Spaces:
Sleeping
Sleeping
| # coding=utf-8 | |
| # author: xusong <xusong28@jd.com> | |
| # time: 2022/9/05 14:12 | |
| """ | |
| TODO: 还要能判断是否需要回复。 | |
| """ | |
| import torch | |
| import gradio as gr | |
| from info import article | |
| from kplug import modeling_kplug_s2s_patch | |
| from transformers import BertTokenizer, BartForConditionalGeneration | |
| model = BartForConditionalGeneration.from_pretrained("eson/kplug-base-jddc") | |
| tokenizer = BertTokenizer.from_pretrained("eson/kplug-base-jddc") | |
| def predict(input, history=[]): | |
| """ | |
| 拼接方案:直接拼接history作为输入,不区分角色。虽然简单粗糙,但是encoder-decoder架构不会混淆输入和输出(如果是gpt架构就需要区分角色了)。 | |
| """ | |
| # append the new user input tokens to the chat history | |
| history = history + [input] # history如果包含错误的response,可能会造成误差传递 | |
| # tokenize the new input sentence | |
| bot_input_ids = tokenizer.encode("".join(history)[-500:], return_tensors='pt') | |
| # bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) | |
| # generate a response | |
| response = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist() | |
| # convert the tokens to text, and then split the responses into lines | |
| response = "".join(tokenizer.decode(response[0], skip_special_tokens=True).split()) | |
| history = history + [response] | |
| response = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)] # convert to tuples of list | |
| return response, history | |
| jddc_examples = [ | |
| # 价保 | |
| "昨天刚买的怎么就降了几十块,应该补给我差价吧", | |
| "请问这个猕猴桃是有货的吗?", | |
| # 到货时间 | |
| "我下的这个单怎么还没到", | |
| # 快递 | |
| "发什么快递", | |
| "能发邮政吗", | |
| ] | |
| jddc_iface = gr.Interface( | |
| fn=predict, | |
| # inputs=["text", "state"], | |
| inputs=[ | |
| gr.Textbox( | |
| label="输入文本", | |
| value="发什么快递"), # gr.State() 报错 | |
| "state" | |
| ], | |
| outputs=["chatbot", "state"], | |
| examples=jddc_examples, | |
| title="电商客服-生成式对话(Response Generation)", | |
| article=article, | |
| ) | |
| if __name__ == "__main__": | |
| jddc_iface.launch() | |