Spaces:
Runtime error
Runtime error
Commit
·
9693451
1
Parent(s):
afecc76
language_modeling_ipynb
Browse files- language_modeling_ipynb.ipynb +0 -0
- language_modeling_ipynb.py +254 -0
language_modeling_ipynb.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
language_modeling_ipynb.py
ADDED
|
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""“language_modeling.ipynb”的副本
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1baqtirf_2hHx2-byvSi0iZo4g_5Rm_nZ
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
# Transformers installation
|
| 11 |
+
! pip install transformers datasets
|
| 12 |
+
# To install from source instead of the last release, comment the command above and uncomment the following one.
|
| 13 |
+
# ! pip install git+https://github.com/huggingface/transformers.git
|
| 14 |
+
|
| 15 |
+
"""# Causal language modeling
|
| 16 |
+
|
| 17 |
+
There are two types of language modeling, causal and masked. This guide illustrates causal language modeling.
|
| 18 |
+
Causal language models are frequently used for text generation. You can use these models for creative applications like
|
| 19 |
+
choosing your own text adventure or an intelligent coding assistant like Copilot or CodeParrot.
|
| 20 |
+
"""
|
| 21 |
+
|
| 22 |
+
#@title
|
| 23 |
+
from IPython.display import HTML
|
| 24 |
+
|
| 25 |
+
HTML('<iframe width="560" height="315" src="https://www.youtube.com/embed/Vpjb1lu0MDk?rel=0&controls=0&showinfo=0" frameborder="0" allowfullscreen></iframe>')
|
| 26 |
+
|
| 27 |
+
"""Causal language modeling predicts the next token in a sequence of tokens, and the model can only attend to tokens on
|
| 28 |
+
the left. This means the model cannot see future tokens. GPT-2 is an example of a causal language model.
|
| 29 |
+
|
| 30 |
+
This guide will show you how to:
|
| 31 |
+
|
| 32 |
+
1. Finetune [DistilGPT2](https://huggingface.co/distilgpt2) on the [r/askscience](https://www.reddit.com/r/askscience/) subset of the [ELI5](https://huggingface.co/datasets/eli5) dataset.
|
| 33 |
+
2. Use your finetuned model for inference.
|
| 34 |
+
|
| 35 |
+
<Tip>
|
| 36 |
+
You can finetune other architectures for causal language modeling following the same steps in this guide.
|
| 37 |
+
Choose one of the following architectures:
|
| 38 |
+
|
| 39 |
+
<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->
|
| 40 |
+
[BART](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/bart), [BERT](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/bert), [Bert Generation](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/bert-generation), [BigBird](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/big_bird), [BigBird-Pegasus](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/bigbird_pegasus), [BioGpt](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/biogpt), [Blenderbot](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/blenderbot), [BlenderbotSmall](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/blenderbot-small), [BLOOM](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/bloom), [CamemBERT](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/camembert), [CodeGen](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/codegen), [CPM-Ant](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/cpmant), [CTRL](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/ctrl), [Data2VecText](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/data2vec-text), [ELECTRA](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/electra), [ERNIE](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/ernie), [GIT](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/git), [GPT-Sw3](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/gpt-sw3), [OpenAI GPT-2](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/gpt2), [GPTBigCode](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/gpt_bigcode), [GPT Neo](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/gpt_neo), [GPT NeoX](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/gpt_neox), [GPT NeoX Japanese](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/gpt_neox_japanese), [GPT-J](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/gptj), [LLaMA](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/llama), [Marian](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/marian), [mBART](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/mbart), [MEGA](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/mega), [Megatron-BERT](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/megatron-bert), [MVP](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/mvp), [OpenLlama](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/open-llama), [OpenAI GPT](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/openai-gpt), [OPT](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/opt), [Pegasus](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/pegasus), [PLBart](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/plbart), [ProphetNet](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/prophetnet), [QDQBert](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/qdqbert), [Reformer](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/reformer), [RemBERT](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/rembert), [RoBERTa](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/roberta), [RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/roberta-prelayernorm), [RoCBert](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/roc_bert), [RoFormer](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/roformer), [RWKV](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/rwkv), [Speech2Text2](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/speech_to_text_2), [Transformer-XL](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/transfo-xl), [TrOCR](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/trocr), [XGLM](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/xglm), [XLM](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/xlm), [XLM-ProphetNet](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/xlm-prophetnet), [XLM-RoBERTa](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/xlm-roberta), [XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/xlm-roberta-xl), [XLNet](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/xlnet), [X-MOD](https://huggingface.co/docs/transformers/main/en/tasks/../model_doc/xmod)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
<!--End of the generated tip-->
|
| 44 |
+
|
| 45 |
+
</Tip>
|
| 46 |
+
|
| 47 |
+
Before you begin, make sure you have all the necessary libraries installed:
|
| 48 |
+
|
| 49 |
+
```bash
|
| 50 |
+
pip install transformers datasets evaluate
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
We encourage you to log in to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to log in:
|
| 54 |
+
"""
|
| 55 |
+
|
| 56 |
+
from huggingface_hub import notebook_login
|
| 57 |
+
|
| 58 |
+
notebook_login()
|
| 59 |
+
|
| 60 |
+
"""## Load ELI5 dataset
|
| 61 |
+
|
| 62 |
+
Start by loading a smaller subset of the r/askscience subset of the ELI5 dataset from the 🤗 Datasets library.
|
| 63 |
+
This'll give you a chance to experiment and make sure everything works before spending more time training on the full dataset.
|
| 64 |
+
"""
|
| 65 |
+
|
| 66 |
+
from datasets import load_dataset
|
| 67 |
+
|
| 68 |
+
eli5 = load_dataset("eli5", split="train_asks[:5000]")
|
| 69 |
+
|
| 70 |
+
"""Split the dataset's `train_asks` split into a train and test set with the [train_test_split](https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.train_test_split) method:"""
|
| 71 |
+
|
| 72 |
+
eli5 = eli5.train_test_split(test_size=0.2)
|
| 73 |
+
|
| 74 |
+
"""Then take a look at an example:"""
|
| 75 |
+
|
| 76 |
+
eli5["train"][0]
|
| 77 |
+
|
| 78 |
+
"""While this may look like a lot, you're only really interested in the `text` field. What's cool about language modeling
|
| 79 |
+
tasks is you don't need labels (also known as an unsupervised task) because the next word *is* the label.
|
| 80 |
+
|
| 81 |
+
## Preprocess
|
| 82 |
+
"""
|
| 83 |
+
|
| 84 |
+
#@title
|
| 85 |
+
from IPython.display import HTML
|
| 86 |
+
|
| 87 |
+
HTML('<iframe width="560" height="315" src="https://www.youtube.com/embed/ma1TrR7gE7I?rel=0&controls=0&showinfo=0" frameborder="0" allowfullscreen></iframe>')
|
| 88 |
+
|
| 89 |
+
"""The next step is to load a DistilGPT2 tokenizer to process the `text` subfield:"""
|
| 90 |
+
|
| 91 |
+
from transformers import AutoTokenizer
|
| 92 |
+
|
| 93 |
+
tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
| 94 |
+
|
| 95 |
+
"""You'll notice from the example above, the `text` field is actually nested inside `answers`. This means you'll need to
|
| 96 |
+
extract the `text` subfield from its nested structure with the [`flatten`](https://huggingface.co/docs/datasets/process.html#flatten) method:
|
| 97 |
+
"""
|
| 98 |
+
|
| 99 |
+
eli5 = eli5.flatten()
|
| 100 |
+
eli5["train"][0]
|
| 101 |
+
|
| 102 |
+
"""Each subfield is now a separate column as indicated by the `answers` prefix, and the `text` field is a list now. Instead
|
| 103 |
+
of tokenizing each sentence separately, convert the list to a string so you can jointly tokenize them.
|
| 104 |
+
|
| 105 |
+
Here is a first preprocessing function to join the list of strings for each example and tokenize the result:
|
| 106 |
+
"""
|
| 107 |
+
|
| 108 |
+
def preprocess_function(examples):
|
| 109 |
+
return tokenizer([" ".join(x) for x in examples["answers.text"]])
|
| 110 |
+
|
| 111 |
+
"""To apply this preprocessing function over the entire dataset, use the 🤗 Datasets [map](https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.map) method. You can speed up the `map` function by setting `batched=True` to process multiple elements of the dataset at once, and increasing the number of processes with `num_proc`. Remove any columns you don't need:"""
|
| 112 |
+
|
| 113 |
+
tokenized_eli5 = eli5.map(
|
| 114 |
+
preprocess_function,
|
| 115 |
+
batched=True,
|
| 116 |
+
num_proc=4,
|
| 117 |
+
remove_columns=eli5["train"].column_names,
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
"""This dataset contains the token sequences, but some of these are longer than the maximum input length for the model.
|
| 121 |
+
|
| 122 |
+
You can now use a second preprocessing function to
|
| 123 |
+
- concatenate all the sequences
|
| 124 |
+
- split the concatenated sequences into shorter chunks defined by `block_size`, which should be both shorter than the maximum input length and short enough for your GPU RAM.
|
| 125 |
+
"""
|
| 126 |
+
|
| 127 |
+
block_size = 128
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def group_texts(examples):
|
| 131 |
+
# Concatenate all texts.
|
| 132 |
+
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
|
| 133 |
+
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
| 134 |
+
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
|
| 135 |
+
# customize this part to your needs.
|
| 136 |
+
if total_length >= block_size:
|
| 137 |
+
total_length = (total_length // block_size) * block_size
|
| 138 |
+
# Split by chunks of block_size.
|
| 139 |
+
result = {
|
| 140 |
+
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
| 141 |
+
for k, t in concatenated_examples.items()
|
| 142 |
+
}
|
| 143 |
+
result["labels"] = result["input_ids"].copy()
|
| 144 |
+
return result
|
| 145 |
+
|
| 146 |
+
"""Apply the `group_texts` function over the entire dataset:"""
|
| 147 |
+
|
| 148 |
+
lm_dataset = tokenized_eli5.map(group_texts, batched=True, num_proc=4)
|
| 149 |
+
|
| 150 |
+
"""Now create a batch of examples using [DataCollatorForLanguageModeling](https://huggingface.co/docs/transformers/main/en/main_classes/data_collator#transformers.DataCollatorForLanguageModeling). It's more efficient to *dynamically pad* the
|
| 151 |
+
sentences to the longest length in a batch during collation, instead of padding the whole dataset to the maximum length.
|
| 152 |
+
|
| 153 |
+
Use the end-of-sequence token as the padding token and set `mlm=False`. This will use the inputs as labels shifted to the right by one element:
|
| 154 |
+
"""
|
| 155 |
+
|
| 156 |
+
from transformers import DataCollatorForLanguageModeling
|
| 157 |
+
|
| 158 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 159 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
| 160 |
+
|
| 161 |
+
"""## Train
|
| 162 |
+
|
| 163 |
+
<Tip>
|
| 164 |
+
|
| 165 |
+
If you aren't familiar with finetuning a model with the [Trainer](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer), take a look at the [basic tutorial](https://huggingface.co/docs/transformers/main/en/tasks/../training#train-with-pytorch-trainer)!
|
| 166 |
+
|
| 167 |
+
</Tip>
|
| 168 |
+
|
| 169 |
+
You're ready to start training your model now! Load DistilGPT2 with [AutoModelForCausalLM](https://huggingface.co/docs/transformers/main/en/model_doc/auto#transformers.AutoModelForCausalLM):
|
| 170 |
+
"""
|
| 171 |
+
|
| 172 |
+
from transformers import AutoModelForCausalLM, TrainingArguments, Trainer
|
| 173 |
+
|
| 174 |
+
model = AutoModelForCausalLM.from_pretrained("distilgpt2")
|
| 175 |
+
|
| 176 |
+
"""At this point, only three steps remain:
|
| 177 |
+
|
| 178 |
+
1. Define your training hyperparameters in [TrainingArguments](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.TrainingArguments). The only required parameter is `output_dir` which specifies where to save your model. You'll push this model to the Hub by setting `push_to_hub=True` (you need to be signed in to Hugging Face to upload your model).
|
| 179 |
+
2. Pass the training arguments to [Trainer](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer) along with the model, datasets, and data collator.
|
| 180 |
+
3. Call [train()](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer.train) to finetune your model.
|
| 181 |
+
"""
|
| 182 |
+
|
| 183 |
+
training_args = TrainingArguments(
|
| 184 |
+
output_dir="my_awesome_eli5_clm-model",
|
| 185 |
+
evaluation_strategy="epoch",
|
| 186 |
+
learning_rate=2e-5,
|
| 187 |
+
weight_decay=0.01,
|
| 188 |
+
push_to_hub=True,
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
trainer = Trainer(
|
| 192 |
+
model=model,
|
| 193 |
+
args=training_args,
|
| 194 |
+
train_dataset=lm_dataset["train"],
|
| 195 |
+
eval_dataset=lm_dataset["test"],
|
| 196 |
+
data_collator=data_collator,
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
trainer.train()
|
| 200 |
+
|
| 201 |
+
"""Once training is completed, use the [evaluate()](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer.evaluate) method to evaluate your model and get its perplexity:"""
|
| 202 |
+
|
| 203 |
+
import math
|
| 204 |
+
|
| 205 |
+
eval_results = trainer.evaluate()
|
| 206 |
+
print(f"Perplexity: {math.exp(eval_results['eval_loss']):.2f}")
|
| 207 |
+
|
| 208 |
+
"""Then share your model to the Hub with the [push_to_hub()](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer.push_to_hub) method so everyone can use your model:"""
|
| 209 |
+
|
| 210 |
+
trainer.push_to_hub()
|
| 211 |
+
|
| 212 |
+
"""<Tip>
|
| 213 |
+
|
| 214 |
+
For a more in-depth example of how to finetune a model for causal language modeling, take a look at the corresponding
|
| 215 |
+
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)
|
| 216 |
+
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
|
| 217 |
+
|
| 218 |
+
</Tip>
|
| 219 |
+
|
| 220 |
+
## Inference
|
| 221 |
+
|
| 222 |
+
Great, now that you've finetuned a model, you can use it for inference!
|
| 223 |
+
|
| 224 |
+
Come up with a prompt you'd like to generate text from:
|
| 225 |
+
"""
|
| 226 |
+
|
| 227 |
+
prompt = "Somatic hypermutation allows the immune system to"
|
| 228 |
+
|
| 229 |
+
"""The simplest way to try out your finetuned model for inference is to use it in a [pipeline()](https://huggingface.co/docs/transformers/main/en/main_classes/pipelines#transformers.pipeline). Instantiate a `pipeline` for text generation with your model, and pass your text to it:"""
|
| 230 |
+
|
| 231 |
+
from transformers import pipeline
|
| 232 |
+
|
| 233 |
+
generator = pipeline("text-generation", model="my_awesome_eli5_clm-model")
|
| 234 |
+
generator(prompt)
|
| 235 |
+
|
| 236 |
+
"""Tokenize the text and return the `input_ids` as PyTorch tensors:"""
|
| 237 |
+
|
| 238 |
+
from transformers import AutoTokenizer
|
| 239 |
+
|
| 240 |
+
tokenizer = AutoTokenizer.from_pretrained("my_awesome_eli5_clm-model")
|
| 241 |
+
inputs = tokenizer(prompt, return_tensors="pt").input_ids
|
| 242 |
+
|
| 243 |
+
"""Use the [generate()](https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationMixin.generate) method to generate text.
|
| 244 |
+
For more details about the different text generation strategies and parameters for controlling generation, check out the [Text generation strategies](https://huggingface.co/docs/transformers/main/en/tasks/../generation_strategies) page.
|
| 245 |
+
"""
|
| 246 |
+
|
| 247 |
+
from transformers import AutoModelForCausalLM
|
| 248 |
+
|
| 249 |
+
model = AutoModelForCausalLM.from_pretrained("my_awesome_eli5_clm-model")
|
| 250 |
+
outputs = model.generate(inputs, max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95)
|
| 251 |
+
|
| 252 |
+
"""Decode the generated token ids back into text:"""
|
| 253 |
+
|
| 254 |
+
tokenizer.batch_decode(outputs, skip_special_tokens=True)
|