xqt's picture
Update main.py
33ecbd1 verified
import gradio
import prompts
import json
from together import Together
import base64
import numpy as numpy
from PIL import Image
from io import BytesIO
import uuid
import datetime
import os
from huggingface_hub import HfApi
HF_KEY = os.environ.get("HF_KEY") if os.environ.get("HF_KEY") else ""
TOGETHER_KEY = os.environ.get("TOGETHER_KEY") if os.environ.get("TOGETHER_KEY") else ""
PASSWORDS = os.environ.get("PASSWORDS") if os.environ.get("PASSWORDS") else ""
hf_client = HfApi(
token = HF_KEY
)
together_client = Together(
api_key = TOGETHER_KEY
)
def process_token(secret_token):
global together_client
try:
passwords = PASSWORDS
passwords = passwords.split(":")
if secret_token in passwords:
secret_token = TOGETHER_KEY
together_client = Together(
api_key = secret_token
)
gradio.Info("API token has been set successfully.", duration = 2)
return secret_token
except:
return secret_token
def assisted_prompt_generation(prompt):
gradio.Info("Assisting prompt generation...", duration = 2)
try:
response = together_client.chat.completions.create(
model = "meta-llama/Llama-3.3-70B-Instruct-Turbo-Free",
messages = [
{"role": "system", "content": prompts.assisted_prompt_generator.system_prompt},
{"role": "user", "content": f"{prompt}"},
{"role": "assistant", "content": ""}
],
response_format = {"type": "json_object"}
)
output = json.loads(response.choices[0].message.content)
if output["return_code"] == 400:
gradio.Error("Prompt generation failed.", duration = 5)
return output["prompt"]
else:
gradio.Info("Prompt generated successfully.", duration = 2)
return output["prompt"]
except Exception as e:
gradio.Error("Prompt generation failed.", duration = 5)
return "Failed"
def verify_prompt(prompt):
gradio.Info("Verifying prompt...", duration = 2)
try:
response = together_client.chat.completions.create(
model = "meta-llama/Llama-3.3-70B-Instruct-Turbo-Free",
messages = [
{"role": "system", "content": prompts.prompt_verification_agent.system_prompt},
{"role": "user", "content": f"{prompt}"},
{"role": "assistant", "content": ""}
],
response_format = {"type": "json_object"}
)
output = json.loads(response.choices[0].message.content)
if output["return_code"] == 400:
gradio.Error("Prompt verification failed.", duration = 5)
return "Failed"
else:
gradio.Info("Prompt verification successfully.", duration = 2)
return prompt
except Exception as e:
gradio.Error("Prompt verification failed.", duration = 5)
return "Failed"
def generate_image(prompt):
if prompt == "Failed":
gradio.Error("Prompt generation failed.", duration = 5)
return numpy.zeros((1024, 1024, 3), dtype = numpy.uint8)
response = together_client.images.generate(
prompt= prompt,
model = "black-forest-labs/FLUX.1-schnell-Free",
width = 1024,
height = 1024,
steps = 4,
n = 1,
response_format="b64_json",
stop=[]
)
b_64_image = response.data[0].b64_json
image_data = base64.b64decode(b_64_image)
image = Image.open(BytesIO(image_data))
image_np = numpy.array(image)
return image_np
def save_image(prompt, image):
temp_id = uuid.uuid4()
datetime_now = datetime.datetime.now()
year = datetime_now.year
month = datetime_now.month
day = datetime_now.day
hour = datetime_now.hour
minute = datetime_now.minute
image_PIL = Image.fromarray(image)
image_PIL.save(f"{temp_id}.png")
prompt = {
"prompt": prompt,
}
json.dump(prompt, open(f"{temp_id}.json", "w"))
hf_client.upload_file(
path_or_fileobj = f"{temp_id}.png",
path_in_repo = f"images/{year}/{month}/{day}/{hour}/{minute}/{temp_id}.png",
repo_type = "dataset",
repo_id = "xqt/fashion_model_generator",
commit_message = f"ADD: image {temp_id}.png",
)
hf_client.upload_file(
path_or_fileobj = f"{temp_id}.json",
path_in_repo = f"images/{year}/{month}/{day}/{hour}/{minute}/{temp_id}.json",
repo_type = "dataset",
repo_id = "xqt/fashion_model_generator",
commit_message = f"ADD: prompt {temp_id}.json",
)
gradio.Info(f"Image and prompt saved successfully <a href = \"https://huggingface.co/datasets/xqt/fashion_model_generator/blob/main/images/{year}/{month}/{day}/{hour}/{minute}/{temp_id}.png\"> here <\a>" , duration = 5)
os.remove(f"{temp_id}.png")
os.remove(f"{temp_id}.json")
return
with gradio.Blocks(fill_width = False) as app:
gradio.Markdown("""
# Fashion Model Generator
## This app generates images of fashion model.
Synthetic Dataset: [xqt/fashion_model_generator](https://huggingface.co/datasets/xqt/fashion_model_generator)
""")
api_token_input = gradio.Textbox(label = "Together AI API Key (key is never stored and it uses free models only)", placeholder = "Enter your Together AI API Key here.", type = "password")
with gradio.Row(equal_height = True):
with gradio.Column(scale = 4):
prompt_input = gradio.Textbox(label = "Prompt", placeholder = "Enter your prompt here.")
with gradio.Column(scale = 1):
prompt_assist = gradio.Button(value = "Prompt Assist", icon = "assets/wand-magic-sparkles-solid.svg")
image_output = gradio.Image(label="Generated Image")
api_token_input.submit(process_token, inputs = [api_token_input], outputs = [api_token_input])
prompt_assist.click(assisted_prompt_generation, inputs = [prompt_input], outputs = [prompt_input])
prompt_input.submit(verify_prompt, inputs = [prompt_input], outputs = [prompt_input]).then(
generate_image, inputs = [prompt_input], outputs = [image_output]
).then(
save_image, inputs = [prompt_input, image_output], outputs = []
)
if __name__ == "__main__":
app.launch()