Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. | |
| import copy | |
| import nncore | |
| from torch.utils.data import Dataset | |
| from videomind.constants import PLANNER_PROMPT | |
| from videomind.dataset.hybrid import DATASETS | |
| class PlanningDataset(Dataset): | |
| def __init__(self, processor, model_args, data_args, training_args): | |
| super(PlanningDataset, self).__init__() | |
| raw_annos = self.load_annos() | |
| annos = [] | |
| for anno in raw_annos: | |
| num_words = len(anno.get('question', '').split(' ')) + len(anno.get('query', '').split(' ')) | |
| if data_args.min_num_words >= 0 and num_words < data_args.min_num_words: | |
| continue | |
| if data_args.max_num_words >= 0 and num_words > data_args.max_num_words: | |
| continue | |
| if data_args.min_video_len >= 0 and anno.get('duration', float('inf')) < data_args.min_video_len: | |
| continue | |
| if data_args.max_video_len >= 0 and anno.get('duration', 0) > data_args.max_video_len: | |
| continue | |
| annos.append(anno) | |
| self.annos = annos | |
| self.raw_length = len(raw_annos) | |
| self.processor = processor | |
| self.model_args = model_args | |
| self.data_args = data_args | |
| self.training_args = training_args | |
| def __len__(self): | |
| return len(self.annos) | |
| def load_annos(self, split='train'): | |
| assert split == 'train' | |
| annos = nncore.load(self.ANNO_PATH) | |
| return annos | |
| def __getitem__(self, idx): | |
| anno = copy.deepcopy(self.annos[idx]) | |
| video_path, route, question, query = anno['video_path'], anno['route'], anno['question'], anno.get('query') | |
| if route == 1: | |
| # rephrasing + grounding + answering | |
| response = f'[{{"type": "grounder", "value": "{query}"}}, {{"type": "verifier"}}, {{"type": "answerer"}}]' | |
| elif route == 2: | |
| # grounding + answering | |
| response = f'[{{"type": "grounder", "value": "{question}"}}, {{"type": "verifier"}}, {{"type": "answerer"}}]' | |
| elif route == 3: | |
| # rephrasing + grounding | |
| response = f'[{{"type": "grounder", "value": "{query}"}}, {{"type": "verifier"}}]' | |
| elif route == 4: | |
| # answering | |
| response = '[{"type": "answerer"}]' | |
| else: | |
| raise KeyError(f'unknown route type: {route}') | |
| messages = [{ | |
| 'role': | |
| 'user', | |
| 'content': [{ | |
| 'type': 'video', | |
| 'video': video_path, | |
| 'min_pixels': 36 * 28 * 28, | |
| 'max_pixels': 64 * 28 * 28, | |
| 'max_frames': 100, | |
| 'fps': 1.0 | |
| }, { | |
| 'type': 'text', | |
| 'text': PLANNER_PROMPT.format(question) | |
| }] | |
| }, { | |
| 'role': 'assistant', | |
| 'content': response | |
| }] | |
| meta = dict(messages=messages) | |
| return meta | |
| class MixedPlanningDataset(PlanningDataset): | |
| ANNO_PATH = 'data/planning/planning_nextqa_qvhighlights_gpt4o_mini.jsonl' | |