Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. | |
| import nncore | |
| from torch.utils.data import Dataset | |
| from videomind.dataset.hybrid import DATASETS | |
| from videomind.utils.parser import parse_query, parse_question | |
| class MLVUDataset(Dataset): | |
| TASK_TO_DIR_MAP = { | |
| 'plotQA': '1_plotQA', | |
| 'findNeedle': '2_needle', | |
| 'ego': '3_ego', | |
| 'count': '4_count', | |
| 'order': '5_order', | |
| 'anomaly_reco': '6_anomaly_reco', | |
| 'topic_reasoning': '7_topic_reasoning' | |
| } | |
| DATA_ROOT = 'data/mlvu' | |
| def load_annos(self, split='test'): | |
| assert split == 'test' | |
| paths = [nncore.join(self.DATA_ROOT, 'json', f'{n}.json') for n in self.TASK_TO_DIR_MAP.values()] | |
| raw_annos = nncore.flatten([nncore.load(p) for p in paths]) | |
| annos = [] | |
| for raw_anno in raw_annos: | |
| task = raw_anno['question_type'] | |
| video_name = nncore.join(self.TASK_TO_DIR_MAP[task], raw_anno['video']) | |
| options = raw_anno['candidates'] | |
| answer = raw_anno['answer'] | |
| ans = chr(ord('A') + options.index(answer)) | |
| anno = dict( | |
| source='mlvu', | |
| data_type='multimodal', | |
| video_path=nncore.join(self.DATA_ROOT, 'video', video_name), | |
| query=parse_query(raw_anno['question']), | |
| question=parse_question(raw_anno['question']), | |
| options=options, | |
| answer=answer, | |
| ans=ans, | |
| task=task) | |
| annos.append(anno) | |
| return annos | |