Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. | |
| import random | |
| import nncore | |
| from videomind.dataset.hybrid import DATASETS | |
| from videomind.dataset.wrappers import AnsweringCropDataset, AnsweringDataset, GroundingDataset | |
| from videomind.utils.parser import parse_query, parse_question | |
| class QAEgo4DDataset(AnsweringDataset): | |
| ANNO_PATH_TRAIN = 'data/qa_ego4d/annotations.QaEgo4D_train.json' | |
| ANNO_PATH_VALID = 'data/qa_ego4d/annotations.QaEgo4D_val_options.json' | |
| ANNO_PATH_TEST = 'data/qa_ego4d/annotations.QaEgo4D_test_options.json' | |
| VIDEO_ROOT = 'data/ego4d/v1/videos_3fps_480_noaudio' | |
| DURATIONS = 'data/ego4d/v1/durations.json' | |
| SOURCE = 'qa_ego4d' | |
| DATA_TYPE = 'multimodal' | |
| UNIT = 0.001 | |
| def load_annos(self, split='train'): | |
| if split == 'train': | |
| raw_annos = nncore.load(self.ANNO_PATH_TRAIN) | |
| elif split == 'valid': | |
| raw_annos = nncore.load(self.ANNO_PATH_VALID) | |
| else: | |
| raw_annos = nncore.load(self.ANNO_PATH_TEST) | |
| durations = nncore.load(self.DURATIONS) | |
| annos = [] | |
| for raw_anno in raw_annos: | |
| vid = raw_anno['video_id'] | |
| duration = durations[vid] | |
| # too short or too long samples | |
| if split == 'train' and (duration < 10 or duration > 600): | |
| continue | |
| span = [raw_anno['moment_start_frame'] / 30, raw_anno['moment_end_frame'] / 30] | |
| span = [round(span[0], 3), round(span[1], 3)] | |
| # skip samples with too short moments | |
| # if split == 'train' and span[1] - span[0] < 2: | |
| # continue | |
| answer = raw_anno['answer'].capitalize() | |
| if 'options' in raw_anno: | |
| options = [o.capitalize() for o in raw_anno['options']] | |
| idx = options.index(answer) | |
| ans = chr(ord('A') + idx) | |
| else: | |
| # NOTE: indeterministic evaluation | |
| assert len(raw_anno['wrong_answers']) == 3 | |
| idx = random.randint(0, 3) | |
| ans = chr(ord('A') + idx) | |
| options = [o.capitalize() for o in raw_anno['wrong_answers']] | |
| options.insert(idx, answer) | |
| assert len(options) == 4, options | |
| anno = dict( | |
| source=self.SOURCE, | |
| data_type=self.DATA_TYPE, | |
| video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), | |
| duration=duration, | |
| query=parse_query(raw_anno['question'].capitalize()), | |
| question=parse_question(raw_anno['question'].capitalize()), | |
| options=options, | |
| answer=answer, | |
| ans=ans, | |
| span=[span]) | |
| annos.append(anno) | |
| return annos | |
| class QAEgo4DCropDataset(AnsweringCropDataset, QAEgo4DDataset): | |
| SOURCE = 'qa_ego4d_crop' | |
| class QAEgo4DGroundingDataset(GroundingDataset, QAEgo4DDataset): | |
| SOURCE = 'qa_ego4d_grounding' | |
| DATA_TYPE = 'grounding' | |