Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| from .base_model import BaseModel | |
| from .blocks import ( | |
| FeatureFusionBlock_custom, | |
| Interpolate, | |
| _make_encoder, | |
| forward_beit, | |
| forward_swin, | |
| forward_levit, | |
| forward_vit, | |
| ) | |
| from .backbones.levit import stem_b4_transpose | |
| from timm.models.layers import get_act_layer | |
| def _make_fusion_block(features, use_bn, size = None): | |
| return FeatureFusionBlock_custom( | |
| features, | |
| nn.ReLU(False), | |
| deconv=False, | |
| bn=use_bn, | |
| expand=False, | |
| align_corners=True, | |
| size=size, | |
| ) | |
| class DPT(BaseModel): | |
| def __init__( | |
| self, | |
| head, | |
| features=256, | |
| backbone="vitb_rn50_384", | |
| readout="project", | |
| channels_last=False, | |
| use_bn=False, | |
| **kwargs | |
| ): | |
| super(DPT, self).__init__() | |
| self.channels_last = channels_last | |
| # For the Swin, Swin 2, LeViT and Next-ViT Transformers, the hierarchical architectures prevent setting the | |
| # hooks freely. Instead, the hooks have to be chosen according to the ranges specified in the comments. | |
| hooks = { | |
| "beitl16_512": [5, 11, 17, 23], | |
| "beitl16_384": [5, 11, 17, 23], | |
| "beitb16_384": [2, 5, 8, 11], | |
| "swin2l24_384": [1, 1, 17, 1], # Allowed ranges: [0, 1], [0, 1], [ 0, 17], [ 0, 1] | |
| "swin2b24_384": [1, 1, 17, 1], # [0, 1], [0, 1], [ 0, 17], [ 0, 1] | |
| "swin2t16_256": [1, 1, 5, 1], # [0, 1], [0, 1], [ 0, 5], [ 0, 1] | |
| "swinl12_384": [1, 1, 17, 1], # [0, 1], [0, 1], [ 0, 17], [ 0, 1] | |
| "next_vit_large_6m": [2, 6, 36, 39], # [0, 2], [3, 6], [ 7, 36], [37, 39] | |
| "levit_384": [3, 11, 21], # [0, 3], [6, 11], [14, 21] | |
| "vitb_rn50_384": [0, 1, 8, 11], | |
| "vitb16_384": [2, 5, 8, 11], | |
| "vitl16_384": [5, 11, 17, 23], | |
| }[backbone] | |
| if "next_vit" in backbone: | |
| in_features = { | |
| "next_vit_large_6m": [96, 256, 512, 1024], | |
| }[backbone] | |
| else: | |
| in_features = None | |
| # Instantiate backbone and reassemble blocks | |
| self.pretrained, self.scratch = _make_encoder( | |
| backbone, | |
| features, | |
| False, # Set to true of you want to train from scratch, uses ImageNet weights | |
| groups=1, | |
| expand=False, | |
| exportable=False, | |
| hooks=hooks, | |
| use_readout=readout, | |
| in_features=in_features, | |
| ) | |
| self.number_layers = len(hooks) if hooks is not None else 4 | |
| size_refinenet3 = None | |
| self.scratch.stem_transpose = None | |
| if "beit" in backbone: | |
| self.forward_transformer = forward_beit | |
| elif "swin" in backbone: | |
| self.forward_transformer = forward_swin | |
| elif "next_vit" in backbone: | |
| from .backbones.next_vit import forward_next_vit | |
| self.forward_transformer = forward_next_vit | |
| elif "levit" in backbone: | |
| self.forward_transformer = forward_levit | |
| size_refinenet3 = 7 | |
| self.scratch.stem_transpose = stem_b4_transpose(256, 128, get_act_layer("hard_swish")) | |
| else: | |
| self.forward_transformer = forward_vit | |
| self.scratch.refinenet1 = _make_fusion_block(features, use_bn) | |
| self.scratch.refinenet2 = _make_fusion_block(features, use_bn) | |
| self.scratch.refinenet3 = _make_fusion_block(features, use_bn, size_refinenet3) | |
| if self.number_layers >= 4: | |
| self.scratch.refinenet4 = _make_fusion_block(features, use_bn) | |
| self.scratch.output_conv = head | |
| def forward(self, x): | |
| if self.channels_last == True: | |
| x.contiguous(memory_format=torch.channels_last) | |
| layers = self.forward_transformer(self.pretrained, x) | |
| if self.number_layers == 3: | |
| layer_1, layer_2, layer_3 = layers | |
| else: | |
| layer_1, layer_2, layer_3, layer_4 = layers | |
| layer_1_rn = self.scratch.layer1_rn(layer_1) | |
| layer_2_rn = self.scratch.layer2_rn(layer_2) | |
| layer_3_rn = self.scratch.layer3_rn(layer_3) | |
| if self.number_layers >= 4: | |
| layer_4_rn = self.scratch.layer4_rn(layer_4) | |
| if self.number_layers == 3: | |
| path_3 = self.scratch.refinenet3(layer_3_rn, size=layer_2_rn.shape[2:]) | |
| else: | |
| path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:]) | |
| path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:]) | |
| path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:]) | |
| path_1 = self.scratch.refinenet1(path_2, layer_1_rn) | |
| if self.scratch.stem_transpose is not None: | |
| path_1 = self.scratch.stem_transpose(path_1) | |
| out = self.scratch.output_conv(path_1) | |
| return out | |
| class DPTDepthModel(DPT): | |
| def __init__(self, path=None, non_negative=True, **kwargs): | |
| features = kwargs["features"] if "features" in kwargs else 256 | |
| head_features_1 = kwargs["head_features_1"] if "head_features_1" in kwargs else features | |
| head_features_2 = kwargs["head_features_2"] if "head_features_2" in kwargs else 32 | |
| kwargs.pop("head_features_1", None) | |
| kwargs.pop("head_features_2", None) | |
| head = nn.Sequential( | |
| nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1), | |
| Interpolate(scale_factor=2, mode="bilinear", align_corners=True), | |
| nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1), | |
| nn.ReLU(True), | |
| nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0), | |
| nn.ReLU(True) if non_negative else nn.Identity(), | |
| nn.Identity(), | |
| ) | |
| super().__init__(head, **kwargs) | |
| if path is not None: | |
| self.load(path) | |
| def forward(self, x): | |
| return super().forward(x) | |