Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| import spaces | |
| import argparse | |
| import hashlib | |
| import json | |
| import os | |
| import time | |
| from threading import Thread | |
| import logging | |
| import gradio as gr | |
| import torch | |
| from tinychart.model.builder import load_pretrained_model | |
| from tinychart.mm_utils import ( | |
| KeywordsStoppingCriteria, | |
| load_image_from_base64, | |
| process_images, | |
| tokenizer_image_token, | |
| get_model_name_from_path, | |
| ) | |
| from PIL import Image | |
| from io import BytesIO | |
| import base64 | |
| import torch | |
| from transformers import StoppingCriteria | |
| from tinychart.constants import ( | |
| DEFAULT_IM_END_TOKEN, | |
| DEFAULT_IM_START_TOKEN, | |
| DEFAULT_IMAGE_TOKEN, | |
| IMAGE_TOKEN_INDEX, | |
| ) | |
| from tinychart.conversation import SeparatorStyle, conv_templates, default_conversation | |
| from tinychart.eval.eval_metric import parse_model_output, evaluate_cmds | |
| from transformers import TextIteratorStreamer | |
| from pathlib import Path | |
| DEFAULT_MODEL_PATH = "mPLUG/TinyChart-3B-768" | |
| DEFAULT_MODEL_NAME = "TinyChart-3B-768" | |
| block_css = """ | |
| #buttons button { | |
| min-width: min(120px,100%); | |
| } | |
| """ | |
| title_markdown = """ | |
| # TinyChart: Efficient Chart Understanding with Visual Token Merging and Program-of-Thoughts Learning | |
| ๐ [[Code](https://github.com/X-PLUG/mPLUG-DocOwl/tree/main/TinyChart)] | ๐ [[Paper](https://arxiv.org/abs/2404.16635)] | |
| **Note:** | |
| 1. Currently, this demo only supports English chart understanding and may not work well with other languages. | |
| 2. To use Program-of-Thoughts answer, please append "Answer with detailed steps." to your question. | |
| """ | |
| tos_markdown = """ | |
| ### Terms of use | |
| By using this service, users are required to agree to the following terms: | |
| The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. | |
| For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality. | |
| """ | |
| def regenerate(state, image_process_mode): | |
| state.messages[-1][-1] = None | |
| prev_human_msg = state.messages[-2] | |
| if type(prev_human_msg[1]) in (tuple, list): | |
| prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode) | |
| state.skip_next = False | |
| return (state, state.to_gradio_chatbot(), "", None) | |
| def clear_history(): | |
| state = default_conversation.copy() | |
| return (state, state.to_gradio_chatbot(), "", None) | |
| def add_text(state, text, image, image_process_mode): | |
| if len(text) <= 0 and image is None: | |
| state.skip_next = True | |
| return (state, state.to_gradio_chatbot(), "", None) | |
| text = text[:1536] # Hard cut-off | |
| if image is not None: | |
| text = text[:1200] # Hard cut-off for images | |
| if "<image>" not in text: | |
| # text = '<Image><image></Image>' + text | |
| # text = text + "\n<image>" | |
| text = "<image>\n"+text | |
| text = (text, image, image_process_mode) | |
| if len(state.get_images(return_pil=True)) > 0: | |
| state = default_conversation.copy() | |
| state.append_message(state.roles[0], text) | |
| state.append_message(state.roles[1], None) | |
| state.skip_next = False | |
| return (state, state.to_gradio_chatbot(), "", None) | |
| def load_demo(): | |
| state = default_conversation.copy() | |
| return state | |
| def is_float(value): | |
| try: | |
| float(value) | |
| return True | |
| except ValueError: | |
| return False | |
| def get_response(params): | |
| model.to("cuda") | |
| prompt = params["prompt"] | |
| ori_prompt = prompt | |
| images = params.get("images", None) | |
| num_image_tokens = 0 | |
| if images is not None and len(images) > 0: | |
| if len(images) > 0: | |
| if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN): | |
| raise ValueError( | |
| "Number of images does not match number of <image> tokens in prompt" | |
| ) | |
| images = [load_image_from_base64(image) for image in images] | |
| images = process_images(images, image_processor, model.config) | |
| if type(images) is list: | |
| images = [ | |
| image.to(model.device, dtype=torch.float16) for image in images | |
| ] | |
| else: | |
| images = images.to(model.device, dtype=torch.float16) | |
| replace_token = DEFAULT_IMAGE_TOKEN | |
| if getattr(model.config, "mm_use_im_start_end", False): | |
| replace_token = ( | |
| DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN | |
| ) | |
| prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token) | |
| if hasattr(model.get_vision_tower().config, "tome_r"): | |
| num_image_tokens = ( | |
| prompt.count(replace_token) * model.get_vision_tower().num_patches - 26 * model.get_vision_tower().config.tome_r | |
| ) | |
| else: | |
| num_image_tokens = ( | |
| prompt.count(replace_token) * model.get_vision_tower().num_patches | |
| ) | |
| else: | |
| images = None | |
| image_args = {"images": images} | |
| else: | |
| images = None | |
| image_args = {} | |
| temperature = float(params.get("temperature", 1.0)) | |
| top_p = float(params.get("top_p", 1.0)) | |
| max_context_length = getattr(model.config, "max_position_embeddings", 2048) | |
| max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024) | |
| stop_str = params.get("stop", None) | |
| do_sample = True if temperature > 0.001 else False | |
| logger.info(prompt) | |
| input_ids = ( | |
| tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") | |
| .unsqueeze(0) | |
| .to(model.device) | |
| ) | |
| keywords = [stop_str] | |
| stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) | |
| streamer = TextIteratorStreamer( | |
| tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=1500 | |
| ) | |
| max_new_tokens = min( | |
| max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens | |
| ) | |
| if max_new_tokens < 1: | |
| yield json.dumps( | |
| { | |
| "text": ori_prompt | |
| + "Exceeds max token length. Please start a new conversation, thanks.", | |
| "error_code": 0, | |
| } | |
| ).encode() + b"\0" | |
| return | |
| # local inference | |
| # BUG: If stopping_criteria is set, an error occur: | |
| # RuntimeError: The size of tensor a (2) must match the size of tensor b (3) at non-singleton dimension 0 | |
| generate_kwargs = dict( | |
| inputs=input_ids, | |
| do_sample=do_sample, | |
| temperature=temperature, | |
| top_p=top_p, | |
| max_new_tokens=max_new_tokens, | |
| streamer=streamer, | |
| # stopping_criteria=[stopping_criteria], | |
| use_cache=True, | |
| **image_args, | |
| ) | |
| thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
| thread.start() | |
| logger.debug(ori_prompt) | |
| logger.debug(generate_kwargs) | |
| generated_text = ori_prompt | |
| for new_text in streamer: | |
| generated_text += new_text | |
| if generated_text.endswith(stop_str): | |
| generated_text = generated_text[: -len(stop_str)] | |
| yield json.dumps({"text": generated_text, "error_code": 0}).encode() | |
| if '<step>' in generated_text and '</step>' in generated_text and '<comment>' in generated_text and '</comment>' in generated_text: | |
| program = generated_text | |
| program = '<comment>#' + program.split('ASSISTANT: <comment>#')[-1] | |
| print(program) | |
| try: | |
| execuate_result = evaluate_cmds(parse_model_output(program)) | |
| if is_float(execuate_result): | |
| execuate_result = round(float(execuate_result), 4) | |
| generated_text += f'\n\nExecute result: {execuate_result}' | |
| yield json.dumps({"text": generated_text, "error_code": 0}).encode() + b"\0" | |
| except: | |
| # execuate_result = 'Failed.' | |
| generated_text += f'\n\nIt seems the execution of the above code encounters bugs. I\'m trying to answer this question directly...' | |
| ori_generated_text = generated_text + '\nDirect Answer: ' | |
| direct_prompt = ori_prompt.replace(' Answer with detailed steps.', '') | |
| direct_input_ids = ( | |
| tokenizer_image_token(direct_prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") | |
| .unsqueeze(0) | |
| .to(model.device) | |
| ) | |
| generate_kwargs = dict( | |
| inputs=direct_input_ids, | |
| do_sample=do_sample, | |
| temperature=temperature, | |
| top_p=top_p, | |
| max_new_tokens=max_new_tokens, | |
| streamer=streamer, | |
| use_cache=True, | |
| **image_args, | |
| ) | |
| thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
| thread.start() | |
| generated_text = ori_generated_text | |
| for new_text in streamer: | |
| generated_text += new_text | |
| if generated_text.endswith(stop_str): | |
| generated_text = generated_text[: -len(stop_str)] | |
| yield json.dumps({"text": generated_text, "error_code": 0}).encode() | |
| def http_bot(state, temperature, top_p, max_new_tokens): | |
| if state.skip_next: | |
| # This generate call is skipped due to invalid inputs | |
| yield (state, state.to_gradio_chatbot()) | |
| return | |
| if len(state.messages) == state.offset + 2: | |
| # First round of conversation | |
| template_name = 'phi' | |
| new_state = conv_templates[template_name].copy() | |
| new_state.append_message(new_state.roles[0], state.messages[-2][1]) | |
| new_state.append_message(new_state.roles[1], None) | |
| state = new_state | |
| # Construct prompt | |
| prompt = state.get_prompt() | |
| all_images = state.get_images(return_pil=True) | |
| all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images] | |
| # Make requests | |
| # pload = {"model": model_name, "prompt": prompt, "temperature": float(temperature), "top_p": float(top_p), | |
| # "max_new_tokens": min(int(max_new_tokens), 1536), "stop": ( | |
| # state.sep | |
| # if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] | |
| # else state.sep2 | |
| # ), "images": state.get_images()} | |
| pload = { | |
| "model": model_name, | |
| "prompt": prompt, | |
| "temperature": float(temperature), | |
| "top_p": float(top_p), | |
| "max_new_tokens": min(int(max_new_tokens), 1536), | |
| "stop": ( | |
| state.sep | |
| if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] | |
| else state.sep2 | |
| ), "images": state.get_images()} | |
| state.messages[-1][-1] = "โ" | |
| yield (state, state.to_gradio_chatbot()) | |
| # for stream | |
| output = get_response(pload) | |
| for chunk in output: | |
| if chunk: | |
| data = json.loads(chunk.decode().replace('\x00','')) | |
| if data["error_code"] == 0: | |
| output = data["text"][len(prompt) :].strip() | |
| state.messages[-1][-1] = output + "โ" | |
| yield (state, state.to_gradio_chatbot()) | |
| else: | |
| output = data["text"] + f" (error_code: {data['error_code']})" | |
| state.messages[-1][-1] = output | |
| yield (state, state.to_gradio_chatbot()) | |
| return | |
| time.sleep(0.03) | |
| state.messages[-1][-1] = state.messages[-1][-1][:-1] | |
| yield (state, state.to_gradio_chatbot()) | |
| def build_demo(): | |
| textbox = gr.Textbox( | |
| show_label=False, placeholder="Enter text and press ENTER", container=False | |
| ) | |
| with gr.Blocks(title="TinyChart", theme=gr.themes.Default(), css=block_css) as demo: | |
| state = gr.State() | |
| gr.Markdown(title_markdown) | |
| with gr.Row(): | |
| with gr.Column(scale=5): | |
| with gr.Row(elem_id="Model ID"): | |
| gr.Dropdown( | |
| choices=[DEFAULT_MODEL_NAME], | |
| value=DEFAULT_MODEL_NAME, | |
| interactive=True, | |
| label="Model ID", | |
| container=False, | |
| ) | |
| imagebox = gr.Image(type="pil") | |
| image_process_mode = gr.Radio( | |
| ["Crop", "Resize", "Pad", "Default"], | |
| value="Default", | |
| label="Preprocess for non-square image", | |
| visible=False, | |
| ) | |
| cur_dir = Path(__file__).parent | |
| gr.Examples( | |
| examples=[ | |
| [ | |
| f"{cur_dir}/images/market.png", | |
| "What is the highest number of companies in the domestic market? Answer with detailed steps.", | |
| ], | |
| [ | |
| f"{cur_dir}/images/college.png", | |
| "What is the difference between Asians and Whites degree distribution? Answer with detailed steps." | |
| ], | |
| [ | |
| f"{cur_dir}/images/immigrants.png", | |
| "How many immigrants are there in 1931?", | |
| ], | |
| [ | |
| f"{cur_dir}/images/sails.png", | |
| "By how much percentage wholesale is less than retail? Answer with detailed steps." | |
| ], | |
| [ | |
| f"{cur_dir}/images/diseases.png", | |
| "Is the median value of all the bars greater than 30? Answer with detailed steps.", | |
| ], | |
| [ | |
| f"{cur_dir}/images/economy.png", | |
| "Which team has higher economy in 28 min?" | |
| ], | |
| [ | |
| f"{cur_dir}/images/workers.png", | |
| "Generate underlying data table for the chart." | |
| ], | |
| [ | |
| f"{cur_dir}/images/sports.png", | |
| "Create a brief summarization or extract key insights based on the chart image." | |
| ], | |
| [ | |
| f"{cur_dir}/images/albums.png", | |
| "Redraw the chart with Python code." | |
| ] | |
| ], | |
| inputs=[imagebox, textbox], | |
| ) | |
| with gr.Accordion("Parameters", open=False) as _: | |
| temperature = gr.Slider( | |
| minimum=0.0, | |
| maximum=1.0, | |
| value=0.1, | |
| step=0.1, | |
| interactive=True, | |
| label="Temperature", | |
| ) | |
| top_p = gr.Slider( | |
| minimum=0.0, | |
| maximum=1.0, | |
| value=0.7, | |
| step=0.1, | |
| interactive=True, | |
| label="Top P", | |
| ) | |
| max_output_tokens = gr.Slider( | |
| minimum=0, | |
| maximum=1024, | |
| value=1024, | |
| step=64, | |
| interactive=True, | |
| label="Max output tokens", | |
| ) | |
| with gr.Column(scale=8): | |
| chatbot = gr.Chatbot(elem_id="chatbot", label="Chatbot", height=550) | |
| with gr.Row(): | |
| with gr.Column(scale=8): | |
| textbox.render() | |
| with gr.Column(scale=1, min_width=50): | |
| submit_btn = gr.Button(value="Send", variant="primary") | |
| with gr.Row(elem_id="buttons") as _: | |
| regenerate_btn = gr.Button(value="๐ Regenerate", interactive=True) | |
| clear_btn = gr.Button(value="๐๏ธ Clear", interactive=True) | |
| gr.Markdown(tos_markdown) | |
| regenerate_btn.click( | |
| regenerate, | |
| [state, image_process_mode], | |
| [state, chatbot, textbox, imagebox], | |
| queue=False, | |
| ).then( | |
| http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot] | |
| ) | |
| clear_btn.click( | |
| clear_history, None, [state, chatbot, textbox, imagebox], queue=False | |
| ) | |
| textbox.submit( | |
| add_text, | |
| [state, textbox, imagebox, image_process_mode], | |
| [state, chatbot, textbox, imagebox], | |
| queue=False, | |
| ).then( | |
| http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot] | |
| ) | |
| submit_btn.click( | |
| add_text, | |
| [state, textbox, imagebox, image_process_mode], | |
| [state, chatbot, textbox, imagebox], | |
| queue=False, | |
| ).then( | |
| http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot] | |
| ) | |
| demo.load(load_demo, None, [state], queue=False) | |
| return demo | |
| def parse_args(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--host", type=str, default=None) | |
| parser.add_argument("--port", type=int, default=None) | |
| parser.add_argument("--share", default=None) | |
| parser.add_argument("--model-path", type=str, default=DEFAULT_MODEL_PATH) | |
| parser.add_argument("--model-name", type=str, default=DEFAULT_MODEL_NAME) | |
| parser.add_argument("--load-8bit", action="store_true") | |
| parser.add_argument("--load-4bit", action="store_true") | |
| args = parser.parse_args() | |
| return args | |
| if __name__ == "__main__": | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", | |
| ) | |
| logger = logging.getLogger(__name__) | |
| logger.info(gr.__version__) | |
| args = parse_args() | |
| model_name = args.model_name | |
| tokenizer, model, image_processor, context_len = load_pretrained_model( | |
| model_path=args.model_path, | |
| model_base=None, | |
| model_name=args.model_name, | |
| device="cpu", | |
| load_4bit=args.load_4bit, | |
| load_8bit=args.load_8bit, | |
| torch_dtype=torch.float16, | |
| ) | |
| demo = build_demo() | |
| demo.queue() | |
| demo.launch(server_name=args.host, server_port=args.port, share=args.share) | 
 
			
