Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
from transformers import BlipForQuestionAnswering, BlipProcessor
|
| 5 |
+
|
| 6 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 7 |
+
|
| 8 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
| 9 |
+
model_vqa = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base").to(device)
|
| 10 |
+
|
| 11 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 12 |
+
|
| 13 |
+
def inference(raw_image, question, decoding_strategy):
|
| 14 |
+
inputs = processor(images=raw_image, text=question,return_tensors="pt")
|
| 15 |
+
|
| 16 |
+
if decoding_strategy == "Beam search":
|
| 17 |
+
inputs["max_length"] = 20
|
| 18 |
+
inputs["num_beams"] = 5
|
| 19 |
+
elif decoding_strategy == "Nucleus sampling":
|
| 20 |
+
inputs["max_length"] = 20
|
| 21 |
+
inputs["num_beams"] = 1
|
| 22 |
+
inputs["do_sample"] = True
|
| 23 |
+
inputs["top_k"] = 50
|
| 24 |
+
inputs["top_p"] = 0.95
|
| 25 |
+
|
| 26 |
+
out = model_vqa.generate(**inputs)
|
| 27 |
+
return processor.batch_decode(out, skip_special_tokens=True)[0]
|
| 28 |
+
|
| 29 |
+
inputs = [
|
| 30 |
+
gr.inputs.Image(type='pil'),
|
| 31 |
+
gr.inputs.Textbox(lines=2, label="Question"),
|
| 32 |
+
gr.inputs.Radio(choices=['Beam search','Nucleus sampling'], type="value", default="Nucleus sampling", label="Caption Decoding Strategy")
|
| 33 |
+
]
|
| 34 |
+
outputs = gr.outputs.Textbox(label="Output")
|
| 35 |
+
|
| 36 |
+
title = "BLIP"
|
| 37 |
+
|
| 38 |
+
description = "Gradio demo for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation (Salesforce Research). To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
|
| 39 |
+
|
| 40 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.12086' target='_blank'>BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation</a> | <a href='https://github.com/salesforce/BLIP' target='_blank'>Github Repo</a></p>"
|
| 41 |
+
|
| 42 |
+
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article).launch(enable_queue=True)
|