Spaces:
Runtime error
Runtime error
Initial commit for initial version
Browse filesSimple Chat-UI with a Transformers library back-end for inference
app.py
ADDED
|
@@ -0,0 +1,1515 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, BitsAndBytesConfig
|
| 4 |
+
from threading import Thread
|
| 5 |
+
import time
|
| 6 |
+
import logging
|
| 7 |
+
import gc
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
import re
|
| 10 |
+
from huggingface_hub import HfApi, list_models
|
| 11 |
+
import os
|
| 12 |
+
import queue
|
| 13 |
+
import threading
|
| 14 |
+
from collections import deque
|
| 15 |
+
|
| 16 |
+
# Set PyTorch memory management environment variables
|
| 17 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
|
| 18 |
+
|
| 19 |
+
# Configure logging
|
| 20 |
+
logging.basicConfig(
|
| 21 |
+
level=logging.INFO,
|
| 22 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
| 23 |
+
handlers=[
|
| 24 |
+
logging.FileHandler('gradio-chat-ui.log'),
|
| 25 |
+
logging.StreamHandler()
|
| 26 |
+
]
|
| 27 |
+
)
|
| 28 |
+
logger = logging.getLogger(__name__)
|
| 29 |
+
|
| 30 |
+
# Log memory management settings
|
| 31 |
+
logger.info(f"PyTorch CUDA allocation config: {os.environ.get('PYTORCH_CUDA_ALLOC_CONF')}")
|
| 32 |
+
logger.info(f"CUDA device count: {torch.cuda.device_count() if torch.cuda.is_available() else 'N/A'}")
|
| 33 |
+
|
| 34 |
+
# Model parameters
|
| 35 |
+
MODEL_NAME = "No Model Loaded"
|
| 36 |
+
MAX_LENGTH = 16384
|
| 37 |
+
DEFAULT_TEMPERATURE = 0.15
|
| 38 |
+
DEFAULT_TOP_P = 0.93
|
| 39 |
+
DEFAULT_TOP_K = 50
|
| 40 |
+
DEFAULT_REP_PENALTY = 1.15
|
| 41 |
+
|
| 42 |
+
# Base location for local models
|
| 43 |
+
LOCAL_MODELS_BASE = "/home/llm-models/"
|
| 44 |
+
|
| 45 |
+
# Global variables
|
| 46 |
+
model = None
|
| 47 |
+
tokenizer = None
|
| 48 |
+
hf_api = HfApi()
|
| 49 |
+
|
| 50 |
+
# Generation metadata storage with automatic cleanup
|
| 51 |
+
generation_metadata = deque(maxlen=100) # Fixed size deque to prevent unlimited growth
|
| 52 |
+
|
| 53 |
+
class RAMSavingIteratorStreamer:
|
| 54 |
+
"""
|
| 55 |
+
Custom streamer that saves VRAM by moving tokens to CPU and provides iteration interface for Gradio.
|
| 56 |
+
Combines the benefits of TextStreamer (RAM saving) with TextIteratorStreamer (iteration).
|
| 57 |
+
"""
|
| 58 |
+
def __init__(self, tokenizer, skip_special_tokens=True, skip_prompt=True, timeout=None):
|
| 59 |
+
self.tokenizer = tokenizer
|
| 60 |
+
self.skip_special_tokens = skip_special_tokens
|
| 61 |
+
self.skip_prompt = skip_prompt
|
| 62 |
+
self.timeout = timeout
|
| 63 |
+
|
| 64 |
+
# Token and text storage (CPU-based)
|
| 65 |
+
self.generated_tokens = []
|
| 66 |
+
self.generated_text = ""
|
| 67 |
+
self.token_cache = ""
|
| 68 |
+
|
| 69 |
+
# Queue for streaming interface
|
| 70 |
+
self.text_queue = queue.Queue()
|
| 71 |
+
self.stop_signal = threading.Event()
|
| 72 |
+
|
| 73 |
+
# Track prompt tokens to skip them
|
| 74 |
+
self.prompt_length = 0
|
| 75 |
+
self.tokens_processed = 0
|
| 76 |
+
|
| 77 |
+
# Decoding state
|
| 78 |
+
self.print_len = 0
|
| 79 |
+
|
| 80 |
+
def put(self, value):
|
| 81 |
+
"""
|
| 82 |
+
Receive new token(s) and process them for streaming.
|
| 83 |
+
This method is called by the model during generation.
|
| 84 |
+
"""
|
| 85 |
+
try:
|
| 86 |
+
# Handle different input types
|
| 87 |
+
if isinstance(value, torch.Tensor):
|
| 88 |
+
if value.dim() > 1:
|
| 89 |
+
value = value[0] # Remove batch dimension if present
|
| 90 |
+
token_ids = value.tolist()
|
| 91 |
+
|
| 92 |
+
# Store CPU version to save VRAM
|
| 93 |
+
self.generated_tokens.append(value.detach().cpu())
|
| 94 |
+
else:
|
| 95 |
+
token_ids = value if isinstance(value, list) else [value]
|
| 96 |
+
self.generated_tokens.append(torch.tensor(token_ids, dtype=torch.long))
|
| 97 |
+
|
| 98 |
+
# Track tokens processed
|
| 99 |
+
if isinstance(token_ids, list):
|
| 100 |
+
self.tokens_processed += len(token_ids)
|
| 101 |
+
else:
|
| 102 |
+
self.tokens_processed += 1
|
| 103 |
+
|
| 104 |
+
# Skip prompt tokens if requested
|
| 105 |
+
if self.skip_prompt and self.tokens_processed <= self.prompt_length:
|
| 106 |
+
return
|
| 107 |
+
|
| 108 |
+
# Decode incrementally for real-time streaming
|
| 109 |
+
try:
|
| 110 |
+
# Get all generated tokens so far
|
| 111 |
+
if self.generated_tokens:
|
| 112 |
+
all_tokens = []
|
| 113 |
+
for tokens in self.generated_tokens:
|
| 114 |
+
if isinstance(tokens, torch.Tensor):
|
| 115 |
+
if tokens.dim() == 0:
|
| 116 |
+
all_tokens.append(tokens.item())
|
| 117 |
+
else:
|
| 118 |
+
all_tokens.extend(tokens.tolist())
|
| 119 |
+
elif isinstance(tokens, list):
|
| 120 |
+
all_tokens.extend(tokens)
|
| 121 |
+
else:
|
| 122 |
+
all_tokens.append(tokens)
|
| 123 |
+
|
| 124 |
+
# Decode the full sequence
|
| 125 |
+
full_text = self.tokenizer.decode(
|
| 126 |
+
all_tokens,
|
| 127 |
+
skip_special_tokens=self.skip_special_tokens
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
# Get new text since last update
|
| 131 |
+
if len(full_text) > self.print_len:
|
| 132 |
+
new_text = full_text[self.print_len:]
|
| 133 |
+
self.print_len = len(full_text)
|
| 134 |
+
self.generated_text = full_text
|
| 135 |
+
|
| 136 |
+
# Put new text in queue for iteration
|
| 137 |
+
if new_text:
|
| 138 |
+
self.text_queue.put(new_text)
|
| 139 |
+
|
| 140 |
+
except Exception as decode_error:
|
| 141 |
+
logger.warning(f"Decoding error in streamer: {decode_error}")
|
| 142 |
+
|
| 143 |
+
except Exception as e:
|
| 144 |
+
logger.error(f"Error in RAMSavingIteratorStreamer.put: {e}")
|
| 145 |
+
|
| 146 |
+
def end(self):
|
| 147 |
+
"""Signal end of generation."""
|
| 148 |
+
self.text_queue.put(None) # Sentinel value
|
| 149 |
+
|
| 150 |
+
def __iter__(self):
|
| 151 |
+
"""Make this streamer iterable for Gradio compatibility."""
|
| 152 |
+
return self
|
| 153 |
+
|
| 154 |
+
def __next__(self):
|
| 155 |
+
"""Get next chunk of text for streaming."""
|
| 156 |
+
try:
|
| 157 |
+
value = self.text_queue.get(timeout=self.timeout)
|
| 158 |
+
if value is None: # End signal
|
| 159 |
+
raise StopIteration
|
| 160 |
+
return value
|
| 161 |
+
except queue.Empty:
|
| 162 |
+
raise StopIteration
|
| 163 |
+
|
| 164 |
+
def set_prompt_length(self, prompt_length):
|
| 165 |
+
"""Set the length of prompt tokens to skip."""
|
| 166 |
+
self.prompt_length = prompt_length
|
| 167 |
+
|
| 168 |
+
def get_generated_text(self):
|
| 169 |
+
"""Get the complete generated text."""
|
| 170 |
+
return self.generated_text
|
| 171 |
+
|
| 172 |
+
def get_generated_tokens(self):
|
| 173 |
+
"""Get all generated tokens as a single tensor."""
|
| 174 |
+
if not self.generated_tokens:
|
| 175 |
+
return torch.tensor([])
|
| 176 |
+
|
| 177 |
+
# Combine all tokens
|
| 178 |
+
all_tokens = []
|
| 179 |
+
for tokens in self.generated_tokens:
|
| 180 |
+
if isinstance(tokens, torch.Tensor):
|
| 181 |
+
if tokens.dim() == 0:
|
| 182 |
+
all_tokens.append(tokens.item())
|
| 183 |
+
else:
|
| 184 |
+
all_tokens.extend(tokens.tolist())
|
| 185 |
+
elif isinstance(tokens, list):
|
| 186 |
+
all_tokens.extend(tokens)
|
| 187 |
+
else:
|
| 188 |
+
all_tokens.append(tokens)
|
| 189 |
+
|
| 190 |
+
return torch.tensor(all_tokens, dtype=torch.long)
|
| 191 |
+
|
| 192 |
+
def cleanup(self):
|
| 193 |
+
"""Clean up resources."""
|
| 194 |
+
self.generated_tokens.clear()
|
| 195 |
+
self.generated_text = ""
|
| 196 |
+
self.token_cache = ""
|
| 197 |
+
|
| 198 |
+
# Clear queue
|
| 199 |
+
while not self.text_queue.empty():
|
| 200 |
+
try:
|
| 201 |
+
self.text_queue.get_nowait()
|
| 202 |
+
except queue.Empty:
|
| 203 |
+
break
|
| 204 |
+
|
| 205 |
+
self.stop_signal.set()
|
| 206 |
+
|
| 207 |
+
def scan_local_models(base_path=LOCAL_MODELS_BASE):
|
| 208 |
+
"""Scan for valid models in the local models directory"""
|
| 209 |
+
try:
|
| 210 |
+
base_path = Path(base_path)
|
| 211 |
+
if not base_path.exists():
|
| 212 |
+
logger.warning(f"Base path does not exist: {base_path}")
|
| 213 |
+
return []
|
| 214 |
+
|
| 215 |
+
valid_models = []
|
| 216 |
+
|
| 217 |
+
# Scan subdirectories (depth 1 only)
|
| 218 |
+
for item in base_path.iterdir():
|
| 219 |
+
if item.is_dir():
|
| 220 |
+
# Check if directory contains required model files
|
| 221 |
+
config_file = item / "config.json"
|
| 222 |
+
|
| 223 |
+
# Look for model weight files (safetensors or bin)
|
| 224 |
+
safetensors_files = list(item.glob("*.safetensors"))
|
| 225 |
+
bin_files = list(item.glob("*.bin"))
|
| 226 |
+
|
| 227 |
+
# Check if it's a valid model directory
|
| 228 |
+
if config_file.exists() and (safetensors_files or bin_files):
|
| 229 |
+
valid_models.append(str(item))
|
| 230 |
+
logger.info(f"Found valid model: {item}")
|
| 231 |
+
|
| 232 |
+
# Sort models for consistent ordering
|
| 233 |
+
valid_models.sort()
|
| 234 |
+
logger.info(f"Found {len(valid_models)} valid models in {base_path}")
|
| 235 |
+
|
| 236 |
+
return valid_models
|
| 237 |
+
|
| 238 |
+
except Exception as e:
|
| 239 |
+
logger.error(f"Error scanning local models: {e}")
|
| 240 |
+
return []
|
| 241 |
+
|
| 242 |
+
def update_local_models_dropdown(base_path):
|
| 243 |
+
"""Update the local models dropdown based on base path"""
|
| 244 |
+
if not base_path or not base_path.strip():
|
| 245 |
+
return gr.Dropdown(choices=[], value=None, interactive=True)
|
| 246 |
+
|
| 247 |
+
models = scan_local_models(base_path)
|
| 248 |
+
model_choices = [Path(model).name for model in models] # Show just the model name
|
| 249 |
+
model_paths = models # Keep full paths for internal use
|
| 250 |
+
|
| 251 |
+
# Create a mapping for display name to full path
|
| 252 |
+
if model_choices:
|
| 253 |
+
return gr.Dropdown(
|
| 254 |
+
choices=list(zip(model_choices, model_paths)),
|
| 255 |
+
value=model_paths[0] if model_paths else None,
|
| 256 |
+
label="๐ Available Local Models",
|
| 257 |
+
interactive=True,
|
| 258 |
+
allow_custom_value=False, # Don't allow custom for local models
|
| 259 |
+
filterable=True
|
| 260 |
+
)
|
| 261 |
+
else:
|
| 262 |
+
return gr.Dropdown(
|
| 263 |
+
choices=[],
|
| 264 |
+
value=None,
|
| 265 |
+
label="๐ Available Local Models (None found)",
|
| 266 |
+
interactive=True,
|
| 267 |
+
allow_custom_value=False,
|
| 268 |
+
filterable=True
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
def search_hf_models(query, limit=20):
|
| 272 |
+
"""Enhanced search for models on Hugging Face Hub with better coverage"""
|
| 273 |
+
if not query or len(query.strip()) < 2:
|
| 274 |
+
return []
|
| 275 |
+
|
| 276 |
+
try:
|
| 277 |
+
query = query.strip()
|
| 278 |
+
model_choices = []
|
| 279 |
+
|
| 280 |
+
# Strategy 1: Direct model ID search (if query looks like a model ID)
|
| 281 |
+
if '/' in query:
|
| 282 |
+
try:
|
| 283 |
+
# Try to get the specific model
|
| 284 |
+
model_info = hf_api.model_info(query)
|
| 285 |
+
if model_info and hasattr(model_info, 'id'):
|
| 286 |
+
model_choices.append(model_info.id)
|
| 287 |
+
logger.info(f"Found direct model: {model_info.id}")
|
| 288 |
+
except Exception as direct_error:
|
| 289 |
+
logger.debug(f"Direct model search failed: {direct_error}")
|
| 290 |
+
|
| 291 |
+
# Strategy 2: Search with different parameters
|
| 292 |
+
search_strategies = [
|
| 293 |
+
# Exact search
|
| 294 |
+
{"search": query, "sort": "downloads", "direction": -1, "limit": limit//2},
|
| 295 |
+
# Author search (if query contains /)
|
| 296 |
+
{"author": query.split('/')[0] if '/' in query else query, "sort": "downloads", "direction": -1, "limit": limit//4} if '/' in query else None,
|
| 297 |
+
# Broader search
|
| 298 |
+
{"search": query, "sort": "trending", "direction": -1, "limit": limit//4},
|
| 299 |
+
]
|
| 300 |
+
|
| 301 |
+
for strategy in search_strategies:
|
| 302 |
+
if strategy is None:
|
| 303 |
+
continue
|
| 304 |
+
|
| 305 |
+
try:
|
| 306 |
+
models = list_models(
|
| 307 |
+
task="text-generation",
|
| 308 |
+
**strategy
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
for model in models:
|
| 312 |
+
if model.id not in model_choices:
|
| 313 |
+
model_choices.append(model.id)
|
| 314 |
+
|
| 315 |
+
except Exception as strategy_error:
|
| 316 |
+
logger.debug(f"Search strategy failed: {strategy_error}")
|
| 317 |
+
|
| 318 |
+
# Remove duplicates while preserving order
|
| 319 |
+
seen = set()
|
| 320 |
+
unique_choices = []
|
| 321 |
+
for choice in model_choices:
|
| 322 |
+
if choice not in seen:
|
| 323 |
+
seen.add(choice)
|
| 324 |
+
unique_choices.append(choice)
|
| 325 |
+
|
| 326 |
+
# Limit results
|
| 327 |
+
final_choices = unique_choices[:limit]
|
| 328 |
+
logger.info(f"HF search for '{query}' returned {len(final_choices)} models")
|
| 329 |
+
|
| 330 |
+
return final_choices
|
| 331 |
+
|
| 332 |
+
except Exception as e:
|
| 333 |
+
logger.error(f"Error searching models: {str(e)}")
|
| 334 |
+
return []
|
| 335 |
+
|
| 336 |
+
def update_model_dropdown(query):
|
| 337 |
+
"""Update dropdown with enhanced search results"""
|
| 338 |
+
if not query or len(query.strip()) < 2:
|
| 339 |
+
return gr.Dropdown(choices=[], value=None, interactive=True)
|
| 340 |
+
|
| 341 |
+
choices = search_hf_models(query, limit=20)
|
| 342 |
+
return gr.Dropdown(
|
| 343 |
+
choices=choices,
|
| 344 |
+
value=choices[0] if choices else None,
|
| 345 |
+
interactive=True,
|
| 346 |
+
allow_custom_value=True, # Allow manual typing
|
| 347 |
+
filterable=True
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
def load_model_with_progress(model_source, hf_model, local_path, local_model_selection, quantization, memory_optimization):
|
| 351 |
+
"""Load model with progress tracking and memory optimization"""
|
| 352 |
+
global model, tokenizer, MODEL_NAME
|
| 353 |
+
|
| 354 |
+
# Determine model path based on source
|
| 355 |
+
if model_source == "Hugging Face Model":
|
| 356 |
+
if not hf_model:
|
| 357 |
+
return "โ Error: Please select a model from the dropdown"
|
| 358 |
+
model_path = hf_model
|
| 359 |
+
else:
|
| 360 |
+
# Use selected local model if available, otherwise use manual path
|
| 361 |
+
if local_model_selection:
|
| 362 |
+
model_path = local_model_selection
|
| 363 |
+
else:
|
| 364 |
+
model_path = local_path
|
| 365 |
+
if not Path(model_path).exists():
|
| 366 |
+
logger.error(f"Local path does not exist: {model_path}")
|
| 367 |
+
return f"โ Error: Local path does not exist: {model_path}"
|
| 368 |
+
|
| 369 |
+
MODEL_NAME = model_path.split("/")[-1] if "/" in model_path else model_path
|
| 370 |
+
logger.info(f"Loading model from {model_path} with memory optimization: {memory_optimization}")
|
| 371 |
+
|
| 372 |
+
try:
|
| 373 |
+
# Yield progress updates
|
| 374 |
+
yield "๐ Initializing model loading..."
|
| 375 |
+
|
| 376 |
+
# Setup memory configuration (GPU-only, generous allocation)
|
| 377 |
+
if torch.cuda.is_available():
|
| 378 |
+
device_properties = torch.cuda.get_device_properties(0)
|
| 379 |
+
total_memory_gb = device_properties.total_memory / (1024**3)
|
| 380 |
+
|
| 381 |
+
# Set max memory to 11GB as requested (GPU-bound)
|
| 382 |
+
max_memory_val = 11.5 # Fixed 11GB allocation
|
| 383 |
+
max_memory = f"{max_memory_val}GB"
|
| 384 |
+
logger.info(f"Setting max GPU memory to {max_memory} (Total available: {total_memory_gb:.2f}GB)")
|
| 385 |
+
else:
|
| 386 |
+
max_memory = "11GB"
|
| 387 |
+
logger.info("CUDA not available. Using CPU fallback.")
|
| 388 |
+
|
| 389 |
+
yield "๐ Configuring quantization settings..."
|
| 390 |
+
|
| 391 |
+
# Configure quantization (removed CPU offloading)
|
| 392 |
+
bnb_config = BitsAndBytesConfig(
|
| 393 |
+
load_in_4bit=quantization == "4bit",
|
| 394 |
+
load_in_8bit=quantization == "8bit",
|
| 395 |
+
bnb_4bit_use_double_quant=True,
|
| 396 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 397 |
+
bnb_4bit_quant_type="nf4",
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
yield "๐ Loading tokenizer..."
|
| 401 |
+
|
| 402 |
+
# Load tokenizer
|
| 403 |
+
if model_source == "Local Path":
|
| 404 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 405 |
+
model_path,
|
| 406 |
+
trust_remote_code=True,
|
| 407 |
+
local_files_only=True
|
| 408 |
+
)
|
| 409 |
+
else:
|
| 410 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 411 |
+
model_path,
|
| 412 |
+
trust_remote_code=True
|
| 413 |
+
)
|
| 414 |
+
|
| 415 |
+
yield "๐ Cleaning memory cache..."
|
| 416 |
+
|
| 417 |
+
# Clean memory
|
| 418 |
+
gc.collect()
|
| 419 |
+
if torch.cuda.is_available():
|
| 420 |
+
torch.cuda.empty_cache()
|
| 421 |
+
|
| 422 |
+
# Determine torch dtype
|
| 423 |
+
if quantization in ["4bit", "8bit"]:
|
| 424 |
+
torch_dtype = torch.bfloat16
|
| 425 |
+
elif quantization == "f16":
|
| 426 |
+
torch_dtype = torch.float16
|
| 427 |
+
else: # bf16
|
| 428 |
+
torch_dtype = torch.bfloat16
|
| 429 |
+
|
| 430 |
+
yield "๐ Loading model weights (this may take a while)..."
|
| 431 |
+
|
| 432 |
+
# Simple GPU-only model loading parameters
|
| 433 |
+
model_kwargs = {
|
| 434 |
+
"device_map": "auto",
|
| 435 |
+
"max_memory": {0: max_memory} if torch.cuda.is_available() else None,
|
| 436 |
+
"torch_dtype": torch_dtype,
|
| 437 |
+
"quantization_config": bnb_config if quantization in ["4bit", "8bit"] else None,
|
| 438 |
+
"trust_remote_code": True,
|
| 439 |
+
}
|
| 440 |
+
|
| 441 |
+
# Memory optimization specific settings (GPU-only)
|
| 442 |
+
if memory_optimization:
|
| 443 |
+
model_kwargs.update({
|
| 444 |
+
"attn_implementation": "flash_attention_2" if torch.cuda.is_available() else "sdpa",
|
| 445 |
+
"use_cache": False, # Disable cache by default for memory optimization
|
| 446 |
+
})
|
| 447 |
+
else:
|
| 448 |
+
model_kwargs.update({
|
| 449 |
+
"attn_implementation": "flash_attention_2" if torch.cuda.is_available() else "sdpa",
|
| 450 |
+
#"use_cache": True, # Enable cache for performance
|
| 451 |
+
})
|
| 452 |
+
|
| 453 |
+
# Add local files only for local models
|
| 454 |
+
if model_source == "Local Path":
|
| 455 |
+
model_kwargs["local_files_only"] = True
|
| 456 |
+
|
| 457 |
+
# Load model
|
| 458 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, **model_kwargs)
|
| 459 |
+
|
| 460 |
+
# Post-loading memory optimization
|
| 461 |
+
if memory_optimization:
|
| 462 |
+
yield "๐ Applying memory optimizations..."
|
| 463 |
+
|
| 464 |
+
# Additional memory cleanup after loading
|
| 465 |
+
gc.collect()
|
| 466 |
+
if torch.cuda.is_available():
|
| 467 |
+
torch.cuda.empty_cache()
|
| 468 |
+
torch.cuda.synchronize()
|
| 469 |
+
|
| 470 |
+
logger.info("Model loaded successfully with memory optimization")
|
| 471 |
+
yield "โ
Model loaded successfully with memory optimization!" if memory_optimization else "โ
Model loaded successfully!"
|
| 472 |
+
|
| 473 |
+
except Exception as e:
|
| 474 |
+
logger.error(f"Error loading model: {str(e)}", exc_info=True)
|
| 475 |
+
yield f"โ Error loading model: {str(e)}"
|
| 476 |
+
|
| 477 |
+
def unload_model():
|
| 478 |
+
"""Unload the model and free memory with aggressive cleanup"""
|
| 479 |
+
global model, tokenizer, MODEL_NAME
|
| 480 |
+
|
| 481 |
+
if model is None:
|
| 482 |
+
return "No model loaded"
|
| 483 |
+
|
| 484 |
+
try:
|
| 485 |
+
logger.info("Unloading model with aggressive memory cleanup...")
|
| 486 |
+
|
| 487 |
+
# Step 1: Move model to CPU first (if it was on GPU)
|
| 488 |
+
if torch.cuda.is_available() and hasattr(model, 'device'):
|
| 489 |
+
try:
|
| 490 |
+
model.cpu()
|
| 491 |
+
logger.info("Model moved to CPU")
|
| 492 |
+
except Exception as cpu_error:
|
| 493 |
+
logger.warning(f"Could not move model to CPU: {cpu_error}")
|
| 494 |
+
|
| 495 |
+
# Step 2: Clear model cache if available
|
| 496 |
+
if hasattr(model, 'clear_cache'):
|
| 497 |
+
model.clear_cache()
|
| 498 |
+
|
| 499 |
+
# Step 3: Delete model and tokenizer references
|
| 500 |
+
del model
|
| 501 |
+
del tokenizer
|
| 502 |
+
model = None
|
| 503 |
+
tokenizer = None
|
| 504 |
+
|
| 505 |
+
# Step 4: Reset model name
|
| 506 |
+
MODEL_NAME = "No Model Loaded"
|
| 507 |
+
|
| 508 |
+
# Step 5: Clear metadata deque
|
| 509 |
+
generation_metadata.clear()
|
| 510 |
+
|
| 511 |
+
# Step 6: Aggressive garbage collection (multiple rounds)
|
| 512 |
+
for i in range(5): # More aggressive - 5 rounds
|
| 513 |
+
gc.collect()
|
| 514 |
+
time.sleep(0.1) # Small delay between rounds
|
| 515 |
+
|
| 516 |
+
# Step 7: Aggressive CUDA cleanup
|
| 517 |
+
if torch.cuda.is_available():
|
| 518 |
+
logger.info("Performing aggressive CUDA cleanup...")
|
| 519 |
+
|
| 520 |
+
# Multiple rounds of cache clearing
|
| 521 |
+
for i in range(5):
|
| 522 |
+
torch.cuda.empty_cache()
|
| 523 |
+
torch.cuda.synchronize()
|
| 524 |
+
|
| 525 |
+
# Additional PyTorch CUDA cleanup
|
| 526 |
+
if hasattr(torch.cuda, 'ipc_collect'):
|
| 527 |
+
torch.cuda.ipc_collect()
|
| 528 |
+
|
| 529 |
+
# Reset memory stats
|
| 530 |
+
if hasattr(torch.cuda, 'reset_peak_memory_stats'):
|
| 531 |
+
torch.cuda.reset_peak_memory_stats()
|
| 532 |
+
if hasattr(torch.cuda, 'reset_accumulated_memory_stats'):
|
| 533 |
+
torch.cuda.reset_accumulated_memory_stats()
|
| 534 |
+
|
| 535 |
+
time.sleep(0.1)
|
| 536 |
+
|
| 537 |
+
# Step 8: Force PyTorch to release all unused memory
|
| 538 |
+
if torch.cuda.is_available():
|
| 539 |
+
try:
|
| 540 |
+
# Try to trigger the memory pool cleanup
|
| 541 |
+
torch.cuda.empty_cache()
|
| 542 |
+
|
| 543 |
+
# Force a small allocation and deallocation to trigger cleanup
|
| 544 |
+
dummy_tensor = torch.zeros(1, device='cuda')
|
| 545 |
+
del dummy_tensor
|
| 546 |
+
torch.cuda.empty_cache()
|
| 547 |
+
|
| 548 |
+
logger.info("Forced memory pool cleanup")
|
| 549 |
+
except Exception as cleanup_error:
|
| 550 |
+
logger.warning(f"Advanced cleanup failed: {cleanup_error}")
|
| 551 |
+
|
| 552 |
+
# Step 9: Final garbage collection
|
| 553 |
+
gc.collect()
|
| 554 |
+
|
| 555 |
+
logger.info("Model unloaded successfully with aggressive cleanup")
|
| 556 |
+
return "โ
Model unloaded with aggressive memory cleanup"
|
| 557 |
+
|
| 558 |
+
except Exception as e:
|
| 559 |
+
logger.error(f"Error unloading model: {str(e)}", exc_info=True)
|
| 560 |
+
# Emergency cleanup even if unload fails
|
| 561 |
+
model = None
|
| 562 |
+
tokenizer = None
|
| 563 |
+
MODEL_NAME = "No Model Loaded"
|
| 564 |
+
generation_metadata.clear()
|
| 565 |
+
|
| 566 |
+
# Emergency memory cleanup
|
| 567 |
+
for _ in range(3):
|
| 568 |
+
gc.collect()
|
| 569 |
+
if torch.cuda.is_available():
|
| 570 |
+
torch.cuda.empty_cache()
|
| 571 |
+
|
| 572 |
+
return f"โ Error unloading model: {str(e)} (Emergency cleanup performed)"
|
| 573 |
+
|
| 574 |
+
def cleanup_memory():
|
| 575 |
+
"""Enhanced memory cleanup function with PyTorch optimizations"""
|
| 576 |
+
try:
|
| 577 |
+
# Clear Python garbage
|
| 578 |
+
gc.collect()
|
| 579 |
+
|
| 580 |
+
# Clear CUDA cache if available
|
| 581 |
+
if torch.cuda.is_available():
|
| 582 |
+
# Multiple aggressive cleanup rounds
|
| 583 |
+
for i in range(3):
|
| 584 |
+
torch.cuda.empty_cache()
|
| 585 |
+
torch.cuda.synchronize()
|
| 586 |
+
if hasattr(torch.cuda, 'ipc_collect'):
|
| 587 |
+
torch.cuda.ipc_collect()
|
| 588 |
+
|
| 589 |
+
# PyTorch specific memory management
|
| 590 |
+
if hasattr(torch.cuda, 'reset_peak_memory_stats'):
|
| 591 |
+
torch.cuda.reset_peak_memory_stats()
|
| 592 |
+
if hasattr(torch.cuda, 'reset_accumulated_memory_stats'):
|
| 593 |
+
torch.cuda.reset_accumulated_memory_stats()
|
| 594 |
+
|
| 595 |
+
# Brief pause between cleanup rounds
|
| 596 |
+
time.sleep(0.1)
|
| 597 |
+
|
| 598 |
+
# Clear metadata deque
|
| 599 |
+
generation_metadata.clear()
|
| 600 |
+
|
| 601 |
+
# Force garbage collection again
|
| 602 |
+
gc.collect()
|
| 603 |
+
|
| 604 |
+
logger.info("Enhanced memory cleanup completed")
|
| 605 |
+
return "๐งน Enhanced memory cleanup completed"
|
| 606 |
+
except Exception as e:
|
| 607 |
+
logger.error(f"Memory cleanup error: {e}")
|
| 608 |
+
return f"Memory cleanup error: {e}"
|
| 609 |
+
|
| 610 |
+
def nuclear_memory_cleanup():
|
| 611 |
+
"""Nuclear option: Complete VRAM reset (use if normal unload doesn't work)"""
|
| 612 |
+
global model, tokenizer, MODEL_NAME
|
| 613 |
+
|
| 614 |
+
try:
|
| 615 |
+
logger.info("Performing nuclear memory cleanup...")
|
| 616 |
+
|
| 617 |
+
# Force unload everything
|
| 618 |
+
model = None
|
| 619 |
+
tokenizer = None
|
| 620 |
+
MODEL_NAME = "No Model Loaded"
|
| 621 |
+
generation_metadata.clear()
|
| 622 |
+
|
| 623 |
+
# Import PyTorch again to reset some internal states
|
| 624 |
+
import torch
|
| 625 |
+
|
| 626 |
+
# Multiple aggressive cleanup rounds
|
| 627 |
+
for round_num in range(10): # Very aggressive - 10 rounds
|
| 628 |
+
gc.collect()
|
| 629 |
+
|
| 630 |
+
if torch.cuda.is_available():
|
| 631 |
+
# Multiple types of CUDA cleanup
|
| 632 |
+
torch.cuda.empty_cache()
|
| 633 |
+
torch.cuda.synchronize()
|
| 634 |
+
|
| 635 |
+
# Try to reset CUDA context
|
| 636 |
+
try:
|
| 637 |
+
if hasattr(torch.cuda, 'ipc_collect'):
|
| 638 |
+
torch.cuda.ipc_collect()
|
| 639 |
+
if hasattr(torch.cuda, 'memory_summary'):
|
| 640 |
+
logger.info(f"Round {round_num + 1}: {torch.cuda.memory_summary()}")
|
| 641 |
+
except Exception:
|
| 642 |
+
pass
|
| 643 |
+
|
| 644 |
+
# Reset memory stats
|
| 645 |
+
try:
|
| 646 |
+
if hasattr(torch.cuda, 'reset_peak_memory_stats'):
|
| 647 |
+
torch.cuda.reset_peak_memory_stats()
|
| 648 |
+
if hasattr(torch.cuda, 'reset_accumulated_memory_stats'):
|
| 649 |
+
torch.cuda.reset_accumulated_memory_stats()
|
| 650 |
+
except Exception:
|
| 651 |
+
pass
|
| 652 |
+
|
| 653 |
+
time.sleep(0.1)
|
| 654 |
+
|
| 655 |
+
# Final attempt: allocate and free a small tensor to trigger cleanup
|
| 656 |
+
if torch.cuda.is_available():
|
| 657 |
+
try:
|
| 658 |
+
for _ in range(5):
|
| 659 |
+
dummy = torch.zeros(1024, 1024, device='cuda') # 4MB tensor
|
| 660 |
+
del dummy
|
| 661 |
+
torch.cuda.empty_cache()
|
| 662 |
+
torch.cuda.synchronize()
|
| 663 |
+
except Exception as nuclear_error:
|
| 664 |
+
logger.warning(f"Nuclear tensor cleanup failed: {nuclear_error}")
|
| 665 |
+
|
| 666 |
+
logger.info("Nuclear memory cleanup completed")
|
| 667 |
+
return "โข๏ธ Nuclear memory cleanup completed! VRAM should be minimal now."
|
| 668 |
+
|
| 669 |
+
except Exception as e:
|
| 670 |
+
logger.error(f"Nuclear cleanup error: {e}")
|
| 671 |
+
return f"โข๏ธ Nuclear cleanup error: {e}"
|
| 672 |
+
|
| 673 |
+
def get_memory_stats():
|
| 674 |
+
"""Get comprehensive VRAM usage information"""
|
| 675 |
+
if not torch.cuda.is_available():
|
| 676 |
+
return """
|
| 677 |
+
<div style="text-align: center; padding: 15px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 10px; color: white;">
|
| 678 |
+
<h3 style="margin: 0; font-size: 16px;">๐ป CPU Mode</h3>
|
| 679 |
+
<p style="margin: 5px 0; opacity: 0.9;">GPU not available</p>
|
| 680 |
+
</div>
|
| 681 |
+
"""
|
| 682 |
+
|
| 683 |
+
try:
|
| 684 |
+
torch.cuda.synchronize()
|
| 685 |
+
total = torch.cuda.get_device_properties(0).total_memory / (1024**3)
|
| 686 |
+
allocated = torch.cuda.memory_allocated(0) / (1024**3)
|
| 687 |
+
reserved = torch.cuda.memory_reserved(0) / (1024**3)
|
| 688 |
+
free = total - reserved
|
| 689 |
+
usage_percent = (reserved/total)*100
|
| 690 |
+
|
| 691 |
+
# Get peak memory if available
|
| 692 |
+
peak_allocated = 0
|
| 693 |
+
if hasattr(torch.cuda, 'max_memory_allocated'):
|
| 694 |
+
peak_allocated = torch.cuda.max_memory_allocated(0) / (1024**3)
|
| 695 |
+
|
| 696 |
+
# Dynamic color based on usage
|
| 697 |
+
if usage_percent < 50:
|
| 698 |
+
color = "#10b981" # Green
|
| 699 |
+
elif usage_percent < 80:
|
| 700 |
+
color = "#f59e0b" # Orange
|
| 701 |
+
else:
|
| 702 |
+
color = "#ef4444" # Red
|
| 703 |
+
|
| 704 |
+
return f"""
|
| 705 |
+
<div style="text-align: center; padding: 15px; background: linear-gradient(135deg, {color}22 0%, {color}44 100%); border: 2px solid {color}; border-radius: 10px;">
|
| 706 |
+
<h3 style="margin: 0; font-size: 16px; color: {color};">๐ฎ VRAM Usage</h3>
|
| 707 |
+
<div style="margin: 10px 0;">
|
| 708 |
+
<div style="background: #f3f4f6; border-radius: 8px; height: 8px; overflow: hidden;">
|
| 709 |
+
<div style="width: {usage_percent}%; height: 100%; background: {color}; transition: width 0.3s ease;"></div>
|
| 710 |
+
</div>
|
| 711 |
+
</div>
|
| 712 |
+
<p style="margin: 5px 0; font-weight: 600;">Total: {total:.2f} GB</p>
|
| 713 |
+
<p style="margin: 5px 0;">Allocated: {allocated:.2f} GB ({usage_percent:.1f}%)</p>
|
| 714 |
+
<p style="margin: 5px 0;">Reserved: {reserved:.2f} GB</p>
|
| 715 |
+
<p style="margin: 5px 0;">Free: {free:.2f} GB</p>
|
| 716 |
+
<p style="margin: 5px 0; font-size: 12px; opacity: 0.8;">Peak: {peak_allocated:.2f} GB</p>
|
| 717 |
+
<p style="margin: 5px 0; font-size: 10px; opacity: 0.6;">RAM-Saving Streamer Active</p>
|
| 718 |
+
</div>
|
| 719 |
+
"""
|
| 720 |
+
except Exception as e:
|
| 721 |
+
logger.error(f"Error getting memory stats: {str(e)}")
|
| 722 |
+
return f"""
|
| 723 |
+
<div style="text-align: center; padding: 15px; background: #fee2e2; border: 2px solid #ef4444; border-radius: 10px;">
|
| 724 |
+
<h3 style="margin: 0; color: #ef4444;">โ Error</h3>
|
| 725 |
+
<p style="margin: 5px 0;">{str(e)}</p>
|
| 726 |
+
</div>
|
| 727 |
+
"""
|
| 728 |
+
|
| 729 |
+
def process_latex_content(text):
|
| 730 |
+
"""Enhanced LaTeX processing for streaming without UI glitches"""
|
| 731 |
+
# Don't process LaTeX here - let Gradio handle it natively
|
| 732 |
+
# Just return the text as-is for now
|
| 733 |
+
return text
|
| 734 |
+
|
| 735 |
+
def process_think_tags(text):
|
| 736 |
+
"""Process thinking tags with progressive streaming support"""
|
| 737 |
+
# Check if we're in the middle of generating a think section
|
| 738 |
+
if '<think>' in text and '</think>' not in text:
|
| 739 |
+
# We're currently generating inside a think section
|
| 740 |
+
parts = text.split('<think>')
|
| 741 |
+
if len(parts) == 2:
|
| 742 |
+
before_think = parts[0]
|
| 743 |
+
thinking_content = parts[1]
|
| 744 |
+
|
| 745 |
+
# Create a progressive thinking display
|
| 746 |
+
formatted_thinking = f"""
|
| 747 |
+
<div style="background: linear-gradient(135deg, #e0e7ff 0%, #c7d2fe 100%); border-left: 4px solid #6366f1; padding: 12px; margin: 8px 0; border-radius: 8px;">
|
| 748 |
+
<div style="display: flex; align-items: center; margin-bottom: 8px;">
|
| 749 |
+
<span style="font-size: 16px; margin-right: 8px;">๐ค</span>
|
| 750 |
+
<strong style="color: #4338ca;">Thinking...</strong>
|
| 751 |
+
</div>
|
| 752 |
+
<div style="color: #475569; font-style: italic;">{thinking_content}</div>
|
| 753 |
+
</div>
|
| 754 |
+
|
| 755 |
+
"""
|
| 756 |
+
return before_think + formatted_thinking
|
| 757 |
+
|
| 758 |
+
# Handle completed think sections
|
| 759 |
+
think_pattern = re.compile(r'<think>(.*?)</think>', re.DOTALL)
|
| 760 |
+
|
| 761 |
+
def replace_think(match):
|
| 762 |
+
think_content = match.group(1).strip()
|
| 763 |
+
return f"""
|
| 764 |
+
<div style="background: linear-gradient(135deg, #e0e7ff 0%, #c7d2fe 100%); border-left: 4px solid #6366f1; padding: 12px; margin: 8px 0; border-radius: 8px;">
|
| 765 |
+
<div style="display: flex; align-items: center; margin-bottom: 8px;">
|
| 766 |
+
<span style="font-size: 16px; margin-right: 8px;">๐ค</span>
|
| 767 |
+
<strong style="color: #4338ca;">Thinking...</strong>
|
| 768 |
+
</div>
|
| 769 |
+
<div style="color: #475569; font-style: italic;">{think_content}</div>
|
| 770 |
+
</div>
|
| 771 |
+
|
| 772 |
+
"""
|
| 773 |
+
|
| 774 |
+
# Replace completed <think> tags with formatted version
|
| 775 |
+
processed_text = think_pattern.sub(replace_think, text)
|
| 776 |
+
|
| 777 |
+
return processed_text
|
| 778 |
+
|
| 779 |
+
def calculate_generation_metrics(start_time, total_tokens):
|
| 780 |
+
"""Calculate generation metrics"""
|
| 781 |
+
end_time = time.time()
|
| 782 |
+
generation_time = end_time - start_time
|
| 783 |
+
tokens_per_second = total_tokens / generation_time if generation_time > 0 else 0
|
| 784 |
+
|
| 785 |
+
return {
|
| 786 |
+
"generation_time": generation_time,
|
| 787 |
+
"total_tokens": total_tokens,
|
| 788 |
+
"tokens_per_second": tokens_per_second,
|
| 789 |
+
"model_name": MODEL_NAME
|
| 790 |
+
}
|
| 791 |
+
|
| 792 |
+
def format_metadata_tooltip(metadata):
|
| 793 |
+
"""Format metadata for tooltip display"""
|
| 794 |
+
return f"""Model: {metadata['model_name']}
|
| 795 |
+
Tokens: {metadata['total_tokens']}
|
| 796 |
+
Speed: {metadata['tokens_per_second']:.2f} tok/s
|
| 797 |
+
Time: {metadata['generation_time']:.2f}s"""
|
| 798 |
+
|
| 799 |
+
def add_metadata_to_response(response_text, metadata):
|
| 800 |
+
"""Add metadata icon with tooltip to the response"""
|
| 801 |
+
tooltip_content = format_metadata_tooltip(metadata)
|
| 802 |
+
|
| 803 |
+
# Create a metadata icon with tooltip using HTML
|
| 804 |
+
metadata_html = f"""
|
| 805 |
+
<div style="position: relative; display: inline-block; margin-left: 8px;">
|
| 806 |
+
<span class="metadata-icon" style="cursor: help; opacity: 0.6; font-size: 14px;" title="{tooltip_content}">โน๏ธ</span>
|
| 807 |
+
</div>
|
| 808 |
+
"""
|
| 809 |
+
|
| 810 |
+
# Add metadata icon at the end of the response
|
| 811 |
+
return response_text + "\n\n" + metadata_html
|
| 812 |
+
|
| 813 |
+
def chat_with_model(message, history, system_prompt, temp, top_p_val, top_k_val, rep_penalty_val, memory_opt):
|
| 814 |
+
"""
|
| 815 |
+
Enhanced chat function with RAM-saving streamer and improved memory management.
|
| 816 |
+
Uses direct generation approach for better memory control and VRAM efficiency.
|
| 817 |
+
"""
|
| 818 |
+
global model, tokenizer, generation_metadata
|
| 819 |
+
|
| 820 |
+
# Check if model is loaded
|
| 821 |
+
if model is None or tokenizer is None:
|
| 822 |
+
return "โ Model not loaded. Please load the model first."
|
| 823 |
+
|
| 824 |
+
# Initialize variables for cleanup
|
| 825 |
+
input_ids = None
|
| 826 |
+
streamer = None
|
| 827 |
+
|
| 828 |
+
try:
|
| 829 |
+
# Record start time for metrics
|
| 830 |
+
start_time = time.time()
|
| 831 |
+
token_count = 0
|
| 832 |
+
|
| 833 |
+
# Format conversation for model
|
| 834 |
+
messages = [{"role": "system", "content": system_prompt}]
|
| 835 |
+
|
| 836 |
+
# Add chat history - HANDLE BOTH FORMATS (tuples from original and dicts from new)
|
| 837 |
+
for h in history:
|
| 838 |
+
if isinstance(h, dict):
|
| 839 |
+
# New dict format
|
| 840 |
+
if h.get("role") == "user":
|
| 841 |
+
messages.append({"role": "user", "content": h["content"]})
|
| 842 |
+
elif h.get("role") == "assistant":
|
| 843 |
+
messages.append({"role": "assistant", "content": h["content"]})
|
| 844 |
+
else:
|
| 845 |
+
# Original tuple format (user_msg, bot_msg)
|
| 846 |
+
if len(h) >= 2:
|
| 847 |
+
messages.append({"role": "user", "content": h[0]})
|
| 848 |
+
if h[1] is not None:
|
| 849 |
+
messages.append({"role": "assistant", "content": h[1]})
|
| 850 |
+
|
| 851 |
+
# Add the current message
|
| 852 |
+
messages.append({"role": "user", "content": message})
|
| 853 |
+
|
| 854 |
+
# Wrap generation in torch.no_grad() to prevent gradient accumulation
|
| 855 |
+
with torch.no_grad():
|
| 856 |
+
# Create model input with memory-efficient approach
|
| 857 |
+
input_ids = tokenizer.apply_chat_template(
|
| 858 |
+
messages,
|
| 859 |
+
tokenize=True,
|
| 860 |
+
add_generation_prompt=True,
|
| 861 |
+
return_tensors="pt"
|
| 862 |
+
)
|
| 863 |
+
|
| 864 |
+
# Handle edge case
|
| 865 |
+
if input_ids.ndim == 1:
|
| 866 |
+
input_ids = input_ids.unsqueeze(0)
|
| 867 |
+
|
| 868 |
+
# Move to device
|
| 869 |
+
input_ids = input_ids.to(model.device)
|
| 870 |
+
|
| 871 |
+
# Setup RAM-saving streamer
|
| 872 |
+
streamer = RAMSavingIteratorStreamer(
|
| 873 |
+
tokenizer,
|
| 874 |
+
skip_special_tokens=True,
|
| 875 |
+
skip_prompt=True,
|
| 876 |
+
timeout=1.0
|
| 877 |
+
)
|
| 878 |
+
|
| 879 |
+
# Set prompt length for the streamer
|
| 880 |
+
streamer.set_prompt_length(input_ids.shape[1])
|
| 881 |
+
|
| 882 |
+
# Pre-generation memory cleanup (only if memory optimization is on)
|
| 883 |
+
if memory_opt:
|
| 884 |
+
gc.collect()
|
| 885 |
+
if torch.cuda.is_available():
|
| 886 |
+
torch.cuda.empty_cache()
|
| 887 |
+
|
| 888 |
+
# Conditional generation parameters based on memory optimization
|
| 889 |
+
gen_kwargs = {
|
| 890 |
+
"input_ids": input_ids,
|
| 891 |
+
"max_new_tokens": MAX_LENGTH,
|
| 892 |
+
"temperature": temp,
|
| 893 |
+
"top_p": top_p_val,
|
| 894 |
+
"top_k": top_k_val,
|
| 895 |
+
"repetition_penalty": rep_penalty_val,
|
| 896 |
+
"do_sample": temp > 0,
|
| 897 |
+
"streamer": streamer,
|
| 898 |
+
"use_cache": not memory_opt, # Disable cache only if memory optimization is on
|
| 899 |
+
}
|
| 900 |
+
|
| 901 |
+
# Generate in a thread for real-time streaming
|
| 902 |
+
thread = Thread(
|
| 903 |
+
target=model.generate,
|
| 904 |
+
kwargs=gen_kwargs,
|
| 905 |
+
daemon=True
|
| 906 |
+
)
|
| 907 |
+
thread.start()
|
| 908 |
+
|
| 909 |
+
# Stream the response with conditional memory management
|
| 910 |
+
partial_text = ""
|
| 911 |
+
try:
|
| 912 |
+
for new_text in streamer:
|
| 913 |
+
partial_text += new_text
|
| 914 |
+
token_count += 1
|
| 915 |
+
|
| 916 |
+
# Process the text to handle think tags while preserving LaTeX
|
| 917 |
+
processed_text = process_think_tags(partial_text)
|
| 918 |
+
|
| 919 |
+
yield processed_text
|
| 920 |
+
|
| 921 |
+
# Conditional cleanup based on memory optimization setting (less frequent)
|
| 922 |
+
if memory_opt and token_count % 150 == 0: # Reduced frequency for performance
|
| 923 |
+
gc.collect() # Only light cleanup if memory optimization is on
|
| 924 |
+
|
| 925 |
+
except StopIteration:
|
| 926 |
+
# Normal end of generation
|
| 927 |
+
pass
|
| 928 |
+
except Exception as stream_error:
|
| 929 |
+
logger.error(f"Streaming error: {stream_error}")
|
| 930 |
+
yield f"โ Streaming error: {stream_error}"
|
| 931 |
+
return
|
| 932 |
+
|
| 933 |
+
finally:
|
| 934 |
+
# Add metadata to final response
|
| 935 |
+
try:
|
| 936 |
+
metrics = calculate_generation_metrics(start_time, token_count)
|
| 937 |
+
partial_text = add_metadata_to_response(partial_text, metrics)
|
| 938 |
+
except Exception as e:
|
| 939 |
+
logger.warning(f"Couldn't add metadata: {str(e)}")
|
| 940 |
+
|
| 941 |
+
yield partial_text
|
| 942 |
+
|
| 943 |
+
# Ensure thread completion
|
| 944 |
+
if thread.is_alive():
|
| 945 |
+
thread.join(timeout=5.0)
|
| 946 |
+
if thread.is_alive():
|
| 947 |
+
logger.warning("Generation thread did not complete in time")
|
| 948 |
+
|
| 949 |
+
# Calculate generation metrics
|
| 950 |
+
try:
|
| 951 |
+
metrics = calculate_generation_metrics(start_time, token_count)
|
| 952 |
+
|
| 953 |
+
# Store metadata (using deque with max size to prevent memory leaks)
|
| 954 |
+
generation_metadata.append(metrics)
|
| 955 |
+
|
| 956 |
+
# Log the metrics
|
| 957 |
+
logger.info(f"Generation metrics - Tokens: {metrics['total_tokens']}, Speed: {metrics['tokens_per_second']:.2f} tok/s, Time: {metrics['generation_time']:.2f}s")
|
| 958 |
+
except Exception as metrics_error:
|
| 959 |
+
logger.warning(f"Error calculating metrics: {metrics_error}")
|
| 960 |
+
|
| 961 |
+
# Final cleanup
|
| 962 |
+
try:
|
| 963 |
+
# Clean up streamer
|
| 964 |
+
if streamer:
|
| 965 |
+
streamer.cleanup()
|
| 966 |
+
del streamer
|
| 967 |
+
streamer = None
|
| 968 |
+
|
| 969 |
+
# Clean up input tensors
|
| 970 |
+
if input_ids is not None:
|
| 971 |
+
del input_ids
|
| 972 |
+
input_ids = None
|
| 973 |
+
|
| 974 |
+
# Conditional cleanup based on memory optimization setting
|
| 975 |
+
if memory_opt:
|
| 976 |
+
# Aggressive cleanup only if memory optimization is enabled
|
| 977 |
+
if torch.cuda.is_available():
|
| 978 |
+
for _ in range(2): # Reduced rounds for performance
|
| 979 |
+
torch.cuda.empty_cache()
|
| 980 |
+
torch.cuda.synchronize()
|
| 981 |
+
# Force garbage collection
|
| 982 |
+
for _ in range(2):
|
| 983 |
+
gc.collect()
|
| 984 |
+
else:
|
| 985 |
+
# Light cleanup for performance mode
|
| 986 |
+
gc.collect()
|
| 987 |
+
if torch.cuda.is_available():
|
| 988 |
+
torch.cuda.empty_cache()
|
| 989 |
+
|
| 990 |
+
logger.info(f"Generation completed, {token_count} tokens, memory_opt: {memory_opt}, VRAM saved with RAM-saving streamer")
|
| 991 |
+
|
| 992 |
+
except Exception as cleanup_error:
|
| 993 |
+
logger.warning(f"Final cleanup warning: {cleanup_error}")
|
| 994 |
+
|
| 995 |
+
except Exception as e:
|
| 996 |
+
logger.error(f"Error in chat_with_model: {str(e)}", exc_info=True)
|
| 997 |
+
|
| 998 |
+
# Emergency cleanup
|
| 999 |
+
try:
|
| 1000 |
+
if streamer:
|
| 1001 |
+
streamer.cleanup()
|
| 1002 |
+
del streamer
|
| 1003 |
+
if input_ids is not None:
|
| 1004 |
+
del input_ids
|
| 1005 |
+
gc.collect()
|
| 1006 |
+
if torch.cuda.is_available():
|
| 1007 |
+
torch.cuda.empty_cache()
|
| 1008 |
+
except Exception as emergency_cleanup_error:
|
| 1009 |
+
logger.error(f"Emergency cleanup failed: {emergency_cleanup_error}")
|
| 1010 |
+
|
| 1011 |
+
yield f"โ Error: {str(e)}"
|
| 1012 |
+
|
| 1013 |
+
def update_model_name():
|
| 1014 |
+
"""Update the displayed model name"""
|
| 1015 |
+
return f"๐ฎ AI Chat Assistant ({MODEL_NAME})"
|
| 1016 |
+
|
| 1017 |
+
def add_page_refresh_warning():
|
| 1018 |
+
"""Add JavaScript to warn about page refresh when model is loaded"""
|
| 1019 |
+
return """
|
| 1020 |
+
<script>
|
| 1021 |
+
window.addEventListener('beforeunload', function (e) {
|
| 1022 |
+
// Check if model is loaded by looking for specific text in the page
|
| 1023 |
+
const statusElements = document.querySelectorAll('input[type="text"], textarea');
|
| 1024 |
+
let modelLoaded = false;
|
| 1025 |
+
|
| 1026 |
+
statusElements.forEach(element => {
|
| 1027 |
+
if (element.value && element.value.includes('Model loaded successfully')) {
|
| 1028 |
+
modelLoaded = true;
|
| 1029 |
+
}
|
| 1030 |
+
});
|
| 1031 |
+
|
| 1032 |
+
if (modelLoaded) {
|
| 1033 |
+
e.preventDefault();
|
| 1034 |
+
e.returnValue = 'A model is currently loaded. Are you sure you want to leave?';
|
| 1035 |
+
return 'A model is currently loaded. Are you sure you want to leave?';
|
| 1036 |
+
}
|
| 1037 |
+
});
|
| 1038 |
+
</script>
|
| 1039 |
+
"""
|
| 1040 |
+
|
| 1041 |
+
# Custom CSS for elegant styling with fixed dropdown behavior
|
| 1042 |
+
custom_css = """
|
| 1043 |
+
/* Main container styling */
|
| 1044 |
+
.gradio-container {
|
| 1045 |
+
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif !important;
|
| 1046 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 1047 |
+
min-height: 100vh;
|
| 1048 |
+
}
|
| 1049 |
+
|
| 1050 |
+
/* Header styling */
|
| 1051 |
+
.header-text {
|
| 1052 |
+
background: rgba(255, 255, 255, 0.95);
|
| 1053 |
+
backdrop-filter: blur(10px);
|
| 1054 |
+
border-radius: 15px;
|
| 1055 |
+
padding: 20px;
|
| 1056 |
+
margin: 20px 0;
|
| 1057 |
+
text-align: center;
|
| 1058 |
+
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
|
| 1059 |
+
border: 1px solid rgba(255, 255, 255, 0.2);
|
| 1060 |
+
}
|
| 1061 |
+
|
| 1062 |
+
/* Chat interface styling */
|
| 1063 |
+
.chat-container {
|
| 1064 |
+
background: rgba(255, 255, 255, 0.95) !important;
|
| 1065 |
+
border-radius: 20px !important;
|
| 1066 |
+
box-shadow: 0 20px 40px rgba(0, 0, 0, 0.1) !important;
|
| 1067 |
+
border: 1px solid rgba(255, 255, 255, 0.2) !important;
|
| 1068 |
+
backdrop-filter: blur(10px) !important;
|
| 1069 |
+
}
|
| 1070 |
+
|
| 1071 |
+
/* Control panel styling */
|
| 1072 |
+
.control-panel {
|
| 1073 |
+
background: rgba(255, 255, 255, 0.9) !important;
|
| 1074 |
+
border-radius: 15px !important;
|
| 1075 |
+
padding: 20px !important;
|
| 1076 |
+
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.1) !important;
|
| 1077 |
+
border: 1px solid rgba(255, 255, 255, 0.3) !important;
|
| 1078 |
+
backdrop-filter: blur(10px) !important;
|
| 1079 |
+
overflow: visible !important; /* Allow dropdowns to overflow */
|
| 1080 |
+
}
|
| 1081 |
+
|
| 1082 |
+
/* Button styling */
|
| 1083 |
+
.btn-primary {
|
| 1084 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 1085 |
+
border: none !important;
|
| 1086 |
+
border-radius: 10px !important;
|
| 1087 |
+
color: white !important;
|
| 1088 |
+
font-weight: 600 !important;
|
| 1089 |
+
transition: all 0.3s ease !important;
|
| 1090 |
+
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4) !important;
|
| 1091 |
+
}
|
| 1092 |
+
|
| 1093 |
+
.btn-primary:hover {
|
| 1094 |
+
transform: translateY(-2px) !important;
|
| 1095 |
+
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.6) !important;
|
| 1096 |
+
}
|
| 1097 |
+
|
| 1098 |
+
.btn-secondary {
|
| 1099 |
+
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%) !important;
|
| 1100 |
+
border: none !important;
|
| 1101 |
+
border-radius: 10px !important;
|
| 1102 |
+
color: white !important;
|
| 1103 |
+
font-weight: 600 !important;
|
| 1104 |
+
transition: all 0.3s ease !important;
|
| 1105 |
+
}
|
| 1106 |
+
|
| 1107 |
+
/* Input field styling */
|
| 1108 |
+
.input-field {
|
| 1109 |
+
border-radius: 10px !important;
|
| 1110 |
+
border: 2px solid rgba(102, 126, 234, 0.2) !important;
|
| 1111 |
+
transition: all 0.3s ease !important;
|
| 1112 |
+
}
|
| 1113 |
+
|
| 1114 |
+
.input-field:focus {
|
| 1115 |
+
border-color: #667eea !important;
|
| 1116 |
+
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important;
|
| 1117 |
+
}
|
| 1118 |
+
|
| 1119 |
+
/* Dropdown fixes */
|
| 1120 |
+
.dropdown-container {
|
| 1121 |
+
position: relative !important;
|
| 1122 |
+
z-index: 1000 !important;
|
| 1123 |
+
overflow: visible !important;
|
| 1124 |
+
}
|
| 1125 |
+
|
| 1126 |
+
/* Fix dropdown menu positioning and styling */
|
| 1127 |
+
.dropdown select,
|
| 1128 |
+
.dropdown-menu,
|
| 1129 |
+
.svelte-select,
|
| 1130 |
+
.svelte-select-list {
|
| 1131 |
+
position: relative !important;
|
| 1132 |
+
z-index: 1001 !important;
|
| 1133 |
+
background: white !important;
|
| 1134 |
+
border: 2px solid rgba(102, 126, 234, 0.2) !important;
|
| 1135 |
+
border-radius: 10px !important;
|
| 1136 |
+
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.15) !important;
|
| 1137 |
+
max-height: 200px !important;
|
| 1138 |
+
overflow-y: auto !important;
|
| 1139 |
+
}
|
| 1140 |
+
|
| 1141 |
+
/* Fix dropdown option styling */
|
| 1142 |
+
.dropdown option,
|
| 1143 |
+
.svelte-select-option {
|
| 1144 |
+
padding: 8px 12px !important;
|
| 1145 |
+
background: white !important;
|
| 1146 |
+
color: #333 !important;
|
| 1147 |
+
border: none !important;
|
| 1148 |
+
}
|
| 1149 |
+
|
| 1150 |
+
.dropdown option:hover,
|
| 1151 |
+
.svelte-select-option:hover {
|
| 1152 |
+
background: #f0f0f0 !important;
|
| 1153 |
+
color: #667eea !important;
|
| 1154 |
+
}
|
| 1155 |
+
|
| 1156 |
+
/* Ensure dropdown arrow is clickable */
|
| 1157 |
+
.dropdown::after,
|
| 1158 |
+
.dropdown-arrow {
|
| 1159 |
+
pointer-events: none !important;
|
| 1160 |
+
z-index: 1002 !important;
|
| 1161 |
+
}
|
| 1162 |
+
|
| 1163 |
+
/* Fix any overflow issues in parent containers */
|
| 1164 |
+
.gradio-group,
|
| 1165 |
+
.gradio-column {
|
| 1166 |
+
overflow: visible !important;
|
| 1167 |
+
}
|
| 1168 |
+
|
| 1169 |
+
/* Accordion styling */
|
| 1170 |
+
.accordion {
|
| 1171 |
+
border-radius: 10px !important;
|
| 1172 |
+
border: 1px solid rgba(102, 126, 234, 0.2) !important;
|
| 1173 |
+
overflow: visible !important; /* Allow dropdowns to overflow accordion */
|
| 1174 |
+
}
|
| 1175 |
+
|
| 1176 |
+
/* Status indicators */
|
| 1177 |
+
.status-success {
|
| 1178 |
+
color: #10b981 !important;
|
| 1179 |
+
font-weight: 600 !important;
|
| 1180 |
+
}
|
| 1181 |
+
|
| 1182 |
+
.status-error {
|
| 1183 |
+
color: #ef4444 !important;
|
| 1184 |
+
font-weight: 600 !important;
|
| 1185 |
+
}
|
| 1186 |
+
|
| 1187 |
+
/* Reduced transition frequency to avoid conflicts */
|
| 1188 |
+
.gradio-container * {
|
| 1189 |
+
transition: background-color 0.3s ease, border-color 0.3s ease !important;
|
| 1190 |
+
}
|
| 1191 |
+
|
| 1192 |
+
/* Chat bubble styling */
|
| 1193 |
+
.message {
|
| 1194 |
+
border-radius: 18px !important;
|
| 1195 |
+
padding: 12px 16px !important;
|
| 1196 |
+
margin: 8px 0 !important;
|
| 1197 |
+
max-width: 80% !important;
|
| 1198 |
+
}
|
| 1199 |
+
|
| 1200 |
+
.user-message {
|
| 1201 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 1202 |
+
color: white !important;
|
| 1203 |
+
margin-left: auto !important;
|
| 1204 |
+
}
|
| 1205 |
+
|
| 1206 |
+
.bot-message {
|
| 1207 |
+
background: #f8fafc !important;
|
| 1208 |
+
border: 1px solid #e2e8f0 !important;
|
| 1209 |
+
}
|
| 1210 |
+
|
| 1211 |
+
/* Metadata tooltip styling - Enhanced */
|
| 1212 |
+
.metadata-icon {
|
| 1213 |
+
display: inline-block;
|
| 1214 |
+
margin-left: 8px;
|
| 1215 |
+
cursor: help;
|
| 1216 |
+
opacity: 0.6;
|
| 1217 |
+
transition: opacity 0.3s ease, transform 0.2s ease;
|
| 1218 |
+
font-size: 14px;
|
| 1219 |
+
user-select: none;
|
| 1220 |
+
vertical-align: middle;
|
| 1221 |
+
}
|
| 1222 |
+
|
| 1223 |
+
.metadata-icon:hover {
|
| 1224 |
+
opacity: 1;
|
| 1225 |
+
transform: scale(1.1);
|
| 1226 |
+
}
|
| 1227 |
+
|
| 1228 |
+
/* Enhanced tooltip styling */
|
| 1229 |
+
.metadata-icon[title]:hover::after {
|
| 1230 |
+
content: attr(title);
|
| 1231 |
+
position: absolute;
|
| 1232 |
+
bottom: 100%;
|
| 1233 |
+
left: 50%;
|
| 1234 |
+
transform: translateX(-50%);
|
| 1235 |
+
background: rgba(0, 0, 0, 0.9);
|
| 1236 |
+
color: white;
|
| 1237 |
+
padding: 8px 12px;
|
| 1238 |
+
border-radius: 6px;
|
| 1239 |
+
font-size: 12px;
|
| 1240 |
+
white-space: pre-line;
|
| 1241 |
+
z-index: 1000;
|
| 1242 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.3);
|
| 1243 |
+
margin-bottom: 5px;
|
| 1244 |
+
min-width: 200px;
|
| 1245 |
+
text-align: left;
|
| 1246 |
+
}
|
| 1247 |
+
|
| 1248 |
+
.metadata-icon[title]:hover::before {
|
| 1249 |
+
content: '';
|
| 1250 |
+
position: absolute;
|
| 1251 |
+
bottom: 100%;
|
| 1252 |
+
left: 50%;
|
| 1253 |
+
transform: translateX(-50%);
|
| 1254 |
+
border: 5px solid transparent;
|
| 1255 |
+
border-top-color: rgba(0, 0, 0, 0.9);
|
| 1256 |
+
z-index: 1001;
|
| 1257 |
+
}
|
| 1258 |
+
|
| 1259 |
+
/* Compact system prompt */
|
| 1260 |
+
.compact-prompt {
|
| 1261 |
+
min-height: 40px !important;
|
| 1262 |
+
transition: min-height 0.3s ease !important;
|
| 1263 |
+
}
|
| 1264 |
+
|
| 1265 |
+
.compact-prompt:focus {
|
| 1266 |
+
min-height: 80px !important;
|
| 1267 |
+
}
|
| 1268 |
+
"""
|
| 1269 |
+
|
| 1270 |
+
# Main application
|
| 1271 |
+
with gr.Blocks(css=custom_css, title="๐ฎ AI Chat Assistant") as demo:
|
| 1272 |
+
# Add page refresh warning script
|
| 1273 |
+
gr.HTML(add_page_refresh_warning())
|
| 1274 |
+
|
| 1275 |
+
# Header
|
| 1276 |
+
with gr.Row():
|
| 1277 |
+
title = gr.Markdown("# ๐ฎ AI Chat Assistant (No Model Loaded)", elem_classes="header-text")
|
| 1278 |
+
|
| 1279 |
+
with gr.Row(equal_height=True):
|
| 1280 |
+
# Main chat area (left side - 70% width)
|
| 1281 |
+
with gr.Column(scale=7, elem_classes="chat-container"):
|
| 1282 |
+
# Compact system prompt (changed from 4 lines to 1)
|
| 1283 |
+
system_prompt = gr.Textbox(
|
| 1284 |
+
label="๐ฏ System Prompt",
|
| 1285 |
+
value="You are a helpful AI assistant.",
|
| 1286 |
+
lines=1, # Changed from 4 to 1
|
| 1287 |
+
elem_classes="input-field compact-prompt"
|
| 1288 |
+
)
|
| 1289 |
+
|
| 1290 |
+
# Generation settings in accordion
|
| 1291 |
+
with gr.Accordion("โ๏ธ Generation Settings", open=False, elem_classes="accordion"):
|
| 1292 |
+
with gr.Row():
|
| 1293 |
+
temperature = gr.Slider(0.0, 2.0, DEFAULT_TEMPERATURE, step=0.05, label="๐ก๏ธ Temperature")
|
| 1294 |
+
top_p = gr.Slider(0.0, 1.0, DEFAULT_TOP_P, step=0.01, label="๐ฏ Top-p")
|
| 1295 |
+
with gr.Row():
|
| 1296 |
+
top_k = gr.Slider(1, 200, DEFAULT_TOP_K, step=1, label="๐ Top-k")
|
| 1297 |
+
rep_penalty = gr.Slider(1.0, 2.0, DEFAULT_REP_PENALTY, step=0.01, label="๐ Repetition Penalty")
|
| 1298 |
+
|
| 1299 |
+
# Memory optimization for chat (moved here to be defined before use)
|
| 1300 |
+
memory_opt_chat = gr.Checkbox(
|
| 1301 |
+
label="๐ง Memory Optimization for Chat",
|
| 1302 |
+
value=True,
|
| 1303 |
+
info="Use memory optimization during chat generation (disables KV cache)"
|
| 1304 |
+
)
|
| 1305 |
+
|
| 1306 |
+
# Chat interface using original gr.ChatInterface for fast streaming and stop button
|
| 1307 |
+
chatbot = gr.Chatbot(
|
| 1308 |
+
height=500,
|
| 1309 |
+
latex_delimiters=[
|
| 1310 |
+
{"left": "$", "right": "$", "display": True},
|
| 1311 |
+
{"left": "$", "right": "$", "display": False},
|
| 1312 |
+
{"left": "\\(", "right": "\\)", "display": False},
|
| 1313 |
+
{"left": "\\[", "right": "\\]", "display": True}
|
| 1314 |
+
],
|
| 1315 |
+
show_copy_button=True,
|
| 1316 |
+
avatar_images=("๐ค", "๐ค"),
|
| 1317 |
+
type="messages",
|
| 1318 |
+
render_markdown=True
|
| 1319 |
+
)
|
| 1320 |
+
|
| 1321 |
+
chat_interface = gr.ChatInterface(
|
| 1322 |
+
fn=chat_with_model,
|
| 1323 |
+
chatbot=chatbot,
|
| 1324 |
+
additional_inputs=[system_prompt, temperature, top_p, top_k, rep_penalty, memory_opt_chat],
|
| 1325 |
+
type="messages",
|
| 1326 |
+
submit_btn="Send ๐ค",
|
| 1327 |
+
stop_btn="โน๏ธ Stop"
|
| 1328 |
+
)
|
| 1329 |
+
|
| 1330 |
+
# Control panel (right side - 30% width)
|
| 1331 |
+
with gr.Column(scale=3, elem_classes="control-panel"):
|
| 1332 |
+
# Model status and controls
|
| 1333 |
+
with gr.Group():
|
| 1334 |
+
gr.Markdown("### ๐ Model Controls")
|
| 1335 |
+
|
| 1336 |
+
with gr.Row():
|
| 1337 |
+
load_btn = gr.Button("๐ Load Model", variant="primary", elem_classes="btn-primary")
|
| 1338 |
+
unload_btn = gr.Button("๐๏ธ Unload", variant="secondary", elem_classes="btn-secondary")
|
| 1339 |
+
|
| 1340 |
+
model_status = gr.Textbox(
|
| 1341 |
+
label="๐ Status",
|
| 1342 |
+
value="Model not loaded",
|
| 1343 |
+
interactive=False,
|
| 1344 |
+
elem_classes="input-field"
|
| 1345 |
+
)
|
| 1346 |
+
|
| 1347 |
+
progress_display = gr.Textbox(
|
| 1348 |
+
label="๐ Progress",
|
| 1349 |
+
value="Ready to load model",
|
| 1350 |
+
interactive=False,
|
| 1351 |
+
elem_classes="input-field"
|
| 1352 |
+
)
|
| 1353 |
+
|
| 1354 |
+
# Model selection
|
| 1355 |
+
with gr.Group():
|
| 1356 |
+
gr.Markdown("### ๐๏ธ Model Selection")
|
| 1357 |
+
|
| 1358 |
+
model_source = gr.Radio(
|
| 1359 |
+
choices=["Hugging Face Model", "Local Path"],
|
| 1360 |
+
value="Local Path", # Changed default to Local Path
|
| 1361 |
+
label="๐ Model Source"
|
| 1362 |
+
)
|
| 1363 |
+
|
| 1364 |
+
# HF Model search and selection (initially hidden)
|
| 1365 |
+
with gr.Group(visible=False) as hf_group:
|
| 1366 |
+
model_search = gr.Textbox(
|
| 1367 |
+
label="๐ Search Models",
|
| 1368 |
+
placeholder="e.g., microsoft/Phi-3, meta-llama/Llama-3, ykarout/your-model",
|
| 1369 |
+
elem_classes="input-field"
|
| 1370 |
+
)
|
| 1371 |
+
|
| 1372 |
+
hf_model = gr.Dropdown(
|
| 1373 |
+
label="๐ Select Model",
|
| 1374 |
+
choices=[],
|
| 1375 |
+
interactive=True,
|
| 1376 |
+
elem_classes="input-field dropdown-container",
|
| 1377 |
+
allow_custom_value=True, # Allow typing custom model names
|
| 1378 |
+
filterable=True # Enable filtering
|
| 1379 |
+
)
|
| 1380 |
+
|
| 1381 |
+
# Local path group (visible by default)
|
| 1382 |
+
with gr.Group(visible=True) as local_group:
|
| 1383 |
+
local_path = gr.Textbox(
|
| 1384 |
+
value=LOCAL_MODELS_BASE, # Changed default to new base location
|
| 1385 |
+
label="๐ Local Models Base Path",
|
| 1386 |
+
elem_classes="input-field"
|
| 1387 |
+
)
|
| 1388 |
+
|
| 1389 |
+
# Button to refresh local models
|
| 1390 |
+
refresh_local_btn = gr.Button("๐ Scan Local Models", elem_classes="btn-secondary")
|
| 1391 |
+
|
| 1392 |
+
# Dropdown for local models with better configuration
|
| 1393 |
+
local_models_dropdown = gr.Dropdown(
|
| 1394 |
+
label="๐ Available Local Models",
|
| 1395 |
+
choices=[],
|
| 1396 |
+
interactive=True,
|
| 1397 |
+
elem_classes="input-field dropdown-container",
|
| 1398 |
+
allow_custom_value=False, # Don't allow custom for local models
|
| 1399 |
+
filterable=True # Enable filtering
|
| 1400 |
+
)
|
| 1401 |
+
|
| 1402 |
+
quantization = gr.Radio(
|
| 1403 |
+
choices=["4bit", "8bit", "bf16", "f16"],
|
| 1404 |
+
value="4bit",
|
| 1405 |
+
label="โก Quantization"
|
| 1406 |
+
)
|
| 1407 |
+
|
| 1408 |
+
# Advanced memory optimization toggle
|
| 1409 |
+
memory_optimization = gr.Checkbox(
|
| 1410 |
+
label="๐ง Advanced Memory Optimization",
|
| 1411 |
+
value=True,
|
| 1412 |
+
info="Reduces VRAM usage but may slightly impact speed"
|
| 1413 |
+
)
|
| 1414 |
+
|
| 1415 |
+
# Note: Memory optimization for chat is now in Generation Settings
|
| 1416 |
+
|
| 1417 |
+
# Memory stats with cleanup buttons
|
| 1418 |
+
with gr.Group():
|
| 1419 |
+
gr.Markdown("### ๐พ System Status")
|
| 1420 |
+
memory_info = gr.HTML()
|
| 1421 |
+
with gr.Row():
|
| 1422 |
+
refresh_btn = gr.Button("โป Refresh Stats", elem_classes="btn-secondary")
|
| 1423 |
+
cleanup_btn = gr.Button("๐งน Clean Memory", elem_classes="btn-secondary")
|
| 1424 |
+
with gr.Row():
|
| 1425 |
+
nuclear_btn = gr.Button("โข๏ธ Nuclear Cleanup", elem_classes="btn-secondary", variant="stop")
|
| 1426 |
+
|
| 1427 |
+
# Event handlers
|
| 1428 |
+
|
| 1429 |
+
# Model search functionality for HF
|
| 1430 |
+
model_search.change(
|
| 1431 |
+
update_model_dropdown,
|
| 1432 |
+
inputs=[model_search],
|
| 1433 |
+
outputs=[hf_model]
|
| 1434 |
+
)
|
| 1435 |
+
|
| 1436 |
+
# Show/hide model selection based on source
|
| 1437 |
+
def toggle_model_source(choice):
|
| 1438 |
+
return (
|
| 1439 |
+
gr.Group(visible=choice == "Hugging Face Model"),
|
| 1440 |
+
gr.Group(visible=choice == "Local Path")
|
| 1441 |
+
)
|
| 1442 |
+
|
| 1443 |
+
model_source.change(
|
| 1444 |
+
toggle_model_source,
|
| 1445 |
+
inputs=[model_source],
|
| 1446 |
+
outputs=[hf_group, local_group]
|
| 1447 |
+
)
|
| 1448 |
+
|
| 1449 |
+
# Local model scanning
|
| 1450 |
+
refresh_local_btn.click(
|
| 1451 |
+
update_local_models_dropdown,
|
| 1452 |
+
inputs=[local_path],
|
| 1453 |
+
outputs=[local_models_dropdown]
|
| 1454 |
+
)
|
| 1455 |
+
|
| 1456 |
+
# Auto-scan on path change
|
| 1457 |
+
local_path.change(
|
| 1458 |
+
update_local_models_dropdown,
|
| 1459 |
+
inputs=[local_path],
|
| 1460 |
+
outputs=[local_models_dropdown]
|
| 1461 |
+
)
|
| 1462 |
+
|
| 1463 |
+
# Model loading with progress
|
| 1464 |
+
load_btn.click(
|
| 1465 |
+
load_model_with_progress,
|
| 1466 |
+
inputs=[model_source, hf_model, local_path, local_models_dropdown, quantization, memory_optimization],
|
| 1467 |
+
outputs=[progress_display]
|
| 1468 |
+
).then(
|
| 1469 |
+
lambda: "โ
Model loaded successfully!" if model is not None else "โ Model loading failed",
|
| 1470 |
+
outputs=[model_status]
|
| 1471 |
+
).then(
|
| 1472 |
+
get_memory_stats,
|
| 1473 |
+
outputs=[memory_info]
|
| 1474 |
+
).then(
|
| 1475 |
+
update_model_name,
|
| 1476 |
+
outputs=[title]
|
| 1477 |
+
)
|
| 1478 |
+
|
| 1479 |
+
# Model unloading
|
| 1480 |
+
unload_btn.click(
|
| 1481 |
+
unload_model,
|
| 1482 |
+
outputs=[model_status]
|
| 1483 |
+
).then(
|
| 1484 |
+
lambda: "Ready to load model",
|
| 1485 |
+
outputs=[progress_display]
|
| 1486 |
+
).then(
|
| 1487 |
+
get_memory_stats,
|
| 1488 |
+
outputs=[memory_info]
|
| 1489 |
+
).then(
|
| 1490 |
+
lambda: "# ๐ฎ AI Chat Assistant (No Model Loaded)",
|
| 1491 |
+
outputs=[title]
|
| 1492 |
+
)
|
| 1493 |
+
|
| 1494 |
+
# Refresh memory stats
|
| 1495 |
+
refresh_btn.click(get_memory_stats, outputs=[memory_info])
|
| 1496 |
+
|
| 1497 |
+
# Manual memory cleanup
|
| 1498 |
+
cleanup_btn.click(cleanup_memory, outputs=[]).then(
|
| 1499 |
+
get_memory_stats, outputs=[memory_info]
|
| 1500 |
+
)
|
| 1501 |
+
|
| 1502 |
+
# Nuclear memory cleanup
|
| 1503 |
+
nuclear_btn.click(nuclear_memory_cleanup, outputs=[]).then(
|
| 1504 |
+
get_memory_stats, outputs=[memory_info]
|
| 1505 |
+
)
|
| 1506 |
+
|
| 1507 |
+
# Initialize on load
|
| 1508 |
+
demo.load(get_memory_stats, outputs=[memory_info])
|
| 1509 |
+
demo.load(
|
| 1510 |
+
lambda: update_local_models_dropdown(LOCAL_MODELS_BASE),
|
| 1511 |
+
outputs=[local_models_dropdown]
|
| 1512 |
+
)
|
| 1513 |
+
|
| 1514 |
+
# Enable queue for streaming
|
| 1515 |
+
demo.queue()
|