", interactive=False)
|
| 689 |
gh_status = gr.Textbox(label="GitHub Status", interactive=False)
|
| 690 |
|
| 691 |
+
# Wire UI handlers
|
| 692 |
+
load_btn.click(
|
| 693 |
+
fn=load_datasets_handler,
|
| 694 |
+
inputs=[rf_api_key, rf_url_file],
|
| 695 |
+
outputs=[dataset_status, dataset_info_state, class_df]
|
| 696 |
+
)
|
| 697 |
+
update_counts_btn.click(
|
| 698 |
+
fn=update_class_counts_handler,
|
| 699 |
+
inputs=[class_df, dataset_info_state],
|
| 700 |
+
outputs=[class_count_summary_df]
|
| 701 |
+
)
|
| 702 |
+
finalize_btn.click(
|
| 703 |
+
fn=finalize_handler,
|
| 704 |
+
inputs=[dataset_info_state, class_df],
|
| 705 |
+
outputs=[finalize_status, final_dataset_path_state]
|
| 706 |
+
)
|
| 707 |
+
train_btn.click(
|
| 708 |
+
fn=training_handler,
|
| 709 |
+
inputs=[final_dataset_path_state, model_file_dd, run_name_tb, epochs_sl, batch_sl, imgsz_num, lr_num, opt_dd],
|
| 710 |
+
outputs=[train_status, loss_plot, map_plot, final_model_file]
|
| 711 |
+
)
|
| 712 |
+
upload_btn.click(
|
| 713 |
+
fn=upload_handler,
|
| 714 |
+
inputs=[final_model_file, hf_token, hf_repo, gh_token, gh_repo],
|
| 715 |
+
outputs=[hf_status, gh_status]
|
| 716 |
+
)
|
| 717 |
|
| 718 |
if __name__ == "__main__":
|
| 719 |
+
# Tip: silence Ultralytics settings warning by setting env var:
|
| 720 |
+
# export YOLO_CONFIG_DIR=/tmp/Ultralytics
|
| 721 |
+
app.launch(debug=True)
|