File size: 9,600 Bytes
0aeae25 c947ff2 466e3e5 ab0c591 f212225 10a827b 09dd649 10a827b 1fb2dc5 f212225 71e6356 f212225 264bf64 f212225 1fb2dc5 a5d07a8 ea33f68 323e41c ea33f68 a5d07a8 ea33f68 a5d07a8 ea33f68 a5d07a8 323e41c 5b822d2 2d05dd8 c947ff2 09dd649 c947ff2 09dd649 c947ff2 09dd649 323e41c d418457 323e41c 9e290b2 d418457 323e41c 9e290b2 d418457 323e41c ff91285 323e41c d418457 323e41c d418457 323e41c d418457 323e41c d418457 323e41c f5be841 c947ff2 323e41c 1fb2dc5 323e41c 9e290b2 323e41c d418457 ab0c591 c947ff2 9e290b2 d418457 9e290b2 466e3e5 d418457 ff91285 d418457 f5be841 c947ff2 ab0c591 09dd649 9e290b2 1fb2dc5 f6e8ca8 9e290b2 fdbd4ae 9e290b2 f6e8ca8 5b822d2 f6e8ca8 9e290b2 1ab8818 9e290b2 1ab8818 f6e8ca8 9e290b2 1ab8818 264bf64 f6e8ca8 264bf64 f6e8ca8 264bf64 f6e8ca8 1ab8818 f6e8ca8 9e290b2 f6e8ca8 9e290b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import gradio as gr
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces
import cv2
import numpy as np
from PIL import Image
from gradio_client import Client, handle_file
import os
# Initialize TTS client with HF token
hf_token = os.getenv("HF_TOKEN") # Set your HF token as environment variable
tts_client = Client("dofbi/galsenai-xtts-v2-wolof-inference", hf_token=hf_token)
def tts(text):
"""Generate TTS using Gradio API client"""
try:
result = tts_client.predict(
text=text,
audio_reference=handle_file('https://github.com/gradio-app/gradio/raw/main/test/test_files/audio_sample.wav'),
api_name="/predict"
)
print(f"TTS result: {result}") # Debug print to see what's returned
# Handle different possible return formats
if isinstance(result, tuple):
# If result is a tuple, the audio file might be in the first element
return result[0] if result else None
elif isinstance(result, str):
# If result is a string (file path)
return result
elif hasattr(result, 'name'):
# If result is a file object with a name attribute
return result.name
else:
# Try to return the result as-is
return result
except Exception as e:
print(f"TTS API Error: {e}")
return None
def progress_bar_html(label: str) -> str:
"""
Returns an HTML snippet for a thin progress bar with a label.
The progress bar is styled as a dark animated bar.
"""
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #9370DB; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #4B0082; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
def downsample_video(video_path):
"""
Downsamples the video to 10 evenly spaced frames.
Each frame is converted to a PIL Image along with its timestamp.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
if total_frames <= 0 or fps <= 0:
vidcap.release()
return frames
# Sample 10 evenly spaced frames.
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
MODEL_ID = "yaya-sy/chvtr" # "kaamd/chtvctr" # Alternatively: "Qwen/Qwen2.5-VL-3B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True, min_pixels=256*28*28, max_pixels=1280*28*28)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to("cuda").eval()
@spaces.GPU
def model_inference(input_dict, history):
text = input_dict["text"]
files = input_dict["files"]
if text.strip().lower().startswith("@video-infer"):
# Remove the tag from the query.
text = text[len("@video-infer"):].strip()
if not files:
raise gr.Error("Please upload a video file along with your @video-infer query.") # Fixed: gr.Error syntax
# Assume the first file is a video.
video_path = files[0]
frames = downsample_video(video_path)
if not frames:
raise gr.Error("Could not process video.") # Fixed: gr.Error syntax
# Build messages: start with the text prompt.
messages = [
# {"role": "system", "content": "Answer clearly to the user's requesst. Please do not use numbers, only letters. If you want to answer with a number, convert it to letters. For example, you should not say 'am an 2 xaj' but 'am an Γ±aari xaj.'"},
{
"role": "user",
"content": [{"type": "text", "text": text}]
}
]
# Append each frame with a timestamp label.
for image, timestamp in frames:
messages[0]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
messages[0]["content"].append({"type": "image", "image": image})
# Collect only the images from the frames.
video_images = [image for image, _ in frames]
# Prepare the prompt.
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt],
images=video_images,
return_tensors="pt",
padding=True,
).to("cuda")
# Set up streaming generation.
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=128, temperature=2.0, min_p=0.8)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.001)
yield buffer
return # Fixed: Added return to prevent falling through
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
if text == "" and not images:
raise gr.Error("Please input a query and optionally image(s).") # Fixed: gr.Error syntax
if text == "" and images:
raise gr.Error("Please input a text query along with the image(s).") # Fixed: gr.Error syntax
messages = [
# {"role": "system", "content": "Answer clearly to the user's requesst. Please do not use numbers, only letters. If you want to answer with a number, convert it to letters. For example, you should not say 'am an 2 xaj' but 'am an Γ±aari xaj.'"},
{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
],
}
]
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt],
images=images if images else None,
return_tensors="pt",
padding=True,
).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=128, temperature=2.0, min_p=0.8)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
# This will only be reached after streaming is complete
# Generate TTS for the final buffer content
audio_path = tts(buffer)
return audio_path # Return the audio file path
# Option 1: Use regular Interface with streaming (recommended)
with gr.Blocks() as demo:
gr.Markdown("# Oolel")
chatbot = gr.Chatbot()
msg = gr.MultimodalTextbox(
label="Your Request",
file_types=["image", "video"],
file_count="multiple"
)
audio_output = gr.Audio(label="Generated Speech")
clear = gr.Button("Clear")
def respond(message, chat_history):
# Add user message to chat history
bot_message = ""
chat_history.append([message["text"], ""])
# Stream the response
for response in model_inference(message, chat_history):
bot_message = response
chat_history[-1][1] = bot_message
yield "", chat_history, None
# Generate audio after streaming is complete
try:
if bot_message.strip(): # Only generate TTS if there's actual text
audio_path = tts(bot_message)
if audio_path:
yield "", chat_history, audio_path
else:
print("TTS returned None or empty result")
yield "", chat_history, None
else:
yield "", chat_history, None
except Exception as e:
print(f"TTS Error: {e}")
yield "", chat_history, None
msg.submit(respond, [msg, chatbot], [msg, chatbot, audio_output])
clear.click(lambda: ([], None), outputs=[chatbot, audio_output])
# Option 2: Use ChatInterface without outputs parameter (simpler but no audio)
# demo = gr.ChatInterface(
# fn=model_inference,
# description="# oolel-vision-experimental `@video-infer for video understanding`**",
# fill_height=True,
# textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"),
# stop_btn="Stop Generation",
# multimodal=True,
# cache_examples=False,
# )
if __name__ == "__main__":
demo.launch(debug=True) |