Spaces:
Running
on
Zero
Running
on
Zero
| # Modified from https://github.com/QwenLM/Qwen2.5-VL/blob/main/qwen-vl-utils/src/qwen_vl_utils/vision_process.py | |
| import base64 | |
| import math | |
| import warnings | |
| from io import BytesIO | |
| import decord | |
| import numpy as np | |
| import torch | |
| from PIL import Image, ImageSequence | |
| from torchvision import transforms | |
| from torchvision.transforms import InterpolationMode | |
| import requests | |
| from videomind.constants import IGNORE_INDEX | |
| from videomind.conversation import get_conv | |
| IMAGE_FACTOR = 28 | |
| MIN_PIXELS = 4 * 28 * 28 | |
| MAX_PIXELS = 16384 * 28 * 28 | |
| MAX_RATIO = 200 | |
| VIDEO_MIN_PIXELS = 128 * 28 * 28 | |
| VIDEO_MAX_PIXELS = 768 * 28 * 28 | |
| VIDEO_TOTAL_PIXELS = 24576 * 28 * 28 | |
| FRAME_FACTOR = 2 | |
| FPS = 2.0 | |
| FPS_MIN_FRAMES = 4 | |
| FPS_MAX_FRAMES = 768 | |
| def round_by_factor(number: int, factor: int) -> int: | |
| """Returns the closest integer to 'number' that is divisible by 'factor'.""" | |
| return round(number / factor) * factor | |
| def ceil_by_factor(number: int, factor: int) -> int: | |
| """Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'.""" | |
| return math.ceil(number / factor) * factor | |
| def floor_by_factor(number: int, factor: int) -> int: | |
| """Returns the largest integer less than or equal to 'number' that is divisible by 'factor'.""" | |
| return math.floor(number / factor) * factor | |
| def smart_resize(height: int, | |
| width: int, | |
| factor: int = IMAGE_FACTOR, | |
| min_pixels: int = MIN_PIXELS, | |
| max_pixels: int = MAX_PIXELS) -> tuple[int, int]: | |
| """ | |
| Rescales the image so that the following conditions are met: | |
| 1. Both dimensions (height and width) are divisible by 'factor'. | |
| 2. The total number of pixels is within the range ['min_pixels', 'max_pixels']. | |
| 3. The aspect ratio of the image is maintained as closely as possible. | |
| """ | |
| if max(height, width) / min(height, width) > MAX_RATIO: | |
| raise ValueError( | |
| f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)}") | |
| h_bar = max(factor, round_by_factor(height, factor)) | |
| w_bar = max(factor, round_by_factor(width, factor)) | |
| # change order here to ensure not exceeding max_pixels | |
| if h_bar * w_bar < min_pixels: | |
| beta = math.sqrt(min_pixels / (height * width)) | |
| h_bar = ceil_by_factor(height * beta, factor) | |
| w_bar = ceil_by_factor(width * beta, factor) | |
| if h_bar * w_bar > max_pixels: | |
| beta = math.sqrt((height * width) / max_pixels) | |
| h_bar = floor_by_factor(height / beta, factor) | |
| w_bar = floor_by_factor(width / beta, factor) | |
| return h_bar, w_bar | |
| def fetch_image(ele: dict[str, str | Image.Image], size_factor: int = IMAGE_FACTOR) -> Image.Image: | |
| if "image" in ele: | |
| image = ele["image"] | |
| else: | |
| image = ele["image_url"] | |
| image_obj = None | |
| if isinstance(image, Image.Image): | |
| image_obj = image | |
| elif image.startswith("http://") or image.startswith("https://"): | |
| image_obj = Image.open(requests.get(image, stream=True).raw) | |
| elif image.startswith("file://"): | |
| image_obj = Image.open(image[7:]) | |
| elif image.startswith("data:image"): | |
| if "base64," in image: | |
| _, base64_data = image.split("base64,", 1) | |
| data = base64.b64decode(base64_data) | |
| image_obj = Image.open(BytesIO(data)) | |
| else: | |
| image_obj = Image.open(image) | |
| if image_obj is None: | |
| raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}") | |
| image = image_obj.convert("RGB") | |
| if "resized_height" in ele and "resized_width" in ele: | |
| resized_height, resized_width = smart_resize( | |
| ele["resized_height"], | |
| ele["resized_width"], | |
| factor=size_factor, | |
| ) | |
| else: | |
| width, height = image.size | |
| min_pixels = ele.get("min_pixels", MIN_PIXELS) | |
| max_pixels = ele.get("max_pixels", MAX_PIXELS) | |
| resized_height, resized_width = smart_resize( | |
| height, | |
| width, | |
| factor=size_factor, | |
| min_pixels=min_pixels, | |
| max_pixels=max_pixels, | |
| ) | |
| image = image.resize((resized_width, resized_height)) | |
| return image | |
| def smart_nframes( | |
| ele: dict, | |
| total_frames: int, | |
| video_fps: int | float, | |
| ) -> int: | |
| """calculate the number of frames for video used for model inputs. | |
| Args: | |
| ele (dict): a dict contains the configuration of video. | |
| support either `fps` or `nframes`: | |
| - nframes: the number of frames to extract for model inputs. | |
| - fps: the fps to extract frames for model inputs. | |
| - min_frames: the minimum number of frames of the video, only used when fps is provided. | |
| - max_frames: the maximum number of frames of the video, only used when fps is provided. | |
| total_frames (int): the original total number of frames of the video. | |
| video_fps (int | float): the original fps of the video. | |
| Raises: | |
| ValueError: nframes should in interval [FRAME_FACTOR, total_frames]. | |
| Returns: | |
| int: the number of frames for video used for model inputs. | |
| """ | |
| assert not ("fps" in ele and "nframes" in ele), "Only accept either `fps` or `nframes`" | |
| if "nframes" in ele: | |
| nframes = round_by_factor(ele["nframes"], FRAME_FACTOR) | |
| else: | |
| fps = ele.get("fps", FPS) | |
| min_frames = ceil_by_factor(ele.get("min_frames", FPS_MIN_FRAMES), FRAME_FACTOR) | |
| max_frames = floor_by_factor(ele.get("max_frames", min(FPS_MAX_FRAMES, total_frames)), FRAME_FACTOR) | |
| nframes = total_frames / video_fps * fps | |
| nframes = min(max(nframes, min_frames), max_frames) | |
| nframes = round_by_factor(nframes, FRAME_FACTOR) | |
| if not (FRAME_FACTOR <= nframes and nframes <= total_frames): | |
| raise ValueError(f"nframes should in interval [{FRAME_FACTOR}, {total_frames}], but got {nframes}.") | |
| return nframes | |
| def _read_video_gif(path): | |
| gif = Image.open(path) | |
| frames = [] | |
| for frame in ImageSequence.Iterator(gif): | |
| frames.append(np.array(frame.convert('RGB'))) | |
| frames = np.stack(frames, axis=0) | |
| return frames | |
| def _read_video_decord(ele: dict, ) -> torch.Tensor: | |
| """read video using decord.VideoReader | |
| Args: | |
| ele (dict): a dict contains the configuration of video. | |
| support keys: | |
| - video: the path of video. support "file://", "http://", "https://" and local path. | |
| - video_start: the start time of video. | |
| - video_end: the end time of video. | |
| Returns: | |
| torch.Tensor: the video tensor with shape (T, C, H, W). | |
| """ | |
| video_path = ele["video"] | |
| if video_path.endswith('.gif'): | |
| video = _read_video_gif(video_path) | |
| total_frames, video_fps = video.shape[0], ele.get('fps', FPS) | |
| else: | |
| vr = decord.VideoReader(video_path, num_threads=ele.get('num_threads', 0)) | |
| total_frames, video_fps = len(vr), vr.get_avg_fps() | |
| # 1. re-calculate total frames | |
| s = ele.get('video_start') | |
| s = 0 if s is None else s | |
| e = ele.get('video_end') | |
| e = total_frames / video_fps if e is None else e | |
| s_frame = min(max(0, round(s * video_fps)), total_frames - 1) | |
| e_frame = min(max(0, round(e * video_fps)), total_frames - 1) | |
| if s_frame > e_frame: | |
| warnings.warn(f's_frame ({s_frame}) is greater than e_frame ({e_frame}), total_frames: {total_frames}') | |
| s_frame, e_frame = e_frame, s_frame | |
| # TODO: the actual total_frames shall be computed by e_frame - s_frame + 1 | |
| # but it would affect verifier's performance when video_start and video_end get clamped | |
| # shall be fixed by using normalized timestamps instead of real time | |
| total_frames = min(max(FPS_MIN_FRAMES, round((e - s) * video_fps)), total_frames) | |
| nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps) | |
| # 2. generate frame ids | |
| idx = torch.linspace(s_frame, e_frame, nframes).round().long().tolist() | |
| assert len(idx) == nframes, (len(idx), nframes) | |
| if video_path.endswith('.gif'): | |
| video = video[idx] | |
| else: | |
| video = vr.get_batch(idx).asnumpy() | |
| video = torch.tensor(video).permute(0, 3, 1, 2) # Convert to TCHW format | |
| return video | |
| def fetch_video(ele: dict, image_factor: int = IMAGE_FACTOR, sanity_check=False) -> torch.Tensor | list[Image.Image]: | |
| if isinstance(ele["video"], str): | |
| video = _read_video_decord(ele) | |
| nframes, _, height, width = video.shape | |
| min_pixels = ele.get("min_pixels", VIDEO_MIN_PIXELS) | |
| total_pixels = ele.get("total_pixels", VIDEO_TOTAL_PIXELS) | |
| max_pixels = max(min(VIDEO_MAX_PIXELS, total_pixels / nframes * FRAME_FACTOR), int(min_pixels * 1.05)) | |
| max_pixels = ele.get("max_pixels", max_pixels) | |
| if "resized_height" in ele and "resized_width" in ele: | |
| resized_height, resized_width = smart_resize( | |
| ele["resized_height"], | |
| ele["resized_width"], | |
| factor=image_factor, | |
| ) | |
| else: | |
| resized_height, resized_width = smart_resize( | |
| height, | |
| width, | |
| factor=image_factor, | |
| min_pixels=min_pixels, | |
| max_pixels=max_pixels, | |
| ) | |
| video = transforms.functional.resize( | |
| video, | |
| [resized_height, resized_width], | |
| interpolation=InterpolationMode.BICUBIC, | |
| antialias=True, | |
| ).float() | |
| if sanity_check and (video == 0).all(): | |
| raise ValueError("video '{}' contains all zeros".format(ele["video"])) | |
| return video | |
| else: | |
| assert isinstance(ele["video"], (list, tuple)) | |
| process_info = ele.copy() | |
| process_info.pop("type", None) | |
| process_info.pop("video", None) | |
| images = [ | |
| fetch_image({ | |
| "image": video_element, | |
| **process_info | |
| }, size_factor=image_factor) for video_element in ele["video"] | |
| ] | |
| nframes = ceil_by_factor(len(images), FRAME_FACTOR) | |
| if len(images) < nframes: | |
| images.extend([images[-1]] * (nframes - len(images))) | |
| return images | |
| def extract_vision_info(conversations: list[dict] | list[list[dict]]) -> list[dict]: | |
| vision_infos = [] | |
| if isinstance(conversations[0], dict): | |
| conversations = [conversations] | |
| for conversation in conversations: | |
| for message in conversation: | |
| if isinstance(message["content"], list): | |
| for ele in message["content"]: | |
| if ("image" in ele or "image_url" in ele or "video" in ele | |
| or ele["type"] in ("image", "image_url", "video")): | |
| vision_infos.append(ele) | |
| return vision_infos | |
| def process_vision_info( | |
| conversations: list[dict] | list[list[dict]], | |
| sanity_check=False) -> tuple[list[Image.Image] | None, list[torch.Tensor | list[Image.Image]] | None]: | |
| vision_infos = extract_vision_info(conversations) | |
| # Read images or videos | |
| image_inputs = [] | |
| video_inputs = [] | |
| for vision_info in vision_infos: | |
| if "image" in vision_info or "image_url" in vision_info: | |
| image_inputs.append(fetch_image(vision_info)) | |
| elif "video" in vision_info: | |
| video_inputs.append(fetch_video(vision_info, sanity_check=sanity_check)) | |
| else: | |
| raise ValueError("image, image_url or video should in content.") | |
| if len(image_inputs) == 0: | |
| image_inputs = None | |
| if len(video_inputs) == 0: | |
| video_inputs = None | |
| return image_inputs, video_inputs | |
| def preprocess_chatml(input_ids, text, tokenizer): | |
| conv = get_conv('chatml') | |
| rounds = [m + conv.seps[0] for m in text.split(conv.seps[0])] | |
| assert (len(rounds) % 2 == 0) == (conv.system is not None) | |
| assert rounds[-1] == conv.seps[0] | |
| rounds = rounds[:-1] | |
| if conv.system is None: | |
| rounds = [''.join(rounds[i:i + 2]) for i in range(0, len(rounds), 2)] | |
| else: | |
| rounds = [''.join(rounds[:3])] + [''.join(rounds[i:i + 2]) for i in range(3, len(rounds), 2)] | |
| labels = input_ids.clone() | |
| sep = conv.seps[0] + conv.roles[1] | |
| cur_len = 0 | |
| for i, rou in enumerate(rounds): | |
| if len(rou) == 0: | |
| break | |
| ins = sep.join(rou.split(sep)[:-1]) + sep | |
| rou_len = tokenizer(rou, return_length=True).length[0] | |
| ins_len = tokenizer(ins, return_length=True).length[0] | |
| labels[cur_len:cur_len + ins_len] = IGNORE_INDEX | |
| cur_len += rou_len | |
| if labels.size(0) != cur_len: | |
| warnings.warn(f'Tokenization mismatch: {labels.size(0)} and {cur_len}') | |
| return labels | |
| def preprocess(input_ids, text, tokenizer, conv_type): | |
| if conv_type == 'chatml': | |
| return preprocess_chatml(input_ids, text, tokenizer) | |
| else: | |
| raise ValueError(f'unknown conversation type: {conv_type}') | |