Spaces:
Sleeping
Sleeping
Wen-Ding Li
commited on
Commit
·
6f6391b
1
Parent(s):
1b3afee
init
Browse files
app.py
CHANGED
|
@@ -2,62 +2,29 @@ import streamlit as st
|
|
| 2 |
import json
|
| 3 |
from datasets import load_dataset
|
| 4 |
|
| 5 |
-
st.set_page_config(page_title="
|
| 6 |
|
| 7 |
-
st.markdown("<h1 style='text-align: center; color: #00BFFF;'>
|
| 8 |
|
| 9 |
st.markdown("""
|
| 10 |
-
Here you can inspect
|
| 11 |
|
| 12 |
-
In the sidebar, you can choose to display:
|
| 13 |
-
- **dataset description and title** when it exists; this information was already available in Kaggle dataset
|
| 14 |
-
- only files for which we **retrieved extra information on the datasets being loaded** in the notebook using Kaggle API (e.g., column names, types, summary...), which makes up about 8% of the dataset.
|
| 15 |
-
There might be multiple CSV files loaded in the same notebook; we use delimiters `<start_description>` and `<end_description>` to separate them.
|
| 16 |
""")
|
| 17 |
|
| 18 |
@st.cache()
|
| 19 |
-
def load_data(
|
| 20 |
-
ds = load_dataset("
|
| 21 |
-
if has_data_info:
|
| 22 |
-
ds = ds.filter(lambda x: x["has_data_info"])
|
| 23 |
-
ds = ds.filter(lambda x: x["upvotes"] >= upvote and x["script_nb_tokens"] >= size)
|
| 24 |
return ds
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
try:
|
| 29 |
-
data_v = json.loads(e["dataset_versions"])[0]
|
| 30 |
-
except:
|
| 31 |
-
data_v = ""
|
| 32 |
-
if data_v:
|
| 33 |
-
data_title = data_v["Title"]
|
| 34 |
-
import numpy as np
|
| 35 |
-
description = data_v["Description"] if str(data_v["Description"]) != 'nan' else "<empty_description>"
|
| 36 |
-
data_text = f"<br>**📚 Dataset description:**<br>Title: **{data_title}**, described as: {description}."
|
| 37 |
-
else:
|
| 38 |
-
data_text = ""
|
| 39 |
-
|
| 40 |
-
text = f"The title of the notebook is: **{kv['Title']}** and it has **{kv['TotalVotes']} ⬆️ upvotes**.{data_text}"
|
| 41 |
-
return text
|
| 42 |
-
|
| 43 |
-
st.sidebar.header('Notebook Filters')
|
| 44 |
-
vote = st.sidebar.slider("Minimum notebook ⬆️ upvotes", min_value=0, max_value=100, step=1, value=0)
|
| 45 |
-
size = st.sidebar.slider("Length of the notebook in number of tokens (only the script)", min_value=0, max_value=15_000, step=1000, value=0)
|
| 46 |
-
|
| 47 |
-
st.sidebar.header('Display Settings')
|
| 48 |
-
show_data_metadata = st.sidebar.checkbox("Show associated (not necessarily retrieved) data Title and Description", value=True)
|
| 49 |
-
show_only_files_with_data = st.sidebar.checkbox("Show only files for which we retrieved dataset information", value=False)
|
| 50 |
-
|
| 51 |
-
samples = load_data(vote, size, show_only_files_with_data)
|
| 52 |
st.sidebar.header('Sample Selection')
|
| 53 |
index_example = st.sidebar.number_input(f"Choose a sample from the existing {len(samples)} notebooks:", min_value=0, max_value=max(0, len(samples)-1), value=0, step=1)
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
st.markdown(f'<h2 style="color:blue;">Notebook {index_example} converted to script:</h2>', unsafe_allow_html=True)
|
| 63 |
-
st.code(samples[index_example]["script"])
|
|
|
|
| 2 |
import json
|
| 3 |
from datasets import load_dataset
|
| 4 |
|
| 5 |
+
st.set_page_config(page_title="BIRD SQL inspection", layout="wide")
|
| 6 |
|
| 7 |
+
st.markdown("<h1 style='text-align: center; color: #00BFFF;'>BIRD SQL inspection 🔍</h1>", unsafe_allow_html=True)
|
| 8 |
|
| 9 |
st.markdown("""
|
| 10 |
+
Here you can inspect BIRD SQL data with schemas.
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
""")
|
| 13 |
|
| 14 |
@st.cache()
|
| 15 |
+
def load_data():
|
| 16 |
+
ds = load_dataset("xu3kev/BIRD-SQL-data", split="train")
|
|
|
|
|
|
|
|
|
|
| 17 |
return ds
|
| 18 |
|
| 19 |
+
|
| 20 |
+
samples = load_data()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
st.sidebar.header('Sample Selection')
|
| 22 |
index_example = st.sidebar.number_input(f"Choose a sample from the existing {len(samples)} notebooks:", min_value=0, max_value=max(0, len(samples)-1), value=0, step=1)
|
| 23 |
|
| 24 |
+
db_id = samples[index_example]["db_id"]
|
| 25 |
+
st.markdown(f'<h2 style="color:blue;">{db_id} schema:</h2>', unsafe_allow_html=True)
|
| 26 |
+
st.code(samples[index_example]["schema"])
|
| 27 |
+
st.markdown(f'<h2 style="color:blue;">{index_example} Question:</h2>', unsafe_allow_html=True)
|
| 28 |
+
st.code(samples[index_example]["question"])
|
| 29 |
+
st.markdown(f'<h2 style="color:blue;">{index_example} SQL:</h2>', unsafe_allow_html=True)
|
| 30 |
+
st.code(samples[index_example]["SQL"])
|
|
|
|
|
|