Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. | |
| import nncore | |
| from videomind.dataset.hybrid import DATASETS | |
| from videomind.dataset.wrappers import AnsweringCropDataset | |
| from videomind.utils.parser import parse_query, parse_question | |
| class STARDataset(AnsweringCropDataset): | |
| ANNO_PATH_TRAIN = 'data/star/STAR_train.json' | |
| ANNO_PATH_VALID = 'data/star/STAR_val.json' | |
| VIDEO_ROOT = 'data/charades_sta/videos_3fps_480_noaudio' | |
| DURATIONS = 'data/charades_sta/durations.json' | |
| UNIT = 0.1 | |
| def load_annos(self, split='train'): | |
| if split == 'train': | |
| raw_annos = nncore.load(self.ANNO_PATH_TRAIN) | |
| else: | |
| raw_annos = nncore.load(self.ANNO_PATH_VALID) | |
| durations = nncore.load(self.DURATIONS) | |
| annos = [] | |
| for raw_anno in raw_annos: | |
| vid = raw_anno['video_id'] | |
| options = [c['choice'] for c in raw_anno['choices']] | |
| answer = raw_anno['answer'] | |
| ans = chr(ord('A') + options.index(answer)) | |
| anno = dict( | |
| source='star', | |
| data_type='multimodal', | |
| video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), | |
| duration=durations[vid], | |
| query=parse_query(raw_anno['question']), | |
| question=parse_question(raw_anno['question']), | |
| options=options, | |
| answer=answer, | |
| ans=ans, | |
| span=[[raw_anno['start'], raw_anno['end']]], | |
| task=raw_anno['question_id'].split('_')[0], | |
| no_aug=True) | |
| annos.append(anno) | |
| return annos | |