Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. | |
| import random | |
| import nncore | |
| import numpy as np | |
| from videomind.dataset.hybrid import DATASETS | |
| from videomind.dataset.wrappers import GroundingDataset | |
| from videomind.utils.parser import parse_query | |
| class DiDeMoDataset(GroundingDataset): | |
| ANNO_PATH_TRAIN = 'data/didemo/train_data.json' | |
| ANNO_PATH_VALID = 'data/didemo/val_data.json' | |
| ANNO_PATH_TEST = 'data/didemo/test_data.json' | |
| VIDEO_ROOT = 'data/didemo/videos_3fps_480_noaudio' | |
| DURATIONS = 'data/didemo/durations.json' | |
| UNIT = 1.0 | |
| def load_annos(self, split='train'): | |
| if split == 'train': | |
| raw_annos = nncore.load(self.ANNO_PATH_TRAIN) | |
| elif split == 'valid': | |
| raw_annos = nncore.load(self.ANNO_PATH_VALID) | |
| else: | |
| raw_annos = nncore.load(self.ANNO_PATH_TEST) | |
| durations = nncore.load(self.DURATIONS) | |
| annos = [] | |
| for raw_anno in raw_annos: | |
| vid = raw_anno['video'].split('.')[0] | |
| # apply mean on multiple spans | |
| span = np.array(raw_anno['times']).mean(axis=0).tolist() | |
| span = [round(span[0] * 5), round((span[1] + 1) * 5)] | |
| # augment spans during training | |
| if split == 'train': | |
| offset = random.randint(-2, 2) | |
| span = [span[0] + offset, span[1] + offset] | |
| anno = dict( | |
| source='didemo', | |
| data_type='grounding', | |
| video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), | |
| duration=durations[vid], | |
| query=parse_query(raw_anno['description']), | |
| span=[span]) | |
| annos.append(anno) | |
| return annos | |