Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import json | |
| from datasets import load_dataset | |
| st.set_page_config(page_title="Large GitHub Issues", layout="wide") | |
| st.title("Issues with large text") | |
| def load_data(): | |
| ds = load_dataset("loubnabnl/large-text-issues", split="train") | |
| return ds | |
| def print_issue(events): | |
| for event in events: | |
| st.markdown("""---""") | |
| masked_author = f"masked as {event['masked_author']}" if "masked_author" in event else "" | |
| st.markdown(f"**Author:** {event['author']} {masked_author}, {event['action']} {event['type']} with title: {event['title']}.\ | |
| Text size is: **{event['size']}** and Number of lines is: **{event['nb_lines']}**") | |
| st.code(f"{event['text']}", language="none") | |
| samples = load_data() | |
| col1, _ = st.columns([2, 4]) | |
| with col1: | |
| index_example = st.number_input(f"Index of the chosen conversation from the existing {len(samples)}", min_value=0, max_value=len(samples)-1, value=0, step=1) | |
| st.write(f"Issue size: {samples[index_example]['text_size_no_bots']}\n\n") | |
| print_issue(samples[index_example]["events"]) |