Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. | |
| import nncore | |
| from torch.utils.data import Dataset | |
| from videomind.dataset.hybrid import DATASETS | |
| from videomind.utils.parser import parse_query, parse_question | |
| class LVBenchDataset(Dataset): | |
| ANNO_PATH = 'data/lvbench/LVBench/video_info.meta.jsonl' | |
| VIDEO_ROOT = 'data/lvbench/videos_3fps_480_noaudio' | |
| def load_annos(self, split='test'): | |
| assert split == 'test' | |
| raw_annos = nncore.load(self.ANNO_PATH) | |
| annos = [] | |
| for raw_anno in raw_annos: | |
| vid = raw_anno['key'] | |
| for meta in raw_anno['qa']: | |
| tok = meta['question'].split('\n') | |
| assert len(tok) == 5 | |
| assert all(any(o.startswith(k) for k in ('(A) ', '(B) ', '(C) ', '(D) ')) for o in tok[1:]) | |
| options = [o[4:] for o in tok[1:]] | |
| ans = meta['answer'] | |
| answer = options[ord(ans) - ord('A')] | |
| assert ans in 'ABCD' | |
| anno = dict( | |
| source='lvbench', | |
| data_type='multimodal', | |
| video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), | |
| query=parse_query(tok[0]), | |
| question=parse_question(tok[0]), | |
| options=options, | |
| answer=answer, | |
| ans=ans, | |
| task=meta['question_type'], | |
| time_reference=meta['time_reference']) | |
| annos.append(anno) | |
| return annos | |