Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. | |
| import csv | |
| import nncore | |
| from videomind.dataset.hybrid import DATASETS | |
| from videomind.dataset.wrappers import AnsweringCropDataset, AnsweringDataset, GroundingDataset | |
| from videomind.utils.parser import parse_query, parse_question | |
| class NExTGQADataset(AnsweringDataset): | |
| ANNO_PATH_VALID = 'data/nextgqa/val.csv' | |
| ANNO_PATH_TEST = 'data/nextgqa/test.csv' | |
| SPAN_PATH_VALID = 'data/nextgqa/gsub_val.json' | |
| SPAN_PATH_TEST = 'data/nextgqa/gsub_test.json' | |
| VIDEO_ID_MAP = 'data/nextgqa/map_vid_vidorID.json' | |
| VIDEO_ROOT = 'data/nextqa/videos' | |
| SOURCE = 'nextgqa' | |
| DATA_TYPE = 'multimodal' | |
| UNIT = 0.1 | |
| def load_annos(self, split='valid'): | |
| assert split in ('valid', 'test') | |
| if split == 'valid': | |
| anno_path = self.ANNO_PATH_VALID | |
| raw_spans = nncore.load(self.SPAN_PATH_VALID) | |
| else: | |
| anno_path = self.ANNO_PATH_TEST | |
| raw_spans = nncore.load(self.SPAN_PATH_TEST) | |
| with open(anno_path, mode='r') as f: | |
| reader = csv.DictReader(f) | |
| raw_annos = [d for d in reader] | |
| video_id_map = nncore.load(self.VIDEO_ID_MAP) | |
| annos = [] | |
| for raw_anno in raw_annos: | |
| vid = raw_anno['video_id'] | |
| qid = raw_anno['qid'] | |
| video_id = video_id_map[vid] | |
| query = parse_query(raw_anno['question'].capitalize() + '?') | |
| question = parse_question(raw_anno['question'].capitalize() + '?') | |
| options = [raw_anno[k].capitalize() for k in ('a0', 'a1', 'a2', 'a3', 'a4')] | |
| answer = raw_anno['answer'].capitalize() | |
| ans = chr(ord('A') + options.index(answer)) | |
| anno = dict( | |
| source=self.SOURCE, | |
| data_type=self.DATA_TYPE, | |
| video_path=nncore.join(self.VIDEO_ROOT, video_id + '.mp4'), | |
| duration=raw_spans[vid]['duration'], | |
| query=query, | |
| question=question, | |
| options=options, | |
| answer=answer, | |
| ans=ans, | |
| span=raw_spans[vid]['location'][qid], | |
| task=raw_anno['type']) | |
| annos.append(anno) | |
| return annos | |
| class NExTGQACropDataset(AnsweringCropDataset, NExTGQADataset): | |
| SOURCE = 'nextgqa_crop' | |
| class NExTGQAGroundingDataset(GroundingDataset, NExTGQADataset): | |
| SOURCE = 'nextgqa_grounding' | |
| DATA_TYPE = 'grounding' | |