Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. | |
| from collections import OrderedDict | |
| import nncore | |
| from videomind.dataset.hybrid import DATASETS | |
| from videomind.dataset.wrappers import GroundingDataset | |
| from videomind.utils.parser import parse_query | |
| class ActivitynetCaptionsDataset(GroundingDataset): | |
| ANNO_PATH_TRAIN = 'data/activitynet_captions/train.json' | |
| ANNO_PATH_VALID = 'data/activitynet_captions/val_1.json' | |
| ANNO_PATH_TEST = 'data/activitynet_captions/val_2.json' | |
| VIDEO_ROOT = 'data/activitynet/videos_3fps_480_noaudio' | |
| DURATIONS = 'data/activitynet/durations.json' | |
| UNIT = 0.01 | |
| def load_annos(self, split='train'): | |
| if split == 'train': | |
| raw_annos = nncore.load(self.ANNO_PATH_TRAIN, object_pairs_hook=OrderedDict) | |
| elif split == 'valid': | |
| raw_annos = nncore.load(self.ANNO_PATH_VALID, object_pairs_hook=OrderedDict) | |
| else: | |
| raw_annos = nncore.load(self.ANNO_PATH_TEST, object_pairs_hook=OrderedDict) | |
| durations = nncore.load(self.DURATIONS) | |
| annos = [] | |
| for vid, raw_anno in raw_annos.items(): | |
| for query, span in zip(raw_anno['sentences'], raw_anno['timestamps']): | |
| anno = dict( | |
| source='activitynet_captions', | |
| data_type='grounding', | |
| video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), | |
| duration=durations[vid], | |
| query=parse_query(query), | |
| span=[span]) | |
| annos.append(anno) | |
| return annos | |
| class ActivitynetCaptionsBiasDataset(ActivitynetCaptionsDataset): | |
| def load_annos(self, split='train'): | |
| if split == 'train': | |
| raw_annos = nncore.load(self.ANNO_PATH_TRAIN, object_pairs_hook=OrderedDict) | |
| elif split == 'valid': | |
| raw_annos = nncore.load(self.ANNO_PATH_VALID, object_pairs_hook=OrderedDict) | |
| else: | |
| raw_annos = nncore.load(self.ANNO_PATH_TEST, object_pairs_hook=OrderedDict) | |
| durations = nncore.load(self.DURATIONS) | |
| annos = [] | |
| for vid, raw_anno in raw_annos.items(): | |
| assert len(raw_anno['sentences']) == len(raw_anno['timestamps']) | |
| for i in range(len(raw_anno['sentences']) - 1): | |
| span_a = raw_anno['timestamps'][i] | |
| span_b = raw_anno['timestamps'][i + 1] | |
| if span_b[0] - span_a[1] < 3: | |
| query_a = parse_query(f"The moment before {raw_anno['sentences'][i + 1]}") | |
| query_b = parse_query(f"The moment after {raw_anno['sentences'][i]}") | |
| anno_a = dict( | |
| source='activitynet_captions_bias', | |
| data_type='grounding', | |
| video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), | |
| duration=durations[vid], | |
| query=query_a, | |
| span=[span_a]) | |
| anno_b = dict( | |
| source='activitynet_captions_bias', | |
| data_type='grounding', | |
| video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), | |
| duration=durations[vid], | |
| query=query_b, | |
| span=[span_b]) | |
| annos.append(anno_a) | |
| annos.append(anno_b) | |
| return annos | |