Spaces:
Runtime error
Runtime error
xunsong.li
commited on
Commit
·
ae534d1
1
Parent(s):
7ccc423
add demo for hf space
Browse files- app.py +10 -0
- local_app.py +263 -0
app.py
CHANGED
|
@@ -7,6 +7,7 @@ import numpy as np
|
|
| 7 |
import torch
|
| 8 |
from diffusers import AutoencoderKL, DDIMScheduler
|
| 9 |
from einops import repeat
|
|
|
|
| 10 |
from omegaconf import OmegaConf
|
| 11 |
from PIL import Image
|
| 12 |
from torchvision import transforms
|
|
@@ -18,6 +19,15 @@ from src.models.unet_3d import UNet3DConditionModel
|
|
| 18 |
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
|
| 19 |
from src.utils.util import get_fps, read_frames, save_videos_grid
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
class AnimateController:
|
| 23 |
def __init__(
|
|
|
|
| 7 |
import torch
|
| 8 |
from diffusers import AutoencoderKL, DDIMScheduler
|
| 9 |
from einops import repeat
|
| 10 |
+
from huggingface_hub import snapshot_download
|
| 11 |
from omegaconf import OmegaConf
|
| 12 |
from PIL import Image
|
| 13 |
from torchvision import transforms
|
|
|
|
| 19 |
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
|
| 20 |
from src.utils.util import get_fps, read_frames, save_videos_grid
|
| 21 |
|
| 22 |
+
snapshot_download(
|
| 23 |
+
repo_id="runwayml/stable-diffusion-v1-5",
|
| 24 |
+
local_dir="./pretrained_weights/stable-diffusion-v1-5",
|
| 25 |
+
)
|
| 26 |
+
snapshot_download(
|
| 27 |
+
repo_id="stabilityai/sd-vae-ft-mse", local_dir="./pretrained_weights/sd-vae-ft-mse"
|
| 28 |
+
)
|
| 29 |
+
snapshot_download(repo_id="patrolli/AnimateAnyone", local_dir="./pretrained_weights")
|
| 30 |
+
|
| 31 |
|
| 32 |
class AnimateController:
|
| 33 |
def __init__(
|
local_app.py
ADDED
|
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
from diffusers import AutoencoderKL, DDIMScheduler
|
| 9 |
+
from einops import repeat
|
| 10 |
+
from omegaconf import OmegaConf
|
| 11 |
+
from PIL import Image
|
| 12 |
+
from torchvision import transforms
|
| 13 |
+
from transformers import CLIPVisionModelWithProjection
|
| 14 |
+
|
| 15 |
+
from src.models.pose_guider import PoseGuider
|
| 16 |
+
from src.models.unet_2d_condition import UNet2DConditionModel
|
| 17 |
+
from src.models.unet_3d import UNet3DConditionModel
|
| 18 |
+
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
|
| 19 |
+
from src.utils.util import get_fps, read_frames, save_videos_grid
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class AnimateController:
|
| 23 |
+
def __init__(
|
| 24 |
+
self,
|
| 25 |
+
config_path="./configs/prompts/animation.yaml",
|
| 26 |
+
weight_dtype=torch.float16,
|
| 27 |
+
):
|
| 28 |
+
# Read pretrained weights path from config
|
| 29 |
+
self.config = OmegaConf.load(config_path)
|
| 30 |
+
self.pipeline = None
|
| 31 |
+
self.weight_dtype = weight_dtype
|
| 32 |
+
|
| 33 |
+
def animate(
|
| 34 |
+
self,
|
| 35 |
+
ref_image,
|
| 36 |
+
pose_video_path,
|
| 37 |
+
width=512,
|
| 38 |
+
height=768,
|
| 39 |
+
length=24,
|
| 40 |
+
num_inference_steps=25,
|
| 41 |
+
cfg=3.5,
|
| 42 |
+
seed=123,
|
| 43 |
+
):
|
| 44 |
+
generator = torch.manual_seed(seed)
|
| 45 |
+
if isinstance(ref_image, np.ndarray):
|
| 46 |
+
ref_image = Image.fromarray(ref_image)
|
| 47 |
+
if self.pipeline is None:
|
| 48 |
+
vae = AutoencoderKL.from_pretrained(
|
| 49 |
+
self.config.pretrained_vae_path,
|
| 50 |
+
).to("cuda", dtype=self.weight_dtype)
|
| 51 |
+
|
| 52 |
+
reference_unet = UNet2DConditionModel.from_pretrained(
|
| 53 |
+
self.config.pretrained_base_model_path,
|
| 54 |
+
subfolder="unet",
|
| 55 |
+
).to(dtype=self.weight_dtype, device="cuda")
|
| 56 |
+
|
| 57 |
+
inference_config_path = self.config.inference_config
|
| 58 |
+
infer_config = OmegaConf.load(inference_config_path)
|
| 59 |
+
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
|
| 60 |
+
self.config.pretrained_base_model_path,
|
| 61 |
+
self.config.motion_module_path,
|
| 62 |
+
subfolder="unet",
|
| 63 |
+
unet_additional_kwargs=infer_config.unet_additional_kwargs,
|
| 64 |
+
).to(dtype=self.weight_dtype, device="cuda")
|
| 65 |
+
|
| 66 |
+
pose_guider = PoseGuider(320, block_out_channels=(16, 32, 96, 256)).to(
|
| 67 |
+
dtype=self.weight_dtype, device="cuda"
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
image_enc = CLIPVisionModelWithProjection.from_pretrained(
|
| 71 |
+
self.config.image_encoder_path
|
| 72 |
+
).to(dtype=self.weight_dtype, device="cuda")
|
| 73 |
+
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
|
| 74 |
+
scheduler = DDIMScheduler(**sched_kwargs)
|
| 75 |
+
|
| 76 |
+
# load pretrained weights
|
| 77 |
+
denoising_unet.load_state_dict(
|
| 78 |
+
torch.load(self.config.denoising_unet_path, map_location="cpu"),
|
| 79 |
+
strict=False,
|
| 80 |
+
)
|
| 81 |
+
reference_unet.load_state_dict(
|
| 82 |
+
torch.load(self.config.reference_unet_path, map_location="cpu"),
|
| 83 |
+
)
|
| 84 |
+
pose_guider.load_state_dict(
|
| 85 |
+
torch.load(self.config.pose_guider_path, map_location="cpu"),
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
pipe = Pose2VideoPipeline(
|
| 89 |
+
vae=vae,
|
| 90 |
+
image_encoder=image_enc,
|
| 91 |
+
reference_unet=reference_unet,
|
| 92 |
+
denoising_unet=denoising_unet,
|
| 93 |
+
pose_guider=pose_guider,
|
| 94 |
+
scheduler=scheduler,
|
| 95 |
+
)
|
| 96 |
+
pipe = pipe.to("cuda", dtype=self.weight_dtype)
|
| 97 |
+
self.pipeline = pipe
|
| 98 |
+
|
| 99 |
+
pose_images = read_frames(pose_video_path)
|
| 100 |
+
src_fps = get_fps(pose_video_path)
|
| 101 |
+
|
| 102 |
+
pose_list = []
|
| 103 |
+
pose_tensor_list = []
|
| 104 |
+
pose_transform = transforms.Compose(
|
| 105 |
+
[transforms.Resize((height, width)), transforms.ToTensor()]
|
| 106 |
+
)
|
| 107 |
+
for pose_image_pil in pose_images[:length]:
|
| 108 |
+
pose_list.append(pose_image_pil)
|
| 109 |
+
pose_tensor_list.append(pose_transform(pose_image_pil))
|
| 110 |
+
|
| 111 |
+
video = self.pipeline(
|
| 112 |
+
ref_image,
|
| 113 |
+
pose_list,
|
| 114 |
+
width=width,
|
| 115 |
+
height=height,
|
| 116 |
+
video_length=length,
|
| 117 |
+
num_inference_steps=num_inference_steps,
|
| 118 |
+
guidance_scale=cfg,
|
| 119 |
+
generator=generator,
|
| 120 |
+
).videos
|
| 121 |
+
|
| 122 |
+
ref_image_tensor = pose_transform(ref_image) # (c, h, w)
|
| 123 |
+
ref_image_tensor = ref_image_tensor.unsqueeze(1).unsqueeze(0) # (1, c, 1, h, w)
|
| 124 |
+
ref_image_tensor = repeat(
|
| 125 |
+
ref_image_tensor, "b c f h w -> b c (repeat f) h w", repeat=length
|
| 126 |
+
)
|
| 127 |
+
pose_tensor = torch.stack(pose_tensor_list, dim=0) # (f, c, h, w)
|
| 128 |
+
pose_tensor = pose_tensor.transpose(0, 1)
|
| 129 |
+
pose_tensor = pose_tensor.unsqueeze(0)
|
| 130 |
+
video = torch.cat([ref_image_tensor, pose_tensor, video], dim=0)
|
| 131 |
+
|
| 132 |
+
save_dir = f"./output/gradio"
|
| 133 |
+
if not os.path.exists(save_dir):
|
| 134 |
+
os.makedirs(save_dir, exist_ok=True)
|
| 135 |
+
date_str = datetime.now().strftime("%Y%m%d")
|
| 136 |
+
time_str = datetime.now().strftime("%H%M")
|
| 137 |
+
out_path = os.path.join(save_dir, f"{date_str}T{time_str}.mp4")
|
| 138 |
+
save_videos_grid(
|
| 139 |
+
video,
|
| 140 |
+
out_path,
|
| 141 |
+
n_rows=3,
|
| 142 |
+
fps=src_fps,
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
torch.cuda.empty_cache()
|
| 146 |
+
|
| 147 |
+
return out_path
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
controller = AnimateController()
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
def ui():
|
| 154 |
+
with gr.Blocks() as demo:
|
| 155 |
+
gr.Markdown(
|
| 156 |
+
"""
|
| 157 |
+
# Moore-AnimateAnyone Demo
|
| 158 |
+
"""
|
| 159 |
+
)
|
| 160 |
+
animation = gr.Video(
|
| 161 |
+
format="mp4",
|
| 162 |
+
label="Animation Results",
|
| 163 |
+
height=448,
|
| 164 |
+
autoplay=True,
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
with gr.Row():
|
| 168 |
+
reference_image = gr.Image(label="Reference Image")
|
| 169 |
+
motion_sequence = gr.Video(
|
| 170 |
+
format="mp4", label="Motion Sequence", height=512
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
with gr.Column():
|
| 174 |
+
width_slider = gr.Slider(
|
| 175 |
+
label="Width", minimum=448, maximum=768, value=512, step=64
|
| 176 |
+
)
|
| 177 |
+
height_slider = gr.Slider(
|
| 178 |
+
label="Height", minimum=512, maximum=1024, value=768, step=64
|
| 179 |
+
)
|
| 180 |
+
length_slider = gr.Slider(
|
| 181 |
+
label="Video Length", minimum=24, maximum=128, value=24, step=24
|
| 182 |
+
)
|
| 183 |
+
with gr.Row():
|
| 184 |
+
seed_textbox = gr.Textbox(label="Seed", value=-1)
|
| 185 |
+
seed_button = gr.Button(
|
| 186 |
+
value="\U0001F3B2", elem_classes="toolbutton"
|
| 187 |
+
)
|
| 188 |
+
seed_button.click(
|
| 189 |
+
fn=lambda: gr.Textbox.update(value=random.randint(1, 1e8)),
|
| 190 |
+
inputs=[],
|
| 191 |
+
outputs=[seed_textbox],
|
| 192 |
+
)
|
| 193 |
+
with gr.Row():
|
| 194 |
+
sampling_steps = gr.Slider(
|
| 195 |
+
label="Sampling steps",
|
| 196 |
+
value=25,
|
| 197 |
+
info="default: 25",
|
| 198 |
+
step=5,
|
| 199 |
+
maximum=30,
|
| 200 |
+
minimum=10,
|
| 201 |
+
)
|
| 202 |
+
guidance_scale = gr.Slider(
|
| 203 |
+
label="Guidance scale",
|
| 204 |
+
value=3.5,
|
| 205 |
+
info="default: 3.5",
|
| 206 |
+
step=0.5,
|
| 207 |
+
maximum=10,
|
| 208 |
+
minimum=2.0,
|
| 209 |
+
)
|
| 210 |
+
submit = gr.Button("Animate")
|
| 211 |
+
|
| 212 |
+
def read_video(video):
|
| 213 |
+
return video
|
| 214 |
+
|
| 215 |
+
def read_image(image):
|
| 216 |
+
return Image.fromarray(image)
|
| 217 |
+
|
| 218 |
+
# when user uploads a new video
|
| 219 |
+
motion_sequence.upload(read_video, motion_sequence, motion_sequence)
|
| 220 |
+
# when `first_frame` is updated
|
| 221 |
+
reference_image.upload(read_image, reference_image, reference_image)
|
| 222 |
+
# when the `submit` button is clicked
|
| 223 |
+
submit.click(
|
| 224 |
+
controller.animate,
|
| 225 |
+
[
|
| 226 |
+
reference_image,
|
| 227 |
+
motion_sequence,
|
| 228 |
+
width_slider,
|
| 229 |
+
height_slider,
|
| 230 |
+
length_slider,
|
| 231 |
+
sampling_steps,
|
| 232 |
+
guidance_scale,
|
| 233 |
+
seed_textbox,
|
| 234 |
+
],
|
| 235 |
+
animation,
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
# Examples
|
| 239 |
+
gr.Markdown("## Examples")
|
| 240 |
+
gr.Examples(
|
| 241 |
+
examples=[
|
| 242 |
+
[
|
| 243 |
+
"./configs/inference/ref_images/anyone-5.png",
|
| 244 |
+
"./configs/inference/pose_videos/anyone-video-2_kps.mp4",
|
| 245 |
+
],
|
| 246 |
+
[
|
| 247 |
+
"./configs/inference/ref_images/anyone-10.png",
|
| 248 |
+
"./configs/inference/pose_videos/anyone-video-1_kps.mp4",
|
| 249 |
+
],
|
| 250 |
+
[
|
| 251 |
+
"./configs/inference/ref_images/anyone-2.png",
|
| 252 |
+
"./configs/inference/pose_videos/anyone-video-5_kps.mp4",
|
| 253 |
+
],
|
| 254 |
+
],
|
| 255 |
+
inputs=[reference_image, motion_sequence],
|
| 256 |
+
outputs=animation,
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
return demo
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
demo = ui()
|
| 263 |
+
demo.launch(share=True)
|