Spaces:
Running
Running
File size: 6,387 Bytes
eb54863 33ecbd1 eb54863 c5591c5 eb54863 c5591c5 eb54863 c5591c5 eb54863 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import gradio
import prompts
import json
from together import Together
import base64
import numpy as numpy
from PIL import Image
from io import BytesIO
import uuid
import datetime
import os
from huggingface_hub import HfApi
HF_KEY = os.environ.get("HF_KEY") if os.environ.get("HF_KEY") else ""
TOGETHER_KEY = os.environ.get("TOGETHER_KEY") if os.environ.get("TOGETHER_KEY") else ""
PASSWORDS = os.environ.get("PASSWORDS") if os.environ.get("PASSWORDS") else ""
hf_client = HfApi(
token = HF_KEY
)
together_client = Together(
api_key = TOGETHER_KEY
)
def process_token(secret_token):
global together_client
try:
passwords = PASSWORDS
passwords = passwords.split(":")
if secret_token in passwords:
secret_token = TOGETHER_KEY
together_client = Together(
api_key = secret_token
)
gradio.Info("API token has been set successfully.", duration = 2)
return secret_token
except:
return secret_token
def assisted_prompt_generation(prompt):
gradio.Info("Assisting prompt generation...", duration = 2)
try:
response = together_client.chat.completions.create(
model = "meta-llama/Llama-3.3-70B-Instruct-Turbo-Free",
messages = [
{"role": "system", "content": prompts.assisted_prompt_generator.system_prompt},
{"role": "user", "content": f"{prompt}"},
{"role": "assistant", "content": ""}
],
response_format = {"type": "json_object"}
)
output = json.loads(response.choices[0].message.content)
if output["return_code"] == 400:
gradio.Error("Prompt generation failed.", duration = 5)
return output["prompt"]
else:
gradio.Info("Prompt generated successfully.", duration = 2)
return output["prompt"]
except Exception as e:
gradio.Error("Prompt generation failed.", duration = 5)
return "Failed"
def verify_prompt(prompt):
gradio.Info("Verifying prompt...", duration = 2)
try:
response = together_client.chat.completions.create(
model = "meta-llama/Llama-3.3-70B-Instruct-Turbo-Free",
messages = [
{"role": "system", "content": prompts.prompt_verification_agent.system_prompt},
{"role": "user", "content": f"{prompt}"},
{"role": "assistant", "content": ""}
],
response_format = {"type": "json_object"}
)
output = json.loads(response.choices[0].message.content)
if output["return_code"] == 400:
gradio.Error("Prompt verification failed.", duration = 5)
return "Failed"
else:
gradio.Info("Prompt verification successfully.", duration = 2)
return prompt
except Exception as e:
gradio.Error("Prompt verification failed.", duration = 5)
return "Failed"
def generate_image(prompt):
if prompt == "Failed":
gradio.Error("Prompt generation failed.", duration = 5)
return numpy.zeros((1024, 1024, 3), dtype = numpy.uint8)
response = together_client.images.generate(
prompt= prompt,
model = "black-forest-labs/FLUX.1-schnell-Free",
width = 1024,
height = 1024,
steps = 4,
n = 1,
response_format="b64_json",
stop=[]
)
b_64_image = response.data[0].b64_json
image_data = base64.b64decode(b_64_image)
image = Image.open(BytesIO(image_data))
image_np = numpy.array(image)
return image_np
def save_image(prompt, image):
temp_id = uuid.uuid4()
datetime_now = datetime.datetime.now()
year = datetime_now.year
month = datetime_now.month
day = datetime_now.day
hour = datetime_now.hour
minute = datetime_now.minute
image_PIL = Image.fromarray(image)
image_PIL.save(f"{temp_id}.png")
prompt = {
"prompt": prompt,
}
json.dump(prompt, open(f"{temp_id}.json", "w"))
hf_client.upload_file(
path_or_fileobj = f"{temp_id}.png",
path_in_repo = f"images/{year}/{month}/{day}/{hour}/{minute}/{temp_id}.png",
repo_type = "dataset",
repo_id = "xqt/fashion_model_generator",
commit_message = f"ADD: image {temp_id}.png",
)
hf_client.upload_file(
path_or_fileobj = f"{temp_id}.json",
path_in_repo = f"images/{year}/{month}/{day}/{hour}/{minute}/{temp_id}.json",
repo_type = "dataset",
repo_id = "xqt/fashion_model_generator",
commit_message = f"ADD: prompt {temp_id}.json",
)
gradio.Info(f"Image and prompt saved successfully <a href = \"https://huggingface.co/datasets/xqt/fashion_model_generator/blob/main/images/{year}/{month}/{day}/{hour}/{minute}/{temp_id}.png\"> here <\a>" , duration = 5)
os.remove(f"{temp_id}.png")
os.remove(f"{temp_id}.json")
return
with gradio.Blocks(fill_width = False) as app:
gradio.Markdown("""
# Fashion Model Generator
## This app generates images of fashion model.
Synthetic Dataset: [xqt/fashion_model_generator](https://huggingface.co/datasets/xqt/fashion_model_generator)
""")
api_token_input = gradio.Textbox(label = "Together AI API Key (key is never stored and it uses free models only)", placeholder = "Enter your Together AI API Key here.", type = "password")
with gradio.Row(equal_height = True):
with gradio.Column(scale = 4):
prompt_input = gradio.Textbox(label = "Prompt", placeholder = "Enter your prompt here.")
with gradio.Column(scale = 1):
prompt_assist = gradio.Button(value = "Prompt Assist", icon = "assets/wand-magic-sparkles-solid.svg")
image_output = gradio.Image(label="Generated Image")
api_token_input.submit(process_token, inputs = [api_token_input], outputs = [api_token_input])
prompt_assist.click(assisted_prompt_generation, inputs = [prompt_input], outputs = [prompt_input])
prompt_input.submit(verify_prompt, inputs = [prompt_input], outputs = [prompt_input]).then(
generate_image, inputs = [prompt_input], outputs = [image_output]
).then(
save_image, inputs = [prompt_input, image_output], outputs = []
)
if __name__ == "__main__":
app.launch()
|