Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. | |
| import nncore | |
| from torch.utils.data import Dataset | |
| import pandas as pd | |
| from videomind.dataset.hybrid import DATASETS | |
| from videomind.utils.parser import parse_query, parse_question | |
| class VideoMMEDataset(Dataset): | |
| ANNO_PATH = 'data/videomme/test-00000-of-00001.parquet' | |
| VIDEO_ROOT = 'data/videomme/videos' | |
| SUBTITLE_ROOT = 'data/videomme/subtitles' | |
| def load_annos(self, split='test'): | |
| assert split == 'test' | |
| raw_annos = pd.read_parquet(self.ANNO_PATH).to_dict(orient='records') | |
| annos = [] | |
| for raw_anno in raw_annos: | |
| vid = raw_anno['videoID'] | |
| options = raw_anno['options'].tolist() | |
| assert len(options) == 4 | |
| assert all(any(o.startswith(k) for k in ('A. ', 'B. ', 'C. ', 'D. ')) for o in options) | |
| options = [o[3:] for o in options] | |
| ans = raw_anno['answer'] | |
| answer = options[ord(ans) - ord('A')] | |
| assert ans in 'ABCD' | |
| anno = dict( | |
| source='videomme', | |
| data_type='multimodal', | |
| video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), | |
| query=parse_query(raw_anno['question']), | |
| question=parse_question(raw_anno['question']), | |
| options=options, | |
| answer=answer, | |
| ans=ans, | |
| task=raw_anno['duration']) | |
| annos.append(anno) | |
| return annos | |